Special Problem B-1

For each of the following differential equations, answer the following about the ODE:

- (i) What is the order?
- (ii) Is it linear?
- (iii) If linear, is it homogeneous?
- (iv) If linear, are the coefficients constant?
- (v) Is it an IVP or a BVP?

Note that most of these are ODEs that we will solve later in the course.

	ODE	ICs/BCs	Notes
(a)	$m\frac{d^2x}{dt^2} + \xi\frac{dx}{dt} + kx = -mg$	x(0) = L	$x = x(t), m, \xi, k, g, L$ are constants
		$\frac{dx}{dt}(0) = 0$	
(b)	$r^4 \frac{d^4 f}{dr^4} - 4r^2 \frac{d^2 f}{dr^2} + 8r \frac{df}{dr} - 8f = 0$	f(R) = 0	f = f(r), R, U, are constants
		$\frac{df}{dr}(R) = 0$	
		$f(\infty) \to Ur^2/2$	
(c)	$\frac{1}{r}\frac{d}{dr}\left(r(1+\epsilon\theta)\frac{d\theta}{dr}\right) = 1+\epsilon\theta$	$\theta(1) = 0$	$\theta = \theta(r), \epsilon$ is a constant
		$\frac{d\theta}{dr}(0) = 0$	
(d)	$\frac{d^2C}{dx^2} = kC$	C(0) = 0	C = T(x), k and L are constants
		C(L) = 0	
(e)	$\frac{d\psi}{d\eta} + \frac{a\eta}{2}\psi = 0$	$\psi(0) = -\sqrt{a/\pi}$	$\psi = \psi(\eta), a$ is a constant
(f)	$\frac{d}{dr}\left(\frac{1}{r}\frac{d}{dr}\left(rv\right)\right) = 0$	$v(\kappa R) = 0$	$v = v(r), \kappa, R, \Omega$ are constants
		$v(R) = \Omega$	