Big 13 Units

That You Need to Memorize

Dimension	SI	English	Conversion Ratios
time	s, hr	s, hr	$3600\mathrm{s} = 1\mathrm{hr}$
length	m	ft	$1 \mathrm{m} = 3.2808 \mathrm{ft}$
mass	kg	lbm, slug	$1\mathrm{kg} = 2.2046\mathrm{lbm}$
			$1\mathrm{slug} = 32.174\mathrm{lbm}$
force	N	lbf	$1\mathrm{N} = 1\frac{\mathrm{kg}\cdot\mathrm{m}}{\mathrm{s}^2}$
			$1 \operatorname{lbf} = 1 \frac{\operatorname{slug} \cdot \operatorname{ft}}{\operatorname{s}^2}$
			$1 lbf = 32.174 \frac{lbm \cdot ft}{s^2}$
			$1\mathrm{lbf} = 4.448\mathrm{N}$
$temperature^*$	K, °C	°R, °F	$1 \mathrm{K} = 1.8^{\circ}\mathrm{R}$
			$1^{\circ}\mathrm{C} = 1\mathrm{K}$
			$1^{\circ}\text{F} = 1^{\circ}\text{R}$

*Be careful to only use these ratios when converting quantitites that contain temperature units (e.g. a heat capacity or gas constant) rather than temperatures themselves. When converting actual temperatures, you need to be careful about the difference between absolute (i.e. °R, K) and relative (°F, °C) temperature scales. As such, I recommend that you use

$$T(^{\circ}F) = \frac{9}{5}T(^{\circ}C) + 32$$
$$T(^{\circ}R) = T(^{\circ}F) + 459.67$$
$$T(K) = T(^{\circ}C) + 273.15$$
$$T(^{\circ}R) = \frac{9}{5}T(K)$$

for converting temperatures.