
Lecture 19 - Functions, Arrays and Linear Equations

�
�

Prayer/Spiritual Thought
Announcements

Outline

1.
2.
3.
4.
5.

Built-in Mathcad functions
User-defined functions
Arrays and Matrices
Range Variables
Systems of Linear Equations

1. Built-in Mathcad functions

A. Explanation

Mathcad has many built-in functions for math and other purposes. Here is a non-comprehensive list:

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

exp(x), e^(x) -- The number 'e' raised to the power of x
sin(x), cos(x), etc. -- Trig functions: Sine of x, Cosine of x
asin(x), acos(x), etc. -- Inverse trig functions: arcsine of x, arccos of x
cosh(x), sinh(x), etc. -- Hyperbolic functions
log(x, [b]) -- Base b logarithm of x (b=10 by default)
ln(x) -- Natural logarithm of x
x! -- Factorial of x
max(a, b, c, ...) -- Value of the largest argument
min(a, b, c, ...) -- Value of the smallest argument
mean(a, b, c, ...) -- The average of a, b, c, etc.
floor(x), ceil(x) -- Largest/smallest integer less than or equal to x
round(x, n) -- The number x rounded to n decimal places (n=0 by default, i.e. round to integer).
trunc(x, n) -- The integer part of x
mod(x, y) -- The remainder of dividing x by y
if(<condition>, <if true>, <if false>) -- If <condition> is true, return <if true>, else return <if
false>

-- Summation of f(n) from n = 1 to m (shortcut: <ctrl><shift>4)∑
=n 1

m

f ((n))

-- Product of f(n) from n=1 to m (shortcut: <ctrl><shift>3)∏
=n 1

m

f ((n))

A comprehensive list of built-in functions can be found at the link: https://help.ptc.com/mathcad/en/
index.html#page/PTC_Mathcad_Help/about_built-in_functions.html

B. Examples

Basic function evaluation

=sin
⎛
⎜
⎝
――
2 π
3

⎞
⎟
⎠

0.866 =ln((0.5)) -0.693147

=cos ((2 π)) 1 =―――
log((0.5))
log((e))

-0.693147

Tips:

� You can type in the name of the
function or you can use the
Functions menu bar.Non-Commercial Use Only

=―――
log((0.5))
log((e))

-0.693147

Tips:

� You can type in the name of the
function or you can use the
Functions menu bar.

=mean((,,,,4 5 6 7 8)) 6

=round((,ln ((0.5)) 2)) -0.690000

C. The 'if' function

Just like python, there are conditional operators (equals, less than, greater than) and logical
operators (and, or, not)

Conditional operators

�
�
�
�
�
�

, Equal to (<ctrl>=)＝a b
, less than (<)<a b
, greater than (>)>a b
, less than or equal (<=)≤a b
, greater than or equal (>=)≥a b
, not equal (<>)≠a b

Logical operators

�
�
�

, and (<ctrl><shift>7)∧a b
, or (<ctrl><shift>2)∨a b

, not (<ctrl><shift>1)¬a

D. Examples of the 'if' function

Tips:

� Both types of operators can be
accessed via Math -> Operators or
via the keyboard shortcuts given
here.

≔x 2 =if ((,,>x 2 3 1)) 1 ≔y if ((,,<x 2 0 2)) =y 2

=if ((,,∧((＝5 5)) ((＝3 2)) “true” “false”)) “false”

=if ((,,∨((＝5 5)) ((＝3 2)) “true” “false”)) “true”

=if ((,,¬((＝5 5)) “true” “false”)) “false”

2. User-defined functions

A. Explanation

� One of the powerful features of Mathcad is the ability to define your own functions. This is very
helpful when doing engineering calculations and will be used often.

Syntax to create a function:

1.
2.
3.
4.

Type the desired function name
Type (x) where x is the variable of the function.
Type : to give you :=
Define the expression in terms of x.

� Note: To make a multivariable function, simply list more than one variable inside the parentheses,
separated by a comma. Non-Commercial Use Only

2. User-defined functions

A. Explanation

� One of the powerful features of Mathcad is the ability to define your own functions. This is very
helpful when doing engineering calculations and will be used often.

Syntax to create a function:

1.
2.
3.
4.

Type the desired function name
Type (x) where x is the variable of the function.
Type : to give you :=
Define the expression in terms of x.

� Note: To make a multivariable function, simply list more than one variable inside the parentheses,
separated by a comma.

B. Examples

Function of one variable

≔f ((x)) 3 x2 =f ((5)) 75

Function of multiple variables

≔g ((,x y)) 3 x2 sin ((⋅⋅2 π y)) =g ((,5 1)) ⋅-1.837 10-14

=g
⎛
⎜
⎝

,2 ―
1
4

⎞
⎟
⎠

12

Piecewise function

≔my_abs ((x)) if ((,,<x 0 -x x)) =my_abs ((-4)) 4

=my_abs ((4)) 4

3. Arrays, Vectors and Matrices

A. Defining arrays

Arrays, vectors and matrices are all input using the "Matrices/Tables" tab in the Ribbon or with
keyboard shortcuts.

Shortcuts:

�
�
�

<ctrl> M -- input a matrix
<shift> <space> -- add a column
<shift> <enter> -- add a row

B. Examples

Use the "Insert Matrix" option
on the ribbon to create a 3x3
matrix

Use keyboard shortcuts to
create a 4x1 array:

≔b

1
2
3
4

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔A
1 2 3
4 5 6
7 8 9

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

Non-Commercial Use Only

C. Accessing individual elements

�
�
�
�

Individual elements of an array are accessed using subscript notation.
Subscripts are accessed with a left square brace: [
Mathcad indices start at ZERO (like python)
This can be changed with a variable named ORIGIN

D. Examples

Tip:

� Don't confuse the array
subscript ([) with A

,1 2

the text subscript you use
when naming a variable

(<ctrl> <minus>)A12

=A
,1 2

6 =b
2

3

≔ORIGIN 1

=b
2

2=A
,1 2

2

4. Range Variables

A. Explanation

Range variables are sequences that you can use as indices to arrays. These are kind of like
substitutes for using loops. You can also think of them like the slicing operator in python, e.g. A[2:].

Definition:
i = <start>, <start+step> .. <end>

�
�
�

To define a range variable, you need to type the range operator, ".."
If you don't specify a step, Mathcad will assume <step>=1
Range variables are not vectors.

B. Examples

Define a range variable

≔ORIGIN 0

≔i ‥0 2 =i
0
1
2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

≔j , ‥1 1.1 1.5 =j

1
1.1
1.2
1.3
1.4
1.5

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

Use a range variable to get part of a matrix

=A
1 2 3
4 5 6
7 8 9

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

=A
,i 0

1
4
7

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

=A
,0 i

1
2
3

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

Non-Commercial Use Only

Use a range variable to define a vector

≔j ‥0 5 ≔x
j

+⋅0.2 j 2 Tip:

� When defining a vector,
the range variable needs
to be an integer with a
<start> that is greater
than or equal to ORIGIN.

=x

2
2.2
2.4
2.6
2.8
3

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

5. Systems of Linear Equations

A. Matrix Operations

Matrix operations are in the ribbon: Matrices/Tables -> Vector/Matrix Operations

�

�

�
�
�

Addition, subtraction, scalar multiplication, matrix multiplication are all done with the same
operators as scalars (+, -, *)

-- Transpose, <ctrl><shift><T>TA
-- Inverse, ^-1A-1

-- Norm, <ctrl> <shift> |‖‖A‖‖
-- Cross product, <ctrl> 8⨯b c

B. Examples

≔B 3 5
2 8

⎡
⎢⎣

⎤
⎥⎦

≔A 1 2
3 4

⎡
⎢⎣

⎤
⎥⎦

≔x 2
1

⎡
⎢⎣

⎤
⎥⎦

≔y 8
5

⎡
⎢⎣

⎤
⎥⎦

=+A B 4 7
5 12

⎡
⎢⎣

⎤
⎥⎦

=+x y 10
6

⎡
⎢⎣

⎤
⎥⎦

Tip:

� Vectors must be 3x1
to be able to use the
cross product.=-A B -2 -3

1 -4
⎡
⎢⎣

⎤
⎥⎦

=-x y -6
-4

⎡
⎢⎣

⎤
⎥⎦

=Tx 2 1[[]]=TA 1 3
2 4

⎡
⎢⎣

⎤
⎥⎦

=‖‖x‖‖ 2.236

=⋅A x 4
10

⎡
⎢⎣

⎤
⎥⎦

=‖‖A‖‖ -2

=A-1 -2 1
1.5 -0.5

⎡
⎢⎣

⎤
⎥⎦

Non-Commercial Use Only

=⋅A x 4
10

⎡
⎢⎣

⎤
⎥⎦

=A-1 -2 1
1.5 -0.5

⎡
⎢⎣

⎤
⎥⎦

C. Matrix Functions

Matrix functions are in the ribbon: Matrices/Tables -> Vector/Matrix Functions. There are many functions, some
examples include:

�
�
�

eigenvals(<matrix>) -- gives eigenvalues of the matrix
eigenvecs(<matrix>) -- gives the eigenvectors of the matrix as columns
lsolve(A, b) -- solves A x = b for x (this is faster/better than multiplying by the inverse)

D. Examples

≔A 1 2
3 4

⎡
⎢⎣

⎤
⎥⎦

≔b 2
1

⎡
⎢⎣

⎤
⎥⎦

=eigenvals ((A))
5.372

-0.372
⎡
⎢⎣

⎤
⎥⎦

=eigenvecs((A))
-0.416 -0.825
-0.909 0.566

⎡
⎢⎣

⎤
⎥⎦

=lsolve((,A b))
-3
2.5

⎡
⎢⎣

⎤
⎥⎦

=⋅A-1 b -3
2.5

⎡
⎢⎣

⎤
⎥⎦

Non-Commercial Use Only

