Chemical Engineering 612

Reactor Design and Analysis

Lecture 9 Nuclear Reactor Concepts

Spiritual Thought

"Historically, fear has often been used as a means to get people to take action. Parents have used it with their children, employers with employees, and politicians with voters. Experts in marketing understand the power of fear and often employ it... It is true that fear can have a powerful influence over our actions and behavior. But that influence tends to be temporary and shallow. Fear rarely has the power to change our hearts, and it will never transform us... People who are fearful may say and do the right things, but they do not *feel* the right things. They often feel helpless and resentful, even angry. Over time these feelings lead to mistrust, defiance, even rebellion."

Dieter F. Uchtdorf

Perfect Love Casteth Out Fear

Pressurized Water Reactor (PWR)

Pressurized Water Reactor (PWR)

- Most widely used reactor worldwide.
- Water never boils in the core (which is pressurized typically 150-200 atm).
- Heat exchanged in a second lowerpressure loop to generate turbine steam.
- Minimizes equipment exposure to ionizing radiation and radioactive waste production.

Typical PWR Specs

-				
	POWER		REACTOR PRESSURE	VESSEL
	thermal output	3800 MW	inside diameter	4.4 m
	electrical output	1300 MW(e)	total height	13.6 m
	efficiency	0.34	wall thickness	22.0 cm
	CORE		FUEL	
	length	4.17 m	cylindrical fuel pellets	UO ₂
	diameter	3.37 m	pellet diameter	8.19 mm
	specific power	33 kW/kg(U)	rod outer diameter	9.5 mm
	power density	102 kW/L	zircaloy clad thickness	0.57 mm
	av. linear heat rate	17.5 kW/m	rod lattice pitch	12.6 mm
	rod surface heat flux		rods/assembly (17×17)	264
	average	0.584 MW/m^2	assembly width	21.4 cm
	maximum	1.46 MW/m^2	fuel assemblies in core	193
			fuel loading	$115 \times 10^{3} \text{ kg}$
	REACTOR COOLANT SYSTEM		initial enrichment % ²³⁵ U	1.5/2.4/2.95
	operating pressure	15.5 MPa	equil. enrichment % ²³⁵ U	3.2
		(2250 psia)	discharge fuel burnup	33 GWd/tU
	inlet temperature	292 °C		,
	outlet temperature	329 °C	REACTIVITY CONTROL	OL
	water flow to vessel	$65.9 \times 10^6 \text{ kg/h}$	no. control rod assemblies	68
			shape	rod cluster
	STEAM GENERA'	TOR (SG)	absorber rods per assembly	24
	number	4	neutron absorber	Ag-In-Cd
	outlet steam pressure	1000 psia		and/or B ₄ C
	outlet steam temp.	284 °C	soluble poison shim	boric acid
	steam flow at outlet	$1.91 \times 10^{6} \text{ kg/h}$		H ₃ BO ₃

Reactor Core

Fuel Assembly

Steam Generator (Heat Exchanger)

Overall Equipment Arrangement

Pressurizer

PWR Steam Cycle

Boiling Water Reactor (BWR)

Boiler Water Reactor (BWR)

- Water boils directly in the core.
- Steam passes directly to turbine.
- After turbine, steam recondenses and returns to reactor.
- Large variations in heat transfer coefficients on the fuel rods.
- Turbine exposed to radioactive products from fluid, complicating maintenance and decommissioning.

BWR Specifications

POWER		REACTOR PRESSURE	VESSEL
thermal output	3830 MW	inside diameter	6.4 m
electrical output	1330 MW(e)	total height	22.1 m
efficiency	0.34	wall thickness	15 cm
CORE		FUEL	
length	3.76 m	cylindrical fuel pellets	UO_2
diameter	4.8 m	pellet diameter	10.57 mm
specific power	25.9 kW/kg(U)	rod outer diameter	12.52 mm
power density	56 kW/L	zircaloy clad thickness	0.864 mm
av. linear heat rate	20.7 kW/m	rod lattice pitch	16.3 mm
rod surface heat flux		$rods/assembly (8 \times 8)$	62
average	0.51 MW/m^2	assembly width	13.4 cm
maximum	1.12 MW/m^2	assembly height	4.48 m
		fuel assemblies in core	760
REACTOR COOLAN'	T SYSTEM	fuel loading 168×10 ³ kg	
operating pressure	7.17 MPa	av. initial enrichment % ²³⁵ U	2.6%
	(1040 psia)	equil. enrichment % ²³⁵ U	1.9%
feedwater temperature	216 °C	discharge fuel burnup	27.5 GWd/tU
outlet steam temperature	290 °C		
outlet steam flow rate	7.5×10^6 kg/h	REACTIVITY CONTRO	L
core flow rate	$51 \times 10^6 \text{ kg/h}$	no. control elements	193
core void fraction (av.)	0.37	shape	cruciform
core void fraction (max.)	0.75	overall length	4.42 m
no. in-core jet pumps	24	length of poison section	3.66 m
no. coolant pumps/loops	2	neutron absorber	boron carbide
		burnable poison in fuel	gadolinium

BWR Core

BWR Fuel Assembly

Heavy Water Reactor (PHWR)

Heavy Water Reactor

- Heavy water (deuterium- or tritium-based water) passes through pressurized fuel tubes surrounded by a nonpressurized heavy water bath.
- Operates on natural uranium
- Avoids pressurized reactor vessel (major expense).
- Steam generated in second loop.
- Basis of the CANDU (Canadian) reactor designs.
- Variant is the heavy-water-moderated, light-water-cooled reactor (HWLWR) that uses light water in the fuel tubes and no heat exchanger.

Gas-cooled Reactor (GCR)

Gas-cooled Reactor (GCR, HTGR)

- Gas (He or CO₂) used as coolant.
- Graphite typically used as moderator.
- Graphite (which remains solid) and gas need not be pressurized
 - No expensive pressure vessel
 - No Blowdown in accident
- Gas heats steam in secondary loop.
- In a gas-cooled reactor (GCR), gas passes through holes in graphite moderator.
- In a high-temperature gas-cooled reactor (HTGR), fuel channels and gas channels are drilled in graphite core.

Liquid-metal fast breeder reactor

Liquid Metal Fast Breeder Reactor (LMFBR)

- Fast-neutron-based reactor scheme.
- No moderator (no light elements).
- Na or K-Na molten metal used as coolant.
- No pressurization, very high heat transfer coefficients.
- Na becomes radioactive and Na and K react violently with water (moderately with air).
- Second Na heat exchanger isolates Na/K coolant in core from turbine steam.
- New fuel to consumed fuel ratio raises from 0.6-0.8 in typical reactors to over 1 if designed as a breeder reactor.
- One in commercial operation (in Russia), though they are aggressively pursuing new designs.

Small Modular Reactors

- Small is < 300 MW_e (IAEA definition) or < 500 MW_e (conventional definition).
- Modular means systems can be almost entirely fabricated in shops rather than on site, decreasing security and other risks.
- Primary advantage is decrease in capital cost, reducing financial risk, construction at a single location, ability to add incremental power.
- Primary disadvantage is loss of economies of scale. Four small reactors are more expensive to build and operate than one large reactor of equivalent size.

Include III, III+, and IV or other designs

Very-High Temperature Reactor

- Graphite-moderated core
- Once-through U fuel cycle
- 1000 ° C steam outlet temperature
- Possible H₂
 production

VHTR Fuel

- TRISO fuel
 - Man tiny pellets into graphite matrix sphere
 - Melt-down proof
 - Failure specs?
- Susceptible to airingress accidents (fire)
- Also used in FHR

Supercritical-Water-Cooled Reactor

- SC Water (> 240 atm) for working fluid (similar to most modern coal boilers)
- 45% efficienct (compared to 33% in most current technologies)
- Combines LWR and fossil technology.

Molten Salt Reactor

- Low-pressure, hightemperature core cooling fluid
- Fuel either dissolved in salt (typically as UF₆) or dispersed in graphite moderator.
- Perhaps gas-driven (He) turbine.

MSR Fuel

- Liquid fuel
 - UF4

BYL

- Suspended Directly in Salt
- No melt-down (already liquid)
- Fission products in coolant
 - COMPLEX chemistry
 - Online separation
 - Unknown behavior of salt

Gas-cooled Fast Reactor

 He cooled with direct Brayton cycle for high efficiency

- Closed fuel
 cycle
- Low Power Density

Sodium-Cooled Fast Reactor

- Eliminates the need for transuranic (Pu) isotopes from leaving site (by breeding and consuming Pu)
- Liquid sodium cooled reactor
- Fueled by U/Pu alloy

Lead-cooled Fast Reactor

- Molten lead or leadeutectic as core coolant
- Heat exchanged to gas-driven turbine
- Natural convection core cooling (cannot fail unless gravity fails)
- WEC Choice (12/2015), but called Gen V

