
*note: some of the characters are
rendering wrong in PowerPoint (ie. em
dashes instead of en dashes, ‘~’ character
not working, etc.) so beware of that when
copying from this presentation

 SKIP STEPS 1-4
 You will still want to have python installed, and I recommend making an env for openmc

 Go to this link and follow the install steps
 https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos

 NOTE: You cannot complete that install using the default apple compiler (Clang).
You will need to install the GCC compiler and use that to run make and cmake.
However, even after specifying GCC, sometimes mac redirects a GCC call to Clang
for whatever reason. Use Chat and figure out how to make it not do that. (also feel
free to email willm412@byu.edu if you are really stuck)

 N

https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
https://docs.openmc.org/en/stable/quickinstall.html#building-source-on-linux-or-macos
mailto:willm412@byu.edu

Find the settings “Turn Windows features on or off”

Make Sure “Windows Subsystem for Linux” is enabled

Open windows Powershell

wsl --install
 should by default install wsl 2 on your computer with ubuntu (default)

HTTPS://WWW.ANACONDA.COM/DOCS/GETTING-STARTED/MINICONDA/INSTALL#LINUX-2

mkdir -p ~/miniconda3
Makes directory in the home dir called miniconda3

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O
~/miniconda3/miniconda.sh

 Goes to the minconda website and downloads the installer (bash file)

bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
 Runs the bash script to install conda

rm ~/miniconda3/miniconda.sh
 Removes the used install bash script

source ~/miniconda3/bin/activate
makes it so that your conda is active

conda init
Make it active in all instances (may need to include the flag –all)

https://www.anaconda.com/docs/getting-started/miniconda/install#linux-2
https://www.anaconda.com/docs/getting-started/miniconda/install#linux-2
https://www.anaconda.com/docs/getting-started/miniconda/install#linux-2
https://www.anaconda.com/docs/getting-started/miniconda/install#linux-2
https://www.anaconda.com/docs/getting-started/miniconda/install#linux-2
https://www.anaconda.com/docs/getting-started/miniconda/install#linux-2
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh%20-O%20%7E/miniconda3/miniconda.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh%20-O%20%7E/miniconda3/miniconda.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh%20-O%20%7E/miniconda3/miniconda.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh%20-O%20%7E/miniconda3/miniconda.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh%20-O%20%7E/miniconda3/miniconda.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh%20-O%20%7E/miniconda3/miniconda.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh%20-O%20%7E/miniconda3/miniconda.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh%20-O%20%7E/miniconda3/miniconda.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh%20-O%20%7E/miniconda3/miniconda.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh%20-O%20%7E/miniconda3/miniconda.sh

conda config --add channels conda-forge
conda config --set channel_priority strict

 changes conflicting package version resolution to favor conda-forge
packMakes it so that you can download packages from non-default locations

(conda-forge, and ages)

conda create --name openmc-env openmc
 Creates virtual env called openmc-env that has the package openmc
installed in it

conda activate openmc-env
 Switches you to the openmc-env environment

This will take a second because it will create the env, and then install
openmc package and all dependent packages

mkdir –p ~/openmc/fundamental_nuclear_data/depletion_chains
mkdir –p ~/openmc/fundamental_nuclear_data/x_section_data

make directories to put the data in

https://openmc.org/data/

 download official release of ENDF VII.1 and the Fast spectrum depletion
chains for VII.1

 put the x-sections in x_section_data directory, and depletion chains in
depletion_chains directory

cd ~/openmc/fundamental_nuclear_data/x_section_data
moves you to the directory where your data is

tar –xf endfb71.tar.xz
 unpacks the data from the tar.xz files

https://openmc.org/data/

rm endfb71.tar.xz
 delete the used compressed file

Add the x-sections and chains to your .bashrc file (set as environment variables)

nano ~/.bashrc
 you’re now editing the .bashrc file located in the home directory (using the nano editor)

Scroll to the very bottom and add these lines:

export OPENMC_CROSS_SECTIONS="~/openmc/fundamental_nuclear_data/x_section_data/endfb-vii.1-hdf5/cross_sections.xml“

export OPENMC_CHAIN_FILE="~/openmc/fundamental_nuclear_data/depletion_chains/chain_endfb71_sfr.xml“

 These make environment variables so that when you run openmc it can find the data

Exit the nano editor:

[ctrl-x] [y] [enter]

source ~/.bashrc
 rerun the .bashrc file to set the environment variables

echo $OPENMC_CROSS_SECTIONS
echo $OPENMC_CHAIN_FILE

 check to see if the variables were set correctly (it should display the path
that we set in the .bashrc file)

cd ~/openmc
 navigate to openmc dir (if not already there)

mkdir test
 create a directory called test (a surprise tool for later)

Ensure you are in openmc-env (not base)

conda install jupyter ipykernel
 Install jupyter inside your Conda environment

Ensure you are in openmc-env (not base)

cd ~/openmc
 navigate to the openmc directory

jupyter-notebook
 run jupyter

Open jupyter in a browser

If you have a jupyter instance running on your windows side it sometimes gets mixed
up. If needed add the flag --port 9999 (or some other port so it doesn’t conflict)

Open the test director

Create a notebook called “test1.ipynb”

Write and run these lines (if you get the same result, you have succeeded)

 You don’t need a notebook to run openmc. I prefer to code it as a .py file and to run
periodically to debug, but notebooks are really helpful for learning how it all works

 The openmc documentation website is a great resource, refer to that often

	OpenMC Installation
	IF USING A MAC
	1. Download WSL (Windows 11)
	2. Download Miniconda in WSL �https://www.anaconda.com/docs/getting-started/miniconda/install#linux-2
	3. Conda-forge
	4. Create openmc environment with openmc package installed in it
	5. Download fundamental nuclear data
	…Continued
	… continued
	6. OPTIONAL (I Recommend) : Install jupyter notebook
	7. Test that it all works
	A last couple notes:

