Chemical Engineering 612

Introductory Nuclear Engineering

Lecture 12
Core Thermal Analysis

Spiritual Thought

"There is another way to look at your problem of crowded time." You can see it as an opportunity to test your faith. The lord loves you and watches over you. He is all-powerful, and He promised you this: 'But seek ye first the kingdom of God, and his righteousness; and all these things shall be added unto you.' This is a true promise. When we put God's purposes first, He will give us miracles. If we pray to know what He would have us do next, He will multiply th effects of what we do in such a way that time seems expanded. He may do it in different ways for each individual, but I know from long experience that He is faithful to His word."

President Russel M. Nelson

Thermal Parameters

- Thermal Evaluation of Core:
 - heat generation
 - Neutron Flux Hard!
 - Fuel Type, Number Density
 - Poisons, shim Directly affects flux

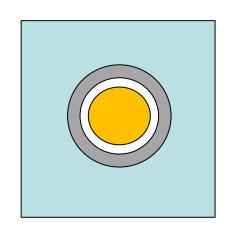
•
$$q''' = N\sigma_f \Phi_{avg} E_f = \sum_f N\Phi_{avg} E_f = \frac{W}{cm^3}$$

pump power requirements

•
$$P = \Delta P \dot{V} = \Delta P \frac{\dot{m}}{\rho}$$

heat removal

•
$$Q = \dot{m}C_p\Delta T$$



Heat Generation in Core

Heat in core vs. heat per rod:

•
$$\dot{Q} = N\langle \dot{q} \rangle$$

- = $NL\langle q'\rangle$
- = $NL\pi D_{co}\langle q^{\prime\prime}\rangle$
- = $NL\pi R_{fo}^2 \langle q^{\prime\prime\prime} \rangle$

- Also need sufficient cooling!
 - Pump Power = $\Delta P \cdot A \cdot v = \Delta P \cdot \dot{V}$
- Where: \dot{Q} = core power, \dot{q} = pin power, A = flow area, v = coolant velocity, \dot{V} = coolant volumetric flow rate,

N = number of fuel rods, L = rod length q' = linear heat rate, q'' = heat flux and q''' = volumetric heat rate

6 Basic Reactor Characteristics I

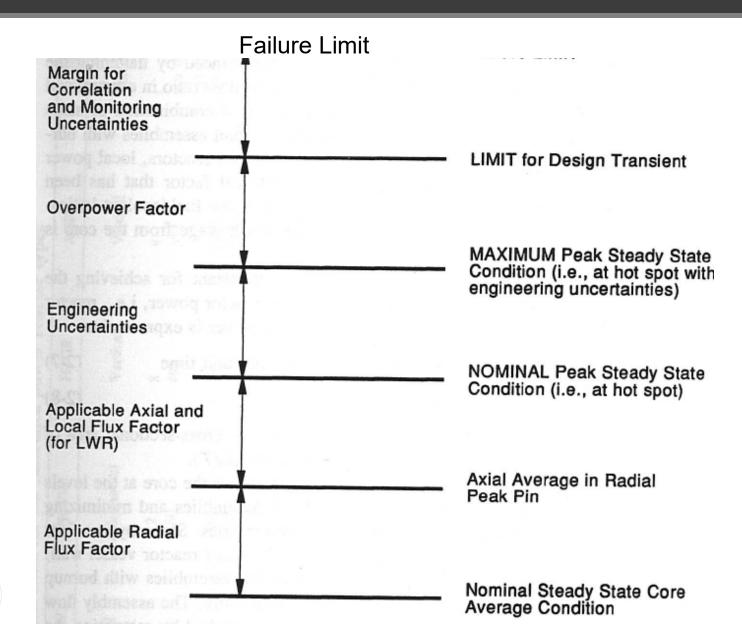
Characteristic	BWR	DIVID (III)				
Characteristic	BWK	PWR(W)	PHWR	HTGR	AGR	LMFBR ^a
Reference design						
Manufacturer	General Electric	Westinghouse	Atomic Energy of Canada, Ltd.	General Atomic	National Nuclear Corp.	Novatome
System (reactor station)	BWR/6	(Sequoyah)	CANDU-600	(Fulton)	HEYSHAM 2	(Superphenix)
Moderator	H ₂ O	H ₂ O	D_2O	Graphite	Graphite	_
Neutron energy	Thermal	Thermal	Thermal	Thermal	Thermal	Fast
Fuel production	Converter	Converter	Converter	Converter	Converter	Breeder
Fuel ^b			w. The second			2.0000
Particles						
Geometry Dimensions (mm) Chemical form Fissile (wt% 1st core ave.)	Cylindrical pellet $10.4D \times 10.4H$ UO_2 $1.7^{235}U$	Cylindrical pellet $8.2D \times 13.5H$ UO ₂ 2.6^{235} U	Cylindrical pellet $12.2D \times 16.4H$ UO_2 0.711 ^{235}U	Coated microspheres 400-800 µm D UC/ThO ₂ 93 ²³⁵ U	Cylindrical pellet 14.51D × 14.51H UO ₂ 2.2 ²³⁵ U	Annular pellet 7.0 <i>D</i> PuO ₂ /UO ₂ 15–18 ²³⁹ Pu
Fertile	^{238}U	²³⁸ U	²³⁸ U	Th	²³⁸ U	Depleted U
Pins						Depicted 0
Geometry	Pellet stack in clad tube	Pellet stack in clad tube	Pellet stack in clad tube	Cylindrical fuel stack	Pellet stack in clad tube	Pellet stack in clad tube
Dimensions (mm)	$12.27D \times 4.1 \text{ mH}$	$9.5D \times 4 \text{ mH}$	$13.1D \times 490L$	$15.7D \times 62L$	$14.89D \times 987H$	$8.65D \times 2.7 \text{ mH(C)}$
Clad material	Zircaloy-2	Zircaloy-4	Zircaloy-4	Graphite	Stainless steel	15.8D × 1.95 mH(BR Stainless steel
Clad thickness (mm)	0.813	0.57	0.42		0.38	0.7
Assembly						0.7
Geometry ^c	8 × 8 square rod array	17 × 17 square rod array	Concentric circles	Hexagonal graphite block	Concentric circles	Hexagonal rod array
Rod pitch (mm)	16.2	12.6	14.6	_	25.7	9.7 (C)/17.0 (BR)
No. rod locations	64	289	37	132 (SA)/76 (CA)d	37	271 (C)/91 (BR)
No. fuel rods	62	264	37-	132 (SA)/76 (CA)d	36	271 (C)/91 (BR) 271 (C)/91 (BR)
Outer dimensions (mm)	139	214	$102D \times 495L$	$360F \times 793H$	190.4 (inner)	173 <i>F</i>
Channel	Yes	M-				
Total weight (kg)	273	No —	No	No	Yes	Yes

6 Basic Reactor Characteristics II

Characteristic	BWR	PWR(W)	PHWR	HTGR	AGR	LMFB
Core	0.9					100
Axis	Vertical	Vertical	Horizontal	Vertical	Vertical	Vertic
No. of assemblies						
Axial	1	1	12	8	8	1
Radial	748	193	380	493	332	364 (C 233 (E
Assembly pitch (mm)	152	215	286	361	460	179
Active fuel height (m)	3.81	3.66	5.94	6.30	8.296	1.0 (C
Equivalent diameter (m)	4.70	3.37	6.29	8.41	9.458	3.66
Total fuel weight (ton)	156 UO ₂	101 UO ₂	98.4 UO ₂	1.72 U 37.5 Th	113.5 UO ₂	32 MC
Reactor vessel						
Inside dimensions (m)	$6.05D \times 21.6H$	$4.83D \times 13.4H$	$7.6D \times 4L$	$11.3D \times 14.4H$	$20.25D \times 21.87H$	21D >
Wall thickness (mm)	152	224	28.6	4.72 m min	5.8 m	25
Material ^b	SS-clad carbon steel	SS-clad carbon steel	Stainless steel	Prestressed concrete	Concrete helical prestressed	Stainle
Other features			Pressure tubes	Steel liners	Steel lined	Pool t
Power density core average (kW/L)	54.1	105	12	8.4	2.66	280
Linear heat rate						
Core average (kW/m)	19.0	17.8	25.7	7.87	17.0	29
Core maximum (kW/m)	44.0	42.7	44.1	23.0	29.8	45
Performance						
Equilibrium burnup (MWD/T)	27,500	27,500	7500	95,000	18,000	100,00
Average assembly residence (full-power days)			470	1170	1320	
Refueling						
Sequence	å per yr	⅓ per yr	Continuous on-line	‡ per yr	Continuous on-line	Variab
Outage time (days)	30	30		14-20		32

Source: Knief [3], except AGR data are from Alderson [1] and Debenham [2].

bSS = stainless steel.



[&]quot;LMFBR: core (C), radial blanket (BR), axial blanket (BA).

Best Estimate and Uncertainties

- Best Estimate
 - Most likely value
 - Do we know this?
 - Are we sure of all dependent values?
- Propagation of Uncertainties
 - (UO Lab) designed to give range of possible values
- Once distribution given, used to develop margin

Thermal Design Margins

