Lecture 18 - Introduction to MathCAD

Prayer/Spiritual Thought

Outline

- 1. Accessing MathCAD
- 2. Mathematical Operations
- 3. Variables
- 4. Symbolic Math
- 5. Units

1. Accessing MathCAD

You have three options:

- Buy a copy from the Chem. Eng. Dept. Office (~\$20)
- Use a CAEDM lab computer
- Access the program remotely through Citrix: (web interface) https://citrix.et.byu.edu/Citrix/XenApp/clientDetection/downloadNative.aspx (CAEDM help site) https://caedm.et.byu.edu/wiki/index.php/Citrix

MathCAD help (quite useful):

https://help.ptc.com/mathcad/en/index.html

2. Mathematical Operations

A. Explanation

The crosshair indicates the insertion point on the worksheet where you can begin typing numbers and symbols. Some common math operations (see also Operators menu):

- + is the addition operator
- - is the subtraction operator
- / is the division operator
- * is the multiplication operator
- = is the *evaluation* operator
- ^ is the power operator
- | is the absolute value operator
- \ is the nth root operator

Some other useful shortcut keys:

- <space bar> changes selection while typing
- <ctrl><shift><enter> adds a line break to a long expression
- <ctrl>T creates a text box
- <ctrl> F5 to recalculate the worksheet

(more shortcuts) https://cips.colorado.edu/mathcad/Mathcad_Prime_Keyboard_Shortcuts.pdf

B. Example: Type:	5		
Туре			
	: 15-8/104.5=		Tips:
$15 - \frac{8}{104.5} = 14.923$ Type: 15-8 <space><space>/104.5= $\frac{15-8}{104.5} = 0.067$</space></space>		=14.923 pace>/104.5=	 Blue vertical line is insertion point. Can move insertion point with arrows. Change selection by pressing <space> (repeatedly)</space> Grey box indicates selection Precision of output is controlled in
		67	
Vario expre	us mathematical essions		the Math Formatting menu
	$5^2 = 25$	-2 =2	
	$\sqrt{36} = 6$	$\frac{(5\cdot 3)+2}{7} \downarrow = 6$	3.428571
		+(5-1)	
Assigning a	and Using Varia	ables	
A. Explanati	ion		
VariablesVariables	can be created to are assigned with	o store values. You the <i>assignment</i> op	can use letters or words to name a variable. Derator, : (shows control equals).
 Once def Global va equals). Global va There are MathCAD 	riables are define riables are define e menu options fo also has some pr	d with the global de d everywhere on th r these commands re-defined variables	equent calculations (below and to the right). efintion operator, <ctrl>+<shift>+~ (shows trip he sheet. too (Math -> Operators) (e, pi, infinity, etc.)</shift></ctrl>
 Once def Global va equals). Global va There are MathCAD Some usefu 	ined, a variable ca iriables are define e menu options fo also has some pr I shortcuts:	d with the global de d everywhere on th r these commands re-defined variables	equent calculations (below and to the right). efintion operator, <ctrl>+<shift>+~ (shows trip ne sheet. too (Math -> Operators) (e, pi, infinity, etc.)</shift></ctrl>
 Once def Global va equals). Global va There are MathCAD Some usefu <ctrl><n< li=""> latin lette B. Examples </n<></ctrl>	ined, a variable ca iriables are define e menu options fo also has some pr I shortcuts: ninus> to write a er then <ctrl> g fo</ctrl>	an be used in subset d with the global de d everywhere on th r these commands re-defined variables subscript or greek letters	equent calculations (below and to the right). efintion operator, <ctrl>+<shift>+~ (shows trip he sheet. too (Math -> Operators) (e, pi, infinity, etc.)</shift></ctrl>
 Once def Global va equals). Global va There are MathCAD Some usefu <ctrl><n< li=""> latin lette B. Examples Local </n<></ctrl>	ined, a variable ca iriables are define e menu options fo also has some pr I shortcuts: ninus> to write a er then <ctrl> g fo s variables</ctrl>	d with the global de d everywhere on th r these commands re-defined variables subscript or greek letters	equent calculations (below and to the right). efintion operator, <ctrl>+<shift>+~ (shows trip he sheet. too (Math -> Operators) (e, pi, infinity, etc.)</shift></ctrl>
 Once def Global va equals). Global va There are MathCAD Some usefu <ctrl><n< li=""> latin lette B. Examples Local </n<></ctrl>	ined, a variable ca iriables are define iriables are define e menu options fo also has some pr I shortcuts: ninus> to write a er then <ctrl> g fo variables a := 4 b := 3 $a^2 + b^2 = 25$</ctrl>	d with the global de d everywhere on th r these commands re-defined variables subscript or greek letters	<pre>equent calculations (below and to the right). efintion operator, <ctrl>+<shift>+~ (shows trip ne sheet. too (Math -> Operators) (e, pi, infinity, etc.) Tips: Typing ":" gives a ":="</shift></ctrl></pre>
 Once def Global va equals). Global va There are MathCAD Some usefu <ctrl><n< li=""> latin lette B. Examples Local </n<></ctrl>	ined, a variable ca iriables are define riables are define e menu options fo also has some pr I shortcuts: ninus> to write a er then <ctrl> g fo variables a:=4 b:=3 $a^2 + b^2 = 25$ x=5</ctrl>	d with the global de d everywhere on th r these commands re-defined variables subscript or greek letters	<pre>equent calculations (below and to the right). efintion operator, <ctrl>+<shift>+~ (shows trip ne sheet. too (Math -> Operators) (e, pi, infinity, etc.) Tips: Typing ":" gives a ":=" Watch out for the order of definition (left to right, top to bottom) Variables must be assigned before used</shift></ctrl></pre>

Globa	al variables		
	z + 1 = 5	Tips:	
		Notice the order here	
	$z \equiv 4$	 Be careful with global variables! There are three different equals signs (evaluation, assignment, global assignment). Be careful to keep these straight! You can highlight text or math using the Text Formatting or Math 	
	$k_B\!\equiv\!1.380610^{-23}$		
Pre-d	Pre-defined variables $kg \cdot m^2$		
		Formatting menus	
	$R=8.314 \frac{1}{s^2 \cdot K \cdot mol}$		
	e - 2.718		
	e - 2.718		
	$\pi = 3.142$		
	$\infty = 1 \cdot 10^{307}$		
	a = 2	Tip:	
	e=2	 You can re-define MathCAD variables if you want. Be careful with this too. 	
Symbolic	Math		
A. Explanat	ion		
 Symbolic a right ar 	expressions can be evaluated row)	d using the symbolic evaluation operator, <ctrl>. (looks li</ctrl>	
• You can a	also use the Symbolics menu.	hlas a g cimplify avpand	
 The symbol 	polic math solver will use you	r previously defined numeric variables	
B. Examples	S		
5 <i>x</i> -	$\rightarrow 25 \qquad \alpha + 4 \ \alpha \rightarrow 5 \cdot \epsilon$	lpha Tip:	
		 x was defined above 	

$$\frac{\sin(\alpha+\gamma) \xrightarrow{expand}}{\longrightarrow} \cos(\gamma) \cdot \sin(\alpha) + \sin(\gamma) \cdot \cos(\alpha)$$

$$\frac{n^2 - 2n + 1}{n^2 - 1} \xrightarrow{factor} (n-1)^2 \qquad \frac{n^2 - 2n + 1}{n-1} \xrightarrow{simplify} n-1$$

5. Units

A. Explanation

- MathCAD defines units. This makes it very easy to convert units.
- You can add quantities with consistent units and multiply units in intuitive ways.
 Input units by either typing or by using the Math -> Units menu.

B. Examples

$1 \frac{m}{s^{2}} \cdot kg = 1 N$ 1 $atm = 14.696 \ psi$ 1 $slug = 14.594 \ kg$ 32 °F = 491.67 R	 Tip: Units appear in dark blue. Make sure they turn this color or it isn't treating it like a unit. MathCAD seems to work better using absolute units (R and K) instead of Celsius and Farenheit.