Chemical Engineering 612

Reactor Design and Analysis

Lecture 7 Criticality Theory

Spiritual Thought

Moroni 10:5

And by the power of the Holy Ghost ye may know the truth of all things.

Reflected Reactors

core transport equation

core materials properties

reflector transport equation

general solution for core

flux must be finite at the center

flux must be finite as r increases

Reflected Reactors

 $\phi_{c}(R) = \phi_{r}(R)$ $\vec{J}_{c}(R) \bullet \vec{n} = \vec{J}_{c}(R) \bullet \vec{n}$ $D_c \phi'_c(R) = D_r \phi'_c(R)$ $A\frac{\sin BR}{R} = A'\frac{\exp(-R/L)}{R}$ $AD_{c}\left(\frac{B\cos BR}{R}-\frac{\sin R}{R}\right)$ $D_c\left(B\cot BR - \frac{1}{R}\right) = -D_r\left(\frac{1}{L_r} + \frac{1}{R}\right)$ divide current density by flux equation $BR \cot BR - 1 = -\frac{D_r}{D_c} \left(\frac{R}{L_r} + 1\right)$ $B \cot BR = -\frac{1}{I}$ BYU

fluxes equal at core-reflector interface

current densities also equal

equate fluxes and current densities

$$\frac{1}{R^2} = -A'D_r \left(\frac{1}{RL_r} + \frac{1}{R}\right) \exp\left(\frac{-R}{L_r}\right)$$

critical equation for reflected reactor (transcendental equation) critical equation when $D_r = D_c$ (not transcendental in R)

Reflected Reactors < Bare Reactors

Determine Remaining Unknown

$$A' = A \exp\left(\frac{R}{L_R}\right) \sin BR$$
$$P = E_R \Sigma_f \int_0^R \phi_c dV$$
$$P = 4\pi E_R \Sigma_f A \int_0^R r \sin Br \, dr$$
$$= \frac{4\pi E_R \Sigma_f A}{B^2} \left(\sin BR - BR \cos BR\right)$$
$$A = \frac{PB^2}{4\pi E_R \Sigma_f \left(\sin BR - BR \cos BR\right)}$$

Flux Comparisons

Distance from center of reactor

Thermal Flux Variations

Heterogeneous vs. homogeneous

• Heterogeneous cores change the reactor parameters :

- *p* resonance escape probability
 - increases significantly
 - neutrons slow primarily in the moderator
 - no (or controlled amounts of) highly absorbing nuclides.
- ϵ fast fission
 - Increases slightly
 - fast neutrons are primarily surrounded by fissionable and fissile nuclides
- f thermal utilization at fixed fuel loading (N^F/N^{NF})
 - Lower in heterogeneous reactor
 - Thermal neutron flux in fuel rod is less than that in moderator
- η thermal fission factor
 - unchanged
 - depends only on the type of fuel
- P_{NL}^{f} , P_{NL}^{th} Leakage probabilities
 - Unchanged
 - Depend primarily on reactor shape and size

Two Group Multiplication Factor (I)

$$\phi_2(\mathbf{r},t) = \int_{E_2}^{E_1} dE \,\phi(\mathbf{r},E,t) \equiv \text{thermal flux.} \qquad \phi_1(\mathbf{r},t) = \int_{E_1}^{E_0} dE \,\phi(\mathbf{r},E,t) \equiv \text{fast flux,}$$

$$\chi_2 = \int_{E_2}^{E_1} dE \,\chi(E) = 0 \qquad \qquad \chi_1 = \int_{E_1}^{E_0} dE \,\chi(E) = 1,$$

 $S_{f_1} = v_1 \Sigma_{f_1} \phi_1 + v_2 \Sigma_{f_2} \phi_2$

(fast),

 $S_{f_2} = 0$ (thermal).

Two Group Multiplication Factor (I)

$$-\nabla \cdot D_1 \nabla \phi_1 + \Sigma_{\mathbf{R}_1} \phi_1 = \frac{1}{k} \left[\nu_1 \Sigma_{\mathbf{f}_1} \phi_1 + \nu_2 \Sigma_{\mathbf{f}_2} \phi_2 \right],$$

$$-\nabla \cdot D_2 \nabla \phi_2 + \Sigma_{\mathbf{a}_2} \phi_2 = \Sigma_{\mathbf{s}_{12}} \phi_1.$$

$$\nabla^2 \psi + B^2 \psi(\mathbf{r}) = 0, \quad \psi(\tilde{\mathbf{r}}_{\mathbf{s}}) = 0.$$

$$\phi_1(\mathbf{r}) = \phi_1 \psi(\mathbf{r}), \qquad \phi_2(\mathbf{r}) = \phi_2 \psi(\mathbf{r})$$

$$\left(D_1 B^2 + \Sigma_{\mathbf{R}_1} - k^{-1} \nu_1 \Sigma_{\mathbf{f}_1} \right) \phi_1 - k^{-1} \nu_2 \Sigma_{\mathbf{f}_2} \phi_2 = 0.$$

$$-\Sigma_{\mathbf{s}_{12}} \phi_1 + \left(D_2 B^2 + \Sigma_{\mathbf{a}_2} \right) \phi_2 = 0.$$

Yes, if determinant of coefficient matrix is zero:

$$\left(D_1 B^2 + \Sigma_{R_1} - \frac{\nu_1 \Sigma_{f_1}}{k}\right) \left(D_2 B^2 + \Sigma_{a_2}\right) - \frac{\nu_2 \Sigma_{f_2} \Sigma_{s_{12}}}{k} = 0.$$

Solve for k:

$$k = \frac{\nu_1 \Sigma_{f_1}}{\Sigma_{R_1} + D_1 B^2} + \frac{\Sigma_{s_{12}}}{\left(\Sigma_{R_1} + D_1 B^2\right)} \frac{\nu_2 \Sigma_{f_2}}{\left(\Sigma_{a_2} + D_2 B^2\right)}$$

Multigroup Reactor Equations (4 group)

Derive a 4-group reactor equation (using diffusion theory) for neutrons in a bare, homogenous, spherical reactor. This reactor is at steady-state but is not necessarily critical. The following assumptions should be used in this derivation:

- a. Fission neutrons are only born in the top two groups, i.e. groups 1 and 2.
- b. The fast neutron generation distribution is as follows: X1 = 0.75, X2 = 0.25
- c. Thermal neutrons only exist in the bottom group, i.e. group 4.
- d. Only thermal neutrons induce fissions.
- e. There are no up-scatterings in the thermal group (i.e. neutrons only lose energy)
- f. The absorption and scattering cross sections can be combined to form a "removal" cross section, ΣR .
- g. Scattered neutrons will only drop to adjacent energy levels. This means that the scattering cross section for group 1 represents neutrons scattered to group 2 only, or Σ s1,2, etc. h. Because cross sections are energy dependent, there is a separate cross section of each type for each energy group, indicated by the appropriate subscript. i. v is specific to each energy group... however, only one energy group undergoes fission...

