Lecture 19 - Functions, Arrays and Linear Equations
 Prayer/Spiritual Thought Announcements
Outline
 Built-in Mathcad functions User-defined functions Arrays and Matrices Range Variables Systems of Linear Equations
1. Built-in Mathcad functions
A. Explanation
Mathcad has many built-in functions for math and other purposes. Here is a non-comprehensive list:
 exp(x), e^(x) The number 'e' raised to the power of x sin(x), cos(x), etc Trig functions: Sine of x, Cosine of x asin(x), acos(x), etc Inverse trig functions: arcsine of x, arccos of x cosh(x), sinh(x), etc Hyperbolic functions log(x, [b]) Base b logarithm of x (b=10 by default) ln(x) Natural logarithm of x x! Factorial of x
 max(a, b, c,) Value of the largest argument min(a, b, c,) Value of the smallest argument
 min(a, b, c,) Value of the smallest argument mean(a, b, c,) The average of a, b, c, etc.
 floor(x), ceil(x) Largest/smallest integer less than or equal to x
 round(x, n) The number x rounded to n decimal places (n=0 by default, i.e. round to integer). trunc(x, n) The integer part of x
 mod(x, y) The remainder of dividing x by y
if(<condition>, <if true="">, <if false="">) If <condition> is true, return <if true="">, else return <if false=""> m</if></if></condition></if></if></condition>
• $\sum_{\substack{n=1\\m}} f(n)$ Summation of f(n) from n = 1 to m (shortcut: <ctrl><shift>4)</shift></ctrl>
• $\prod_{n=1}^{m} f(n)$ Product of f(n) from n=1 to m (shortcut: <ctrl><shift>3)</shift></ctrl>
A comprehensive list of built-in functions can be found at the link: https://help.ptc.com/mathcad/en/ index.html#page/PTC_Mathcad_Help/about_built-in_functions.html

B. Examples	
Basic function evaluation	
$\sin\left(\frac{2\pi}{3}\right) = 0.866$	$\ln(0.5) = -0.693147$
$\cos(2\pi)=1$	$\frac{\log(0.5)}{\log(e)} = -0.693147$

mean $(4, 5, 6, 7, 8) = 6$ round $(\ln(0.5), 2) = -0.690000$	Tips: • You can type in the name of the function or you can use the Functions menu bar.
C. The 'if' function	
Just like python, there are conditional operator operators (and, or, not)	rs (equals, less than, greater than) and logical
Conditional operators	
• $a = b$, Equal to (<ctrl>=) • $a < b$, less than (<) • $a > b$, greater than (>) • $a \le b$, less than or equal (<=) • $a \ge b$, greater than or equal (>=) • $a \ne b$, not equal (<>)</ctrl>	Tips: • Both types of operators can be accessed via Math -> Operators or via the keyboard shortcuts given here.
Logical operators	
• $a \wedge b$, and (<ctrl><shift>7) • $a \vee b$, or (<ctrl><shift>2) • $\neg a$, not (<ctrl><shift>1) D. Examples of the 'if' function</shift></ctrl></shift></ctrl></shift></ctrl>	
x := 2 if $(x > 2, 3, 1) = 1$ $y :=$	if(x < 2, 0, 2) $y = 2$
$if((5=5)\land(3=2), "true", "false") =$	="false"
if $((5=5)\lor(3=2), $ "true", "false") = if $(\neg(5=5), $ "true", "false") = "false	
$\mathbf{H}(\neg(3=5),\neg\mathbf{true}^{\circ},\neg\mathbf{taise}^{\circ}) = \neg\mathbf{taise}^{\circ}$	
2. User-defined functions	
A. Explanation	
One of the powerful features of Mathcad is helpful when doing engineering calculations	the ability to define your own functions. This is very and will be used often.
Syntax to create a function:	
 Type the desired function name Type (x) where x is the variable of the function 	inction.

- 3. Type : to give you :=
 4. Define the expression in terms of x.
- Note: To make a multivariable function, simply list more than one variable inside the parentheses, separated by a comma.

B. Examples

Function of one variable

$$f(x) = 3 x^2$$
 $f(5) = 75$

Function of multiple variables

$$g(x,y) = 3 x^2 \sin(2 \cdot \pi \cdot y)$$
 $g(5,1) = -1.837 \cdot 10^{-14}$

$$g\left(\!2\,,\!\frac{1}{4}\right)\!=\!12$$

Piecewise function

$$my_{abs}(x) := if(x < 0, -x, x)$$
 $my_{abs}(-4) = 4$

$$my_{abs}(4) = 4$$

3. Arrays, Vectors and Matrices

A. Defining arrays

Arrays, vectors and matrices are all input using the "Matrices/Tables" tab in the Ribbon or with keyboard shortcuts.

Shortcuts:

- <ctrl> M -- input a matrix
- <shift> <space> -- add a column
- <shift> <enter> -- add a row

B. Examples

$b \coloneqq \begin{bmatrix} 2 \end{bmatrix}$
3

 Individual elements 	of an array are accessed	using subscript notation.				
	sed with a left square bra					
 Mathcad indices star 	t at ZERO (like python)					
This can be changed	d with a variable named C	DRIGIN				
D. Examples						
A -6	h_2	Tip:				
$A_{1,2} = 6$	$b_2 = 3$	• Don't confuse the array subscript $A_{1,2}$ ([) with				
ORIGIN :=	1					
		the text subscript you use				
$A_{1,2} = 2$	$b_{2} = 2$	when naming a variable				
1,2	2	A_{12} (<ctrl> <minus>)</minus></ctrl>				
. Range Variables						
A Evolanation						
		e as indices to arrays. These are kind of like of them like the slicing operator in python, e.g. A[2:]				
Range variables are se	pops. You can also think o					
Range variables are se substitutes for using lo Definition: i = <start>, <start+st • To define a range va</start+st </start>	pops. You can also think of rep> <end> ariable, you need to type a step, Mathcad will assu</end>	of them like the slicing operator in python, e.g. A[2:] the range operator, ""				
Range variables are se substitutes for using lo Definition: i = <start>, <start+st • To define a range va • If you don't specify</start+st </start>	pops. You can also think of rep> <end> ariable, you need to type a step, Mathcad will assu</end>	of them like the slicing operator in python, e.g. A[2:] the range operator, ""				
Range variables are se substitutes for using lo Definition: i = <start>, <start+st • To define a range va • If you don't specify • Range variables <i>are</i></start+st </start>	pops. You can also think of ep> <end> ariable, you need to type a step, Mathcad will assu <i>not vectors</i>.</end>	of them like the slicing operator in python, e.g. A[2:] the range operator, ""				
Range variables are se substitutes for using lo Definition: i = <start>, <start+st • To define a range va • If you don't specify • Range variables <i>are</i> B. Examples</start+st </start>	oops. You can also think of tep> <end> ariable, you need to type a step, Mathcad will assu <i>not vectors</i>.</end>	of them like the slicing operator in python, e.g. A[2:] the range operator, ""				
Range variables are se substitutes for using lo Definition: i = <start>, <start+st • To define a range va • If you don't specify • Range variables <i>are</i> B. Examples Define a range ORIGIN :=</start+st </start>	oops. You can also think of tep> <end> ariable, you need to type a step, Mathcad will assu <i>not vectors</i>.</end>	of them like the slicing operator in python, e.g. A[2:] the range operator, "" me <step>=1</step>				
Range variables are se substitutes for using lo Definition: i = <start>, <start+st • To define a range va • If you don't specify • Range variables <i>are</i> B. Examples Define a range ORIGIN :=</start+st </start>	oops. You can also think of tep> <end> ariable, you need to type a step, Mathcad will assu <i>not vectors</i>.</end>	of them like the slicing operator in python, e.g. A[2:] the range operator, "" me <step>=1</step>				
Range variables are se substitutes for using lo Definition: i = <start>, <start+st • To define a range va • If you don't specify • Range variables <i>are</i> B. Examples Define a range ORIGIN :=</start+st </start>	oops. You can also think of tep> <end> ariable, you need to type a step, Mathcad will assu <i>not vectors</i>.</end>	of them like the slicing operator in python, e.g. A[2:] the range operator, "" me <step>=1</step>				
Range variables are se substitutes for using lo Definition: i = <start>, <start+st • To define a range va • If you don't specify • Range variables <i>are</i> B. Examples Define a range</start+st </start>	oops. You can also think of tep> <end> ariable, you need to type a step, Mathcad will assu <i>not vectors</i>.</end>	of them like the slicing operator in python, e.g. A[2:] the range operator, "" me <step>=1</step>				
Range variables are se substitutes for using la Definition: $i = \langle start \rangle$, $\langle start + start \rangle$ • To define a range va • If you don't specify • Range variables are B. Examples Define a range ORIGIN := i := 02	oops. You can also think of tep> <end> ariable, you need to type a step, Mathcad will assu <i>not vectors</i>.</end>	of them like the slicing operator in python, e.g. A[2:] the range operator, "" me <step>=1 $j = \begin{bmatrix} 1\\ 1.1\\ 1.2\\ 1.3\\ 1.4\\ 1.5 \end{bmatrix}$</step>				
Range variables are se substitutes for using lo Definition: $i = \langle start \rangle$, $\langle start + start \rangle$ • To define a range va • If you don't specify • Range variables <i>are</i> B. Examples Define a range ORIGIN := i := 0 2 Use a range var	pops. You can also think of xep> < end> ariable, you need to type a step, Mathcad will assund <i>not vectors</i> . variable 0 $i = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$ $j := 1$	of them like the slicing operator in python, e.g. A[2:] the range operator, "" me <step>=1 1.1 1.1 1.2 1.3 1.4 1.5 rix</step>				

Use a range varia	ble to define a vector	
j := 05	$x_{j} = 0.2 \cdot j + 2$	Tip:
		When defining a vector,
2.2		the range variable needs to be an integer with a
$x = \begin{vmatrix} 2.4 \\ 2.6 \end{vmatrix}$		<pre><start> that is greater</start></pre>
$x = \begin{bmatrix} 2\\ 2.2\\ 2.4\\ 2.6\\ 2.8\\ 3 \end{bmatrix}$		than or equal to ORIGIN.
5. Systems of Linear E	quations	
A. Matrix Operations		
	the ribbon: Matrices/Ta	ables -> Vector/Matrix Operations
 Addition, subtraction, operators as scalars (atrix multiplication are all done with the same
• A^{T} Transpose, <ct< td=""><td>l><shift><t></t></shift></td><td></td></ct<>	l> <shift><t></t></shift>	
• A ⁻¹ Inverse, ^-1		
 A Norm, <ctrl></ctrl> b×c Cross product 		
B. Examples		
[12] _	[3 5]	2] [8]
$A \coloneqq \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad B \coloneqq$	$\begin{vmatrix} 3 & 6 \\ 2 & 8 \end{vmatrix}$ $x \coloneqq$	$\begin{array}{c c}2\\1\\\end{array} y \coloneqq \begin{array}{c}8\\5\\\end{array}$
[4 7]	[10]	
$A + B = \begin{bmatrix} 4 & 7 \\ 5 & 12 \end{bmatrix}$	$x+y=\begin{bmatrix}10\\6\end{bmatrix}$	Tip:
		Vectors must be 3x1
$A - B = \begin{bmatrix} -2 & -3 \\ 1 & -4 \end{bmatrix}$	$x-y = \begin{bmatrix} -6 \\ -4 \end{bmatrix}$	to be able to use the
$\begin{bmatrix} 1 & -4 \end{bmatrix}$		cross product.
AT [13]	T [a +1	
$A^{\mathrm{T}} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$	$x^{\mathrm{T}} = \begin{bmatrix} 2 & 1 \end{bmatrix}$	
A = -2	x = 2.236	
$A \cdot x = \begin{bmatrix} 4 \\ 10 \end{bmatrix}$	$A^{-1} - [-2 1]$	
	$A^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0. \end{bmatrix}$	5

C. Matrix Functi	ons			

Matrix functions are in the ribbon: Matrices/Tables -> Vector/Matrix Functions. There are many functions, some examples include:

- eigenvals(<matrix>) -- gives eigenvalues of the matrix
 eigenvecs(<matrix>) -- gives the eigenvectors of the matrix as columns
 Isolve(A, b) -- solves A x = b for x (this is faster/better than multiplying by the inverse)

D. Examples

$$A \coloneqq \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad b \coloneqq \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

 $\operatorname{eigenvals}(A) = \begin{bmatrix} 5.372\\ -0.372 \end{bmatrix}$

eigenvecs
$$(A) = \begin{bmatrix} -0.416 & -0.825 \\ -0.909 & 0.566 \end{bmatrix}$$

$$\operatorname{lsolve}(A,b) = \begin{bmatrix} -3\\ 2.5 \end{bmatrix} \qquad A^{-1} \cdot b = \begin{bmatrix} -3\\ 2.5 \end{bmatrix}$$