Homework 22

Ch En 263 – Numerical Tools

Due date: 11 Jun. 2020

Instructions

- For the handwritten problems, submitted a single pdf file on Learning Suite with the name "LastName_FirstName_HW22.pdf".
- For the problems in Excel, submit a workbook named "LastName_FirstName_HW22.xlsx" where each worksheet tab is named "Problem_1", "Problem_2", etc.
- For the problems in Python, submit a separate file for each problem named "Last-Name_FirstName_HW22_ProblemXX.py" where XX is the problem number.
- Please report how long it took you to complete the assignment (in hours) in the "Notes" section on Learning Suite.

Problems

1. The temperature change of a coal particle in a furnace is given by the following rate equation

$$\frac{dT}{dt} = \frac{hA}{mc_p}(T_f - T) + \frac{\sigma A}{mc_p}(T_f^4 - T^4).$$

The initial particle temperature is $T_0 = 500$ K. In addition, the following data are given

Variable	Value	Units
D	100	$\mu \mathrm{m}$
$ ho_p$	1000	$ m kg/m^3$
c_p	1380	$\mathrm{J/kg}{\cdot}\mathrm{K}$
\dot{k}	0.1	$W/m \cdot K$
Nu	2	_
σ	5.67 E-8	$\mathrm{W/m^{2}K^{4}}$
T_{f}	1500	Κ
$t_{ m end}$	0.05	\mathbf{S}

Also, the area, mass and Nusselt number Nu are given, respectively, by:

$$A = \frac{\pi}{4}D^2,$$
$$m = \frac{\pi}{6}D^3\rho_p,$$
$$Nu = \frac{hD}{k}.$$

Solve the rate equation for the particle temperature as a function of time using solve_ivp. Plot your solution and label and format your plot (including units).

2. A harmonic oscillator obeys the second-order differential equation

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0$$

where *m* is the mass, *k* is the spring constant and *c* is a constant characterizing a damping force. Re-arrange the harmonic oscillator equation as a system of first order rate equations. Solve the resulting system of equations using solve_ivp with m = 1 kg, k = 1 kg/s² and c = 0.5 kg/s. Additionally assume that the initial velocity is zero, $x_0 = 1$ m and $t_{end} = 10$ s. Plot (and label) the velocity and the position as a function of time.

3. Solve the set of rate equations,

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = x(\rho - z) - y$$
$$\frac{dz}{dt} = xy - \beta z$$

over the range $t \in [0, 35]$ where x(0) = 5, y(0) = -2, z(0) = 1 and $\sigma = 10$, $\rho = 28$ and $\beta = 8/3$. Make two plots: y(t) versus x(t) and z(t) versus x(t). Note that time is implicit in these plots. *Hint: you will need a large number of time points* $(N_{pts} > 1000)$ to get a well resolved plot.