Lecture 23 - Calculus and ODEs
Prayer/Spiritual Thought Announcements
Outline
 Symbolic Calculus Numerical Integration Differential Equations
1. Symbolic Calculus
 A. Explanation In addition to the algebra we saw a few weeks ago, Mathcad's symbolic solver can also do some basic calculus. Derivatives:
 two different operators derivative and prime derivative: Ribbon -> Math -> Operators -> Derivative (d/dx). Shortcut: <ctrl><shift>D</shift></ctrl> prime: Ribbon -> Math -> Operators -> Prime (x'). Shortcut: <ctrl>'</ctrl>
 Integrals: Definite and Indefinite Integrals Ribbon -> Math -> Operators -> Integral Shortcut: <ctrl><shift>I</shift></ctrl> For an indefinite integral, don't add limits of integration
 Remember to use the symbolic evaluation operator (the arrow). Ribbon -> Math -> Symbolics -> Symbolic Evaluation (arrow) Keyboard shortcut: <ctrl>.</ctrl>
B. Examples
(i) Derivatives
simple derivative partial derivatives
$\frac{\mathrm{d}}{\mathrm{d}x} \sin(x) \to \cos(x) \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t} \sin(x \cdot t) \to x \cdot \cos(t \cdot x)$
functions using symbolic derivatives
$f(x) \coloneqq \frac{\mathrm{d}}{\mathrm{d}x} \operatorname{atanh}(x^2) \to -\frac{2 \cdot x}{x^4 - 1} \qquad f(5) \to -\frac{5}{312} \qquad \frac{-2 \cdot 5}{5^4 - 1} \to -\frac{5}{312}$

Non-Commercial Use Only

prime operator	
$f(x) := x^3 + 4 \cdot x^2 + 4 x - 1$	$f'(x) \rightarrow 3 \cdot x^2 + 8 \cdot x + 4$
$f''(x) \rightarrow 6 \cdot x + 8$	$f^{\prime\prime\prime}(x) \rightarrow 6$

(ii) Integrals

Definite Integrals $\int_{1}^{5} 3 x^{2} + 8 x + 4 dx \rightarrow 236$ $\int_{0}^{\infty} \exp(-x^{2}) dx \rightarrow \frac{\sqrt{\pi}}{2}$ Infinity: Ribbon -> Math -> Symbols or <ctrl><shift>Z

Indefinite Integrals

$$\int 3 x^2 + 8 x + 4 dx \rightarrow x^3 + 4 \cdot x^2 + 4 \cdot x$$
Note: no constant!

$$\int f''(x) \, \mathrm{d}x \to 3 \cdot x^2 + 8 \cdot x \qquad \qquad \text{Using f''(x) from previous example}$$

Defining functions using integrals

$$g(x) \coloneqq \int 6 \cdot x + 8 \, \mathrm{d}x \qquad g(4) \to 80$$

2. Numerical Integration

A. Explanation

- Sometimes it is impractical to do a symbolic integral, and we want to do a numerical integration.
- Recall we have two cases: 1. You know the function) and 2. You have data points only.
- If you know the function (like quad in python):
 - Use a **numerical definite integral**. Use the integral operator (<ctrl><shift>I) but evaluate it using the "=" sign not the symbolic equals "->".
- If you don't know the function (like simps in python):
 - You must code the trapezoidal rule by hand. Mathcad has no built-in function for Newton-Coates quadratures (these types of integration methods) :(.

B. Examples
1. Numerical Definite Integrals

$$\int_{0}^{1} \frac{2}{\sqrt{\pi}} \exp(-t^{2}) dt = 0.8427$$
This is erf(1)
erf(1) = 0.843

$$\frac{1}{\pi} \int_{0}^{\pi} \cos(2 \cdot \tau - 3 \cdot \sin(\tau)) d\tau = 0.486$$
This is J_2(3), Bessel's function
of the first kind
Jn (2, 3) = 0.486
2. Trapezoidal rule for
$$\int_{0}^{1} \frac{2}{\sqrt{\pi}} \exp(-t^{2}) dt$$

$$N_{pts} = 100 \quad t_{to} = 0 \quad t_{ti} = 1 \quad <-\text{ limits of integration}$$

$$i = 0 \cdot N_{pts} \quad t_{i} = t_{i0} + (t_{i4} - t_{i0}) \cdot \frac{i}{N_{pts}} \qquad \Delta t = t_{1} - t_{0}$$

$$f(t) = \frac{2}{\sqrt{\pi}} \exp(-t^{2}) \qquad <-\text{ integrand}$$

$$I = \frac{\Delta t}{2} \cdot \left(f(t_{0}) + 2 \sum_{i=1}^{N_{pt}-1} f(t_{i}) + f(t_{N_{pt}}) \right) \qquad <-\text{ composite}$$

$$trapezoidal rule$$

$$I = 0.8427$$

Non-Commercial Use Only

Non-Commercial Use Only