
VBA Handout

References, tutorials, books

• Excel and VBA tutorials

• Excel VBA Made Easy (Book)

• Excel 2013 Power Programming with VBA (online library reference)

• VBA for Modelers (Book on Amazon)

Code basics

• Comments start with a single quote: ’

• All variables require a type declaration

– Long for integers
– Double for floating point numbers
– String for strings
– Boolean for true or false variables
– Variant for a flexible type (anything but string)

• Declare variables as:

Dim myVar As <Type>

• Variables can be declared inside or outside of functions or subroutines. Variables declared
outside have a global scope.

• Indentation doesn’t matter.

Conditional statements

• If statements

If condition Then
' do s t u f f

ElseIf condition Then
' do s t u f f

Else
' do s t u f f

End If

1

http://www.excel-easy.com/
http://www.excelvbatutor.com/vba_book/vbabook_ed2.pdf
https://search.lib.byu.edu/byu/record/lee.6155490?holding=f2c2cl80h27xoh6j&t_rnum=1&t_query=excel+vba+2013
http://www.amazon.com/VBA-Modelers-Developing-Decision-Microsoft/dp/1133190871

• Conditionals

– Equals, =

– Greater than, >

– Less than, <

– Greater than or equal to, >=

– Less than or equal to, <=

– Or

– And

– Not

– True

– False

Ranges and Arrays

• Range variables come from cells in the worksheet.

– Declare a range variable

Dim myRange As Range
Set myRange=Range("A1:A20")

– Get or set the values contained in the range.

Range("<Val>").Value

– Get a specific cell in a range at Row, Col.

Range("<Val>").Cells(Row, Col)

– Get or set the value in a given cell in a range.

Range("<Val>").Cells(Row, Col).Value

– Set the formula of a cell.

Range("<Val>").Cells(Row, Col).Formula

• Array variables

– Declare 1D Array:

Dim myArray(100) As Double

– Declare 2D Array:

Dim myArray(5, 8) As Double

– Access elements with (...):

2

' 1D a r r a y
Dim myArray(5) As Double
myArray(3) = 2
' 2D a r r a y
Dim myArray(5,5) As Double
myArray(2,3) = 2

– Initialize array directly from Range Variable

Dim myArray as Variant
myArray = myRange.Value
' A l w a y s a 2D a r r a y

– Get array size from upper and lower bound

Ubound(myArray)−Lbound(myArray)+1

Loops

• For loop

Dim i As Long
Dim iStart As Long
Dim iEnd As Long
For i = iStart To iEnd

' do s t u f f
If i=iStart+2 Then

Exit For ' b r e a k t h e l o o p e a r l y
End If

Next i

• Do While loop

i = 0
Do While i < 100

i = i+1
' do s t u f f

Loop

• Do Until loop

i = 0
Do Until i = 100

i = i+1
' do s t u f f

Loop

3

Subroutines and Functions

• Functions and subroutines are similar except functions can return a value and subroutines
cannot.

• Arguments can be passed by value or by reference.

– Pass by value means a copy of a passed variable is made, so changes to it don’t affect
the orignal variable.

– Pass by reference means that if you pass a variable and change that argument inside the
routine or function, then it changes the corresponding variable that was passed. This is
useful for getting data out of a subroutine

– In VBA, pass by reference is the default

– Keywords: ByVal and ByRef. Also Optional for optional arguments

• Functions

– A function is called using its name, e.g. sum(5, 4)

– There is no explicit return statement in VBA. Instead we assign to the value to be re-
turned to name of the function.

– The function will exit and return at the end, but you can exit early with Exit Function

Function sum(x As Double, y As Double)
sum = x + y

End Function

• Subroutines

– A subroutine is called with Call mySubName(parameters). If there are no parameters,
just use Call mySubName.

Sub add_2_vals(x As Double, y As Double, _
sum As Double)

' x and y p a s s e d by r e f e r e n c e . I f c h a n g e d i n
' h e r e t h e v a r i a b l e s p a s s e d i n w i l l c h a n g e
' (s a m e f o r sum , b u t t h a t i s by d e s i g n) .
'
sum = x + y

End Sub

Sub add_2_vals(ByVal x As Double, ByVal y As Double, _
sum As Double)

' x , y p a s s e d by v a l u e . I f c h a n g e d h e r e , t h e
' v a r i a b l e s p a s s e d i n won ' t b e c h a n g e d .
sum = x+y

End Sub

4

Debugging

• The "Immediate Window" (View–>Immediate Window) is useful for Debugging VBA code.
Using the Debug.Print Command one can examine the value of variables or run functions.
One can also run subroutines (via the Call command) in this window.

• In the Immediate Window, "?" is equivalent to Debug.Print

Debug.Print myFunction(3)
? myFunction(3)
Call mySub(4)

Useful Builtin VBA functions

• A pop-up message box:

msgBox("A window will open with this message")
msgBox("The value of myVar is " & myTemp & " (K)")

• Input box to get user input:

myVariable = InputBox("Some message")

• Accessing individual cells

' G e t d a t a f r o m e x c e l c e l l B23 and s t o r e i t i n myVar
myVar = Range("B23").Value
' Put d a t a f r o m myVar i n t o c e l l B23
Range("B23").Value = myVar

• Test if cell is empty, return true or false:

IsEmpty(Range("B23"))

• Clear range of cells:

Range("B5:B25").Clear

• Grab the value in the cell that is up 3 and right 4 from the currently active cell.

ActiveCell.Offset(−3, 4).Value

• Math functions: Abs, Int, Sqrt Exp, Log (natural log), Cos, Sin, Tan

• To get access to Excel worksheet functions:

WorkSheetFunction.funcName(x,y, etc.)}

5

