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Abstract

The classic results of de Gennes and Odijk describe the mobility of a semiflexible chain confined

in a nanochannel only in the limits of very weak and very strong confinement, respectively. In

moderate confinement, the chain mobility exhibits a broad plateau as a function of extension

before transitioning to an Odijk regime. For DNA in a high ionic strength buffer, this Rouse-like

behavior persists over most of the measurable chain extensions seen in experiments. In contrast,

flexible chains are described by the classical theories throughout the full range of extension.
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The configurations and dynamics of a flexible chain confined in a tube were described

quite some time ago by de Gennes [1–3] and Odijk [4]. Emerging genomics technologies such

as DNA barcoding [5, 6] have brought to the forefront the comparable problem of describing

semiflexible chains when they are confined in a nanochannel [7, 8]. In this Letter, we show

that the classical results for the de Gennes and Odijk regimes, which describe the dynamics

of flexible chains over the full range of confinement, are the limiting cases for semiflexible

chains such as DNA. As a result, these theories cannot describe data on the dynamics of

semiflexible chains over the experimentally relevant range of chain extensions (∼ 20% to

∼ 80%). We have developed a description of the mobility of a semiflexible chain confined

in a nanochannel that highlights the stark differences between the dynamics of flexible and

semiflexible chains. In particular, we show that the common assumption that the friction

coefficient of a confined, semiflexible chain is proportional to its extension is incorrect.

Let us first define what we mean by a semiflexible chain, since this term changes in

different contexts [9]. The polymer is described by its contour length L, persistence length

lp, and effective width w, such that the chain consists of N = L/lp persistence lengths.

Often, the term “semiflexible” is used in a global context to describe a chain where L ≈ lp,

corresponding to a semiflexible filament such as actin. In our study of chains confined in

nanochannels, we are concerned with the local flexibility of the chain on the length scale of

the channel size, D ≈ lp. In this context the anisotropy of the “monomers” matters, with a

flexible chain corresponding to lp/w ≈ 1 and a semiflexible chain corresponding to lp/w ≫ 1

[10].

In particular, we will focus on double-stranded DNA in a high ionic strength buffer that

screens electrostatic interactions, which has frequently been used as a model system for a

confined polymer [11]. In these conditions, DNA is clearly a semiflexible chain, with lp =

53 nm [12] and w = 4.6 nm [13]. As we will see, this high degree of anisotropy limits the

applicability of the classic results from de Gennes [1–3] to very small values of the fractional

extension. The DNA used in experiments can be quite long, normally tens of microns in

length. As a result, the chain is flexible in the global sense since L ≫ lp.

We already know that the semiflexible nature of DNA strongly affects its equilibrium

extension [13–16]. Figure 1 shows how the average chain extension, 〈X〉, depends on the

degree of confinement for a flexible chain and semiflexible chain. These data were generated

by modeling the chain as a series of Nb = 2048 touching beads [17] of size w that interact
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FIG. 1. (color online) Averaged extension of a flexible (lp = 5.3nm, blue squares) and a semiflexible

(lp = 53nm, red circles) chain containing 2048 touching beads of width w = 4.6 nm as a function

of the effective channel width, D−w, available to the chain. To aid the eye, lines corresponding to

the Odijk regime (solid), transition regime (dotted), and extended de Gennes/de Gennes regimes

(long dashed) are shown.

by a hardcore excluded volume interactions. To give the chain a persistence length of lp, a

bending potential is enforced between trios of beads according to the discrete wormlike chain

model [16, 18]. Analogous to our prior work [16], we generated an equilibrium ensemble of

chain configurations using Monte Carlo simulations with reptation, crankshaft and pivot

moves [19]. The simulation was run in each case until the statistical errors, corrected for

the time series autocorrelation [20], were smaller than the size of the plot symbols.

The classical theories [1, 2, 4] provide a complete description for the extension of the

flexible chain. Over almost the full range of extension, the flexible chain is in the de Gennes

regime [1, 2]. Here, the chain consists of isometric compression blobs of characteristic volume

D3 containing a subchain of length Lsub
∼= D5/3(wlp)

−1/3 [14]. The corresponding extension

is 〈X〉 ∼= L(wlp)
1/3D−2/3. A more precise calculation yields 〈X〉 ∼ D(ν−1)/ν with ν = 0.5877

being the Flory parameter [16]. In the tightest channels, the chain crosses over into the

Odijk regime [4], where the chain consists of a series of deflection segments. The extension

here is 〈X〉 = L[1− 2α (D/lp)
2/3] with α = 0.09137 a universal prefactor [21].

In contrast, the classical theories [1, 2, 4] only correspond to the limiting cases for the

extension of a semiflexible chain. Indeed, in order for a semiflexble chain to be able to

reach a de Gennes regime, the polymer must have a length of at least L ∼= lp
3/w2 in a
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channel that is larger than D ∼= lp
2/w [14, 16]. As a semiflexible chain is compressed

by decreasing the channel size, the blobs become anisometric [13, 14, 16] with size D2H ,

where H ∼= (Dlp)
2/3w−1/3. Each one of these cylindrical blobs contains a subchain of length

L∗

∼= lp
1/3D4/3w−2/3. This regime was named the “extended” de Gennes regime [16] because

the scaling for the extension in the de Gennes regime, 〈X〉 ∼= L(wlp)
1/3D−2/3, extends to

the case of anisometric compression blobs. When the channel size approaches the order of

the persistence length, D ≈ lp, and the chain can no longer form blobs. Here the behavior

crosses into a transition regime where several simulations [15, 16], including our results in

Fig. 1, indicate that the extension scales like 〈X〉 ∼ D−1 [15, 16]. The free energy of these

configurations is unknown, and it is not clear yet if the behavior is universal. Finally, when

D ≪ lp, the other classical limit of Odijk is recovered, as in the case of flexible chains.

As the anisotropy of the monomers increases, the importance of the transition regime

becomes increasingly important; the maximum extension in the extended de Gennes regime

is 〈X〉/L ∼= (w/lp)
1/3. When DNA in a high ionic strength buffer is used as a model confined

polymer [7, 8], the extended de Gennes regime and, in particular, the transition regime

encompass almost the entire experimental range of extensions [16]. Indeed, the existence of

these additional regimes explains [16] the disagreement between early experiments on DNA

extension in nanochannels [8] and the de Gennes model.

Let us now consider the mobility of a confined semiflexible chain. By applying an in-

finitesimal force fx that is uniformly distributed along the chain, the corresponding velocity

along the channel axis is

vx = µfx = 〈Ωxx〉fx (1)

where µ is the mobility of the chain. As seen in eq. (1), we can obtain the Kirkwood

approximation to the mobility [22, 23] from the appropriate component of the hydrodynamic

tensor, Ωxx, where the brackets refer to an average over the equilibrium distribution of chain

configurations.

According to the blob theory [2, 3], the mobility in the extended de Gennes regime should

be the same as the de Gennes regime, even though the blobs are now anisometric. To see

why, we simplify eq. (1) for the Kirkwood chain mobility in terms of the pair-correlation

function, g(r), following de Gennes [2],

µ = N−1

∫

g(r)Ω(r)d3r (2)
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In the blob theory [3] the pair-correlation function is replaced with c, the number concentra-

tion of segments inside a blob, and the hydrodynamic screening by the walls is approximated

by Ω(r) = 1/ηr for r < D and exponentially decaying for r > D [2, 3], where η is the solvent

viscosity. Since we only need an approximate result, the remainder of the calculation is

simplified by using spherical coordinates and integrating over the solid angle [2],

µ =
4πc

N

∫ D

0

1

ηr
r2dr ≈

cD2

ηN
(3)

In the de Gennes regime, the monomer concentration in the blobs is c ∼= (Lsub/lp)/D
3, which

yields c ∼= w−1/3l
−4/3
p D−4/3. Recalling that N = L/lp, we recover the classic result that the

friction scales with chain extension [3]

µ ∼ (1/ηL) 〈X/L〉−1 (4)

In the extended de Gennes regime, the density of segments is (L∗/lp)/(D
2H), which again

yields c ∼= w−1/3l
−4/3
p D−4/3. As a result, the blob theory predicts the diffusion in the extended

de Gennes regime is given by eq. (4). Since the blob theory breaks down in the transition

regime [16], the logic leading to eq. (4) is no longer valid.

We computed the Kirkwood mobility through a Monte Carlo integration of eq. (1) [24].

For a given chain configuration, we computed the 3× 3 chain hydrodynamic tensor

Ω =
1

Nb
2

Nb
∑

i,j

[

δij
6πηa

I+ (1− δij)Ω
OB(rij) +ΩW(ri, rj)

]

(5)

In the latter, δij is the Kronecker delta, ri and rj are the positions of bead i and j respectively

and rij = rj − ri. The hydrodynamic tensor also introduces the bead hydrodynamic radius,

a, which is often conflated with the effective width, despite the fact that they arise from quite

different phenomena. We chose a = 1.38 nm so that the chain mobilities in free solution for

lp = 53 nm matched experimental values for DNA [25].

The hydrodynamic tensor includes a self-diffusion term, a free-solution Oseen-Burgers

tensor [26], ΩOB, and a wall term, ΩW, due to the effects of the no-slip condition at the

channel boundaries. The Oseen-Burgers tensor is acceptable in this calculation because

the beads are hard spheres, and do not suffer from unphysical behavior caused by bead-

bead overlap. The wall term was calculated using a numerical solution of Stokes equation,

similar to Jendrejack et al. [26]. We employed a second-order finite difference approach with
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FIG. 2. (color online) Mobility versus extension. All simulations correspond to w = 4.6 nm and

a = 1.38 nm. (a) Results for five different chain lengths for lp = 53 nm. (b) Results for three

different persistence lengths for L = 9.42 µm (Nb = 2048 beads). The dashed line is the scaling

of eq. (4). At large extensions, each chain approaches the Odijk regime (solid lines), where the

mobility is a function of lp [27].

a staggered, three-dimensional, uniform, Carteisan mesh and mass-conserving boundary

conditions. Due to the prohibitive computational time needed to solve the hydrodynamic

problem for each chain configuration, the wall term was calculated and stored on a grid,

and subsequently linearly interpolated during Monte Carlo averaging. Finally, we note that

in each case the statistical error of the computed diffusivity, corrected for the time series

autocorrelation [20], are smaller than the size of all plot symbols.

Figure 2a shows the results for the mobility of a semiflexible chain as a function of its

extension. In the largest channels, corresponding to the smallest fractional extensions, the

channel provides minimal confinement and the chains are approaching the Zimm free solution

mobility, µ ∼ L−3/5. Outside of this limit, the friction due to the walls is substantial. If we

neglect the wall term in eq. (5) for a channel size of 80 nm, the resultant mobility is more

than 5 times larger. However, there is a broad plateau in the mobility as a function of the

6



channel diameter.

In Fig. 2b, we compare the mobility as a function of extension for different persistence

length chains. Equation (4) is a reasonable description for the flexible chain with lp = 5.3

nm all the way to the transition to the Odijk regime. Fitting the data gives µ ∼ 〈X〉−0.874

(R2 = 0.998) which agrees very well with the value of µ ∼ 〈X〉−0.61/0.7015 obtained from other

flexible chain calculations [26, 28]. However, the scaling in eq. (4) is qualitatively incorrect

for the semiflexible chain with lp = 53 nm over almost the full range of extension. We also

simulated an intermediate persistence length lp = 23 nm and found an intermediate result;

for short extension this chain obeys de Gennes scaling but it still exhibits a broad transition

towards the Odijk result.

The key to understanding the difference between the results for flexible and semiflexible

chains lies in their draining behavior, which has also been observed for DNA in slits [29]. In

the classical de Gennes regime, the blobs can be thought of as free-solution coils on length

scales smaller than the channel size, and are clearly non-draining [2]. At the other classical

limit, the Odijk regime, the mobility can be approximated as a slender rod where the inter-

actions are screened on the order of D [8, 27]. There must clearly be some crossover between

the behavior of non-draining blobs in the weakly confined limit to the freely-draining chain

in the strongly confined limit. In the case of flexible chains, this crossover is short, as was

seen with the extension behavior. If the confinement does not force a rod-like conformation,

the chains can only form blobs and quickly become non-draining.

In the semiflexible case, the intermediate regimes that arise as the channel size increased

due to the large monomer anisotropy delay the crossover from rod-like behavior to blob

behavior (for the conformation) and thus extend the crossover from free-draining to non-

draining behavior (for the mobility). The transition and extended de Gennes regimes there-

fore give rise to the mobility plateau, because they force the chain to persist in elongated

states such that the chain remains Rouse-like for larger channel sizes. The fact that these

regimes give rise to the mobility plateau can be seen from the correspondence between the

fractional extensions for the mobility plateau limits and the regime limits. To illustrate this,

consider the extension of a chain with a persistence length of 23 nm. In this case the de

Gennes regime ends at a fractional extension of about 0.2, and the Odijk regime begins at

a fractional extension of about 0.7. For lp = 53 nm, the semiflexible regimes begin and end

at fractional extensions of 0.15 and 0.8 respectively. These extensions closely align with the
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extensions in Fig. (2)b that correspond to the beginning and ending of the mobility plateau.

Thus the intermediate regimes can explain both the existence of the mobility plateau and

the fact that it grows with increasing persistence length.

While we have focused exclusively on the dynamics of DNA in a high ionic strength

buffer, where electrostatic interactions are screened, there are DNA barcoding devices [5]

that use high ionic strengths to stiffen the DNA backbone. As the ionic strength decreases,

the predicted values for the effective width and persistence length begin to converge [30].

Our analysis thus predicts that DNA will obey the de Gennes prediction in eq. (4) in a

sufficiently low ionic strength such that lp/w ≈ 1 and a large enough channel such that

this very high persistence length chain can form compression blobs. These experiments are

technically challenging, since the length of DNA required to reach the de Gennes regime in

a low ionic strength buffer is enormous.

In this Letter, we have clearly shown that the hydrodynamics of confined semiflexible

chains deviate significantly from the classic prediction for a flexible chain in eq. (4) [2, 3].

As there are a large number of publications using DNA in a high ionic strength buffer as a

model polymer, it is important to keep in mind the stark differences between the dynamics

of semiflexible chain such as DNA and the more flexible chains often encountered in polymer

physics [11].
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