
Tree Group Research Primer
Thanks for your interest in doing research with
me! If you haven’t done so already, please send
me  an  email  (tree.doug@byu.edu)  before  you
start the training so we can talk about the group
and  potential  openings.  I’m  excited  to  get  to
know you better, and look forward to having you
in the group.

This  document  outlines  a  series  of  tasks  and
tutorials  that  I  would  like  you  to  accomplish
before  you  start  as  a  research  assistant.  This
process is meant to:

• make  sure  you  have  the  necessary
training, 

• help  you  get  a  sense  of  what  will  be
expected of you, 

• give you an opportunity to prove that you
can do self-directed tasks, and

• ensure  you  have  sufficient  time  in  your
schedule to do research.

I anticipate that the training will take around 40
hours (or about 4 weeks if you are working 10
hrs/week)  to  finish.  Your  time  spent  on  the
training should be mostly self-directed, but I am
happy to answer your questions. In other words,
seek  help  for  problems  that  you  have  tried  to
solve  on  your  own first.  Then,  if  you  are  still
stuck  or  confused,  feel  free  to  email  me
(tree.doug@byu.edu) or come by my office (322
Clyde Building).

The first few tasks center around getting set up
with a computer and an account at the Fulton
Supercomputing  Lab  (FSL).  Then  there  are  a
series of tasks designed to help you learn some
important  programming  skills.  You  won’t  have

time to learn everything about the programming
languages (especially C++), so don’t worry if you
feel a bit lost at this point. Finally, I have a small
programming project  at  the  end that  will  help
you tie everything together in a hands-on way.

Please let me know if you decide at some point
while  doing  the  training  that  you  don’t  have
enough time for research, or that you aren’t as
interested  as  you  thought  you  were.  I  will  be
disappointed that you won’t be working with us,
but it won’t hurt my feelings, and I won’t think
less of you. (Some students are nervous to say no
to a professor.) Under exceptional circumstances
(such  as  a  lengthy  delay  in  accomplishing  the
training materials), I reserve the right to decide
to not make you an offer to join the group.

Task 1. Keep a time sheet
In order for you to make meaningful progress on
your research, you need to put in a minimum of
about 10 hours a week. This is a significant
time investment, and it is common for dedicated
students  to  find  this  challenging.  To  help  you
keep this goal, I would like you to keep a time
sheet while you are doing the training. Your time
sheet  will  also  help  me  learn  about  your
particular skills and experience. An example time
sheet is included with this document. 

Before moving on from this task, you should:

• Have a time sheet, and

• Read/skim through the entire tutorial.

© 2017 Douglas R. Tree 1 Last updated: 07/13/18

mailto:tree.doug@byu.edu
mailto:tree.doug@byu.edu


Task 2. Learn about HPC 
and get an account with FSL
Log on to https://marylou.byu.edu/ and request
an  account  with  the  FSL.  To  complete  this
process  you  will  need  to  describe  the  research
project.  Use the following paragraph, unless we
have discussed something different.

I will be doing research with Prof. Douglas
Tree  in  the  Chemical  Engineering
Department as part of his undergraduate
software development team. As part of this
team,  I  will  be  working  on  developing
massively  parallel  software  to  study
polymer  materials  and  other  complex
fluids. We anticipate that this software will
typically  run  on  multiple  CPUs  or  on
GPUs, and take several hours or days to
complete.

In addition, you need to learn a little bit about
high performance computing (HPC). Watch the
first  two  (of  six)  introductory  videos that  the
FSL  has  provided  on  YouTube  about  HPC.
Additionally,  spend  a  few minutes  reading  this
introduction  to  parallel  computing from
Lawrence  Livermore  National  Lab.  (But  don’t
take too much time reading the whole thing. It is
quite long.)

Before moving on from this task, you should:

• Have an active FSL account, and

• Understand basic concepts about HPC.

Task 3. Learn Unix and 
Choose a Local Machine.
High performance  computing  is  overwhelmingly
done on a Unix (or Linux) operating system. You

will need to become familiar with Unix and the
terminal. In addition, you will need to be able to
connect to the FSL supercomputing clusters from
a local machine of your choice.

If  you  are  unfamiliar  with  Unix/Linux,  read
through the  FSL’s Unix tutorial. (Another good
resource  is  this  tutorial from  the  Minnesota
Supercomputing  Institute.)  You  should  also
spend some time practicing what you are reading
about.  A  good  way  to  practice  is  to  use  this
online Unix terminal. It is a bit slow, but it is a
useful place to start. Once you have practiced a
bit, you might find this cheat sheet helpful.

Once you are familiar with Unix commands, you
will need to decide what computer you will use
for doing research. You will use this computer to
communicate with the super-computer, for coding
and to do other research tasks. You have three
different options for a local computer to do your
work: (1) a personal laptop, (2)  a CAEDM lab
computer,  or  (3)  a  computer  in  my  student
offices. (Note: As of 7/13/2018, I do not yet have
a  computer  set  up  for  undergraduates.  If  you
need one, please contact me ASAP so I can do
this.) 

The  operating  system  that  is  installed  on  the
local machine has an impact on the software you
can  use  to  do  your  work.  Because  the  super-
computers run Linux, it is often convenient to use
a  local  machine  that  is  also  running  Linux.
However, this is not necessary, and may not be
desirable if you do not feel comfortable with it.
This  is  a  choice  you  will  have  to  make  for
yourself;  I  have  no  preference  what  you use,  I
simply want you to be productive :).

There  are  CAEDM  computers  available  with
Linux, and the machine in my lab is a Linux box.
If you have a personal laptop, you may decide to
experiment  with  installing  Linux  alongside

© 2017 Douglas R. Tree 2 Last updated: 07/13/18

https://files.fosswire.com/2007/08/fwunixref.pdf
https://caedm.et.byu.edu/wiki/index.php/CAEDM_Labs#Lab_Locations
https://caedm.et.byu.edu/wiki/index.php/CAEDM_Labs#Lab_Locations
https://www.tutorialspoint.com/unix_terminal_online.php
https://www.tutorialspoint.com/unix_terminal_online.php
https://www.msi.umn.edu/sites/default/files/Intro_to_Linux_Fall2015_0.pdf
https://marylou.byu.edu/documentation/unix-tutorial/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://www.youtube.com/watch?v=i1r9BxHBG0I&list=PL326A5EB4E3B16FED&feature=plpp_play_all
https://marylou.byu.edu/


Windows or  in a  virtual  machine.  (Note:  there
are many “flavors” of Linux that you can install.
Ubuntu is  a  particularly  user-friendly  version
that you may want to look up, if you decide to go
this route.) Again, this is up to you.

Once  you  have  decided  what  machine  and
operating system to use, attempt to log in to the
FSL head node at ssh.fsl.byu.edu. Procedures for
different  operating  systems  are  outlined  below.
Some additional information can be found on the
FSL website.

Linux/Mac

If the operating system on your local machine is
some  flavor  of  Linux  then  connecting  to  or
transferring  data  with  the  FSL  clusters  is
straightforward via the terminal with SSH, SCP
and  RSYNC.  (Here  is  a  tutorial  for  SCP and
RSYNC).  Mac  machines  are  Unix  machines
under the hood, and they also have a terminal.
As such they can also access the FSL via SSH,
SCP  or  RSYNC.  More  details  about  these
commands can be found by a Google search.

Windows

Windows  does  not  natively  connect  to
Linux/Unix systems without additional software.
Connecting via ssh can be done with a program
called  Putty.  You  will  need  to  follow  the
instructions at the Putty website to install it on
windows and to connect to the FSL.

Unfortunately, Putty cannot do file transfers. A
common  FTP  client  for  transferring  files  is
FileZilla.  Again,  you  will  need  to  follow  the
instructions at the website to install FileZilla and
to learn to use it to transfer files.

You have two other potential options for both ssh
and  FTP  commands.  Bitvise  is  a  putty-like
program that combines SSH and FTP commands

into a single software package. I have never used
it,  but many of the students seem to prefer it.
Details on installation and use can be found on
its website.

Finally, Windows has recently begun a project to
incorporate a native Linux shell.  Again, I have
never  tried this  route,  but  it  seems promising.
Details  regarding  installation  and  use  can  be
found  at  this  website.  Connecting  to  a  cluster
and  file  transfers  using  this  shell  can  be  done
using SSH, SCP and RSYNC like in Linux.

SSH Keys

It  can  be  annoying  to  repetitively  enter  your
password  when  copying  files  to  and  from  a
cluster.  It  is  possible  to  set  up  a  secure  key
between your machine and FSL (and as you will
see later, a Git server) so that you don’t have to
enter your password every time you log in. 

This  tutorial shows you how to create an SSH
key,  and  this  one shows  you  how  to  set  up
password-less log-ins.

Before moving on from this task, you should:

• Have  chosen  a  local  machine  and
operating system

• Be able to log on to/log off from the FSL

• Be able to create, move, and delete files
and directories on the cluster

• Be  able  to  copy  files  and  directories
to/from your local machine to the cluster

• Set up SSH keys as desired

© 2017 Douglas R. Tree 3 Last updated: 07/13/18

https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://confluence.atlassian.com/bitbucketserver/creating-ssh-keys-776639788.html
https://linuxtechlab.com/files-transfer-scp-rsync-commands/
https://linuxtechlab.com/files-transfer-scp-rsync-commands/
https://msdn.microsoft.com/en-us/commandline/wsl/about
http://www.putty.org/
https://filezilla-project.org/
http://www.putty.org/
https://marylou.byu.edu/documentation/system-access/ssh
https://www.ubuntu.com/desktop


Task 4. Learn Bash, Slurm 
and Choose a Text Editor
Once you have chosen a local machine and you
can log  into  the  FSL head node,  you  need to
learn  some  basic  Bash  scripting  and  how  to
submit jobs to the FSL queue.

Before  you  can  write  any  Bash  or  Slurm
commands  however,  you need to choose  a  text
editor. A text editor is a program like Notepad,
Gedit,  Emacs  or  Vim  (among  many  others)
where you can type code. A text editor will be
one  of  your  main  research  tools.  A  good  text
editor (i.e.  not MS Notepad) will  have features
such  as  syntax  highlighting  that  will  make  it
easier to write readable code. I use Vim. It has
many  useful features, and is available from the
command line on practically every Linux machine
(here is a link to a decent vim tutorial). However,
there is some overhead associated with learning
vim. Like  the choice  of  machine and operating
system, you should chose a text editor that is the
most productive for you.

Additionally,  you  may  want  to  consider  an
integrated development environment (IDE). IDEs
are text editors coupled with debugging tools. I
don’t use one, but some people really like them.
Examples include MS Visual Studio (Windows),
XCode (Mac) and Eclipse (any).

Bash  is  the  default  language  for  most  Unix
command prompts. You can write  scripts which
are  files  that  contain  many  bash  commands,
which you can use to automate routine tasks. Go
through  this  bash  tutorial.  Don’t  just  read  it.
Practice  what  you are  learning  with  your  text
editor  and  a  terminal  on  either  your  local
machine or on FSL.

Once  you  feel  reasonably  comfortable  writing
bash scripts, you need to learn how to run  them

on the supercomputer’s compute nodes.  Scripts
are submitted as jobs to a scheduler, and are put
in a queue before being run. The scheduler being
used at the FSL is called Slurm. Watch the four
remaining  introductory  videos on  the  FSL
website  which  talk  about  Slurm.  Additionally,
read  FSL’s  documentation  about  Slurm.  It  is
pretty terse, so take a look at LLNL’s document-
ation (user  manual,  quick  start  guide)  as  well.
Another  useful  tool  is  FSL’s  Slurm  script
generator, which may help you generate an initial
script. Make sure you practice submitting scripts
to the scheduler in addition to reading the doc-
umentation. 

Finally,  you may want  to spend a little  bit  of
extra  time  reading  about  environment  modules
(even more info is here). Modules are introduced
in one of the videos, and they allow you to access
already-installed software on the cluster. A list of
available software modules is given at  this FSL
site. 

Before moving on from this task, you should:

• Have  chosen  a  text  editor  you  feel
comfortable with,

• Be able to write a basic bash script for
automating tasks,

• Be able to submit scripts to the scheduler
using Slurm commands, and

• Be able to load and unload environment
modules on an FSL node.

Task 5. Learn Python Basics
Python is an interpreted programming language
that is very useful for doing quick programming
tasks  like  pre-  or  post-processing  data  and
making plots. You may have already used Python
if  you  have  taken  Ch  En  263.  Regardless,  go

© 2017 Douglas R. Tree 4 Last updated: 07/13/18

http://modules.sourceforge.net/
https://marylou.byu.edu/documentation/apps/softwareModuleList
https://marylou.byu.edu/documentation/apps/softwareModuleList
https://marylou.byu.edu/wiki/index.php?Environment+Modules
http://vim.wikia.com/wiki/Tutorial
https://marylou.byu.edu/documentation/slurm/script-generator
https://marylou.byu.edu/documentation/slurm/script-generator
https://hpc.llnl.gov/banks-jobs/running-jobs/slurm-quick-start-guide
https://hpc.llnl.gov/banks-jobs/running-jobs/slurm-user-manual
https://marylou.byu.edu/documentation/slurm/commands
https://www.youtube.com/watch?v=i1r9BxHBG0I&list=PL326A5EB4E3B16FED&feature=plpp_play_all
https://www.youtube.com/watch?v=i1r9BxHBG0I&list=PL326A5EB4E3B16FED&feature=plpp_play_all
http://ryanstutorials.net/bash-scripting-tutorial/bash-script.php


through this tutorial by Scott Shell at UCSB on
the basics of scientific programming with Python.

Python also has a robust plotting module called
matplotlib. Work through the matplotlib tutorial
to learn about how to make plots using Python.
Again, practice what you are reading about. (If
you  have  already  taken  Ch  En  263,  you  will
obviously move faster through this material than
you otherwise might.) Practice will be especially
effective  if  you  try  and  write  the  codes  from
memory without looking at the tutorial. It will
be  harder  to  do,  but  you  will  remember  the
material  better.  For  additional  information  on
the Python language, see the  official document-
ation on the web.

As you will see in the tutorials, you can practice
your code in the interactive shell that comes with
python in Linux or as scripts that you execute in
the  terminal.  Additionally,  you  may  want  to
install  iPython for  a  more  powerful  interactive
shell.

Spyder is  an  IDE-style  alternative  to  the
traditional  terminal  environment  for  prog-
ramming  in  Python.  If  you  have  used  Matlab
before,  you will  find that  Spyder  gives  you an
very  similar  look and feel  to  the  Matlab  IDE.
Spyder  can  be  installed  in  Windows,  Mac  or
Linux.

As I mentioned in the introduction, Python is a
large and complex programming language. Don’t
worry  if  you  don’t  master  every  aspect  of  the
language.  Instead,  focus  on  the  basics  outlined
below.

Before moving on from this task, you should:

• Be able to write a “hello world” code in
Python that runs on an FSL machine,

• Be able to make and save a plot, and

• Be  able  to  use  variables,  loops,  if/else
statements and read and write from files.

Task 6. Learn C++ Basics
C++ is a very powerful computer programming
language that can be used to write large, efficient
programs.  With  this  power  comes  added
complexity.  Don’t worry about mastering all  of
C++ at  once.  Instead,  focus  on  the  basics:  a
“hello  world”  code,  variables,  loops,  functions,
classes, and file I/O.

With that in mind, go through  th  is   tutorial  at
cplusplus.com.  Unlike  Python,  C++  is  a
compiled language. So, to practice you will need
to learn about how to compile your code into an
executable. The MSI has  a short tutorial about
compiling that should help. You should be able
to use either the GNU or Intel compilers on the
FSL clusters.

As  C++  programs  become  larger,  they  are
typically  divided  into  many  different  files.
Compiling  all  of  these  files  by  hand  can  be
cumbersome.  The  make utility  was designed to
overcome  this  problem,  and  makefiles  are
commonly  encountered  when  programming  in  
C++.  Take  a  look  at  this  tutorial and  this
tutorial to learn a little bit more about makefiles.

There  are  many  books  that  give  more
information on C++. You might consider going
to the library to check out a book to help you get
started. StackOverflow has compiled a very   useful
list  of  references that will  help you guide your
search.  (As  an  aside,  StackOverflow is  a  great
place to go when you have programming ques-
tions.  Cplusplus.com is also a useful reference.)
There are many more useful documents that you
may also consider reading, including  this article
on  debugging,  and  this  introduction  to  the
Standard Template Library.

© 2017 Douglas R. Tree 5 Last updated: 07/13/18

https://cal-linux.com/tutorials//STL.html
https://cal-linux.com/tutorials//STL.html
http://www-h.eng.cam.ac.uk/help/tpl/languages/debug/debug.html
http://www-h.eng.cam.ac.uk/help/tpl/languages/debug/debug.html
http://www-h.eng.cam.ac.uk/help/tpl/languages/C++.html
http://www.cplusplus.com/
https://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list
https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/makefile.html
https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/makefile.html
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
https://www.msi.umn.edu/sites/default/files/Intro_Compiling_Debugging_Spring2017.pdf
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/
https://pythonhosted.org/spyder/#
https://ipython.org/index.html
https://docs.python.org/3/index.html
https://docs.python.org/3/index.html
https://matplotlib.org/users/pyplot_tutorial.html
https://engineering.ucsb.edu/~shell/che210d/python.pdf


Before moving on from this task, you should:

• Be able to write a “hello world” code in
C++ that compiles and runs on a FSL
machine,

• Be  able  to  use  variables,  loops,  if/else
statements, functions, classes and file I/O,

• Know what a makefile is, and

• Spend a little bit of time exploring some
more advanced C++ concepts.   

Task 7. Learn Git Basics and
Get a Bitbucket account
It  can  be  difficult  to  keep  track  of  different
versions of a code when it is shared among many
authors.  Version  control  systems  (VCS)  were
written as a solution to this problem.  Git is  a
popular and useful VCS that we use in the group.
Bitbucket  is  a  web  hosting  service  for  Git
repositories that allows us to easily share code.

Read the first three chapters of the Pro Git book
to  learn  the  basics  of  Git.  (Atlassian,  the
company  that  runs  Bitbucket,  also  has  some
useful  tutorials.)  Again  practice  is  important.
You can practice  by  making a  local  repository
containing your C++ and Python codes that you
have written during previous tasks.

Once  you  have  a  local  repository,  and  have
mastered the basics of committing and branching,
go  to  B  itbucket.  org and  set  up  an  account.
Bitbucket offers free accounts to academic users,
so  please  use  your  official  BYU  email
address when signing up to Bitbucket. 

Once you have an account, you will need to do
two things to get Bitbucket to track your local
repository: (i) set up   ssh and (ii) push your local
repo to bitbucket.

Before moving on from this task, you should:

• Know how to set up a git repository, how
to commit, and how to create, delete and
merge branches,

• Have a Bitbucket account,

• Be able to push from your local repo to
your  Bitbucket  account  and  pull  from
Bitbucket to your local repo.

Task 8. Solve an ODE with 
Explicit Euler
You  should  now  be  able  to  access  the  FSL,
understand basic Unix, write bash scripts, submit
jobs  using  Slurm,  write  code  in  Python  and  
C++, and use Git! To tie this all together, I want
you  to  do  a  short  C++ project,  run  it  on  a
cluster, and produce a plot with Matplotlib. This
will  help  you  put  everything  you  have  learned
together,  and see  if  there  is  anything  you still
don’t understand.

You are going to write a code to solve a linear,
first-order differential equation,

, (1)

which has the analytical solution,

. (2)

The numerical method you will use is called the
Explicit Euler method. It is very straightforward.
Assume that the derivative on the left-hand side
of Eq. 1 is discrete,

. (3)

© 2017 Douglas R. Tree 6 Last updated: 07/13/18

https://confluence.atlassian.com/bitbucketserver/importing-code-from-an-existing-project-776640909.html
https://confluence.atlassian.com/bitbucketserver/importing-code-from-an-existing-project-776640909.html
https://confluence.atlassian.com/bitbucket/set-up-ssh-for-git-728138079.html
https://confluence.atlassian.com/bitbucket/set-up-ssh-for-git-728138079.html
https://bitbucket.org/product
https://bitbucket.org/product
https://bitbucket.org/product
https://www.atlassian.com/git/tutorials
https://git-scm.com/book/en/v2


If this is so, then if we know  (which we do),
then we can solve for   (and all of the others),
assuming  we  pick  a  discrete  time  step

,

. (4)

With that background in place, do the following
project.

1. Create  a  directory  called  “training\”  in
your FSL home directory.

2. Write a C++ code to solve the differential
equation  above.  Put  the  code in  a  new
directory: “training\src\”.

a) The  code  should  read  in  a  text  file
(params.dat) where the parameters of
the  time  integration  (time  step,
number of steps) are read from file. 

b) The code should write an output file
(output.dat) with  and  in separate
columns.

3. Create  a  Git  repository  to  track  your
changes  as  you  write  the  C++  code.
Make regular commits and push them to
Bitbucket as you work.

4. After  you  are  sure  the  code  works,
compile the code and place the executable
in a directory called “training\bin\”

5. Write  a  Slurm  script  to  run  the
executable  as  a  batch  job.  Solve  the
equation for   for several  different
values  of  the  time  step  parameter,

.  Store  the
resulting  input  and  output  files  in
“training\data\”.

6. Write a Python script to plot the seven
data sets. Calculate the error between the
numerical  solution  you  have  generated
and  the  analytical  solution.  Save  the
script and the plot in “training\plt\”.

Task 9. Show Me Your Work
Congratulations!  You  have  completed  the
training  and  have  learned  a  lot  about  high
performance computing. Your last task is to come
talk to me and show me your work. 

It  is  likely  that  you  have  had  questions  and
struggles along the way, and we will have talked
some already. Either way, make an appointment
to come talk to me in my office. You can show
me what you have accomplished, and we will get
started on the research project I have in mind for
you.

© 2017 Douglas R. Tree 7 Last updated: 07/13/18


	Task 1. Keep a time sheet
	Task 2. Learn about HPC and get an account with FSL
	Task 3. Learn Unix and Choose a Local Machine.
	Linux/Mac
	Windows
	SSH Keys

	Task 4. Learn Bash, Slurm and Choose a Text Editor
	Task 5. Learn Python Basics
	Task 6. Learn C++ Basics
	Task 7. Learn Git Basics and Get a Bitbucket account
	Task 8. Solve an ODE with Explicit Euler
	Task 9. Show Me Your Work

