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Abstract

We develop an approximation for the probability of optically resolving two fluorescent labels on

the backbone of a DNA molecule confined in a nanochannel in the Odijk regime as a function of

the fluorescence wavelength, channel size, and the properties of the DNA (persistence length and

effective width). The theoretical predictions agree well with equivalent data produced by Monte

Carlo simulations of a touching wormlike bead model of DNA in a high ionic strength buffer.

Although the theory is only strictly valid in the limit where the effective width of the nanochannel

is small compared to the persistence length of the DNA, simulations indicate that the theoretical

predictions are reasonably accurate for channel widths up to two-thirds of the persistence length.

Our results quantify the conjecture that DNA barcoding has kilobase pair resolution — provided

the nanochannel lies in the Odijk regime.

∗ dorfman@umn.edu
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I. INTRODUCTION

DNA barcoding is emerging as a key tool for high-throughput, single-molecule analy-

sis of the genome at the kilobase pair level, representing an important complement to DNA

sequencing [1]. As illustrated in Fig. 1(a), specific sequences (the DNA barcodes) are fluores-

cently labeled by either binding the probes to the chain [2–5] or inserting labeled nucleotides

via nick extension [6, 7]. The backbone is fluorescently labeled with a second color through

an intercalating dye such as YOYO-1. To determine the genomic distance between barcode

markers, the DNA needs to be stretched from its equilibrium, coiled conformation. Sev-

eral competing technologies have arisen to accomplish this task: using a receding contact

line and subsequent binding to the surface (molecular combing) [8–10], extensional flow

(direct linear analysis) [11–13], and nanochannel confinement [5–7, 14, 15]. The genomic

distance between neighboring barcodes is then determined by first locating the centers of the

sequence-specific labels and then integrating the total backbone fluorescence intensity be-

tween these two locations. Nanochannels provide a particularly attractive approach to make

such measurements since a confined chain fluctuates about its equilibrium extension; making

multiple, statistically independent measurements of the distance reduces the sampling error

[5, 16].

A fundamental question related to DNA barcoding in nanochannels is the ability to

resolve two nearby barcodes on the DNA backbone. If we consider a sequence-specific probe

that emits light with wavelength λ = 573 nm [14] and a completely extended DNA molecule

with a rise of 0.34 nm per base pair (bp), then two probes would have to be separated by

at least 843 bp if we take λ/2 as an estimate of the resolution limit for diffraction limited

optics. However, as we can see from simulation data in Fig. 1(b), the semi-flexible nature

of the DNA leads to incomplete stretching, even in very small channels lying in the Odijk

regime [21]. In this paper, we develop an approximation for the probability of resolving

two nearby barcodes as a function of the nanochannel size and the properties of the DNA

(persistence length and effective width), which themselves depend intimately on the ionic

strength of the buffer [18, 22–24]. Our results apply to the Odijk regime, which is the most

desirable regime for DNA barcoding [6, 15].
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FIG. 1. (a) Principle of DNA barcoding. If the linear distance in the focal plane between barcodes

does not exceed the diffraction limit, λ/2, for light of wavelength λ, then the two fluorophores

cannot be resolved. (b) Illustration of the chain extension in different regimes of confinement. The

configurations were generated using the simulation method in §III with a chain with an approximate

size of 27.7 kbp. Only part of the chain is shown in the figure. The persistence length is lp = 53

nm [17] and the effective width [18] is w = 4.6 nm, appropriate for TBE 5x buffer [19, 20]. The two

blue spheres in each snapshot are shown to illustrate barcodes with one of the barcodes located at

the end of the chain and the other barcode at 2 kbp.

II. THEORY

The equilibrium two-point distribution function Ψij(r⃗ij) quantifies the probability density

for segment i and j, corresponding to a genomic distance |j− i|, being separated by a linear

distance rij = |r⃗i− r⃗j| in the focal plane of the image. In our theoretical analysis, we envision

the “segments” to be base pairs of the chain, whereupon the contour length per segment is

given by the rise of DNA, r. In our simulations, we will consider a slightly coarser model

where the characteristic length scale is the effective width of the chain, w. Owing to the

symmetry of the square channel, we only need to assume that focal plane is parallel to one

of the walls of the channel but we do not need to specify which wall [25]. While Ψij is known

for a confined Gaussian chain [26], there are no results for more complicated cases [27], such

as the wormlike chain in a good solvent we need here. However, we do not need to compute

this distribution function to determine the probability of resolving two barcodes. Rather,
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we can define the probability

ψ(j|i) =
∫ ∞

λ/2

Ψij(r⃗ij) dr⃗ij (1)

that, given a barcode marker at some point i along the chain, we are able to resolve a

second marker at some different point j. The average probability of resolving a pair of

barcode markers on a chain of N base pairs separated by n = |j − i| base pairs is then

p(n) =
1

N − n

N−n∑
i=1

ψ(i+ n|i) (2)

We are interested in computing p(n) for the Odijk regime [21], which applies to nanochan-

nel widths much smaller than the chain persistence length, lp. The width of the channel

accessible to the centerline of the DNA backbone is Deff = D − w in the limiting case of

steric interactions only, where w is the effective width of the DNA [18]. While the inequality

Deff ≪ lp may appear to be so restrictive as to exclude all reasonable nanochannel sizes that

allow easy insertion of DNA [28], we will see that our final result is a reasonable approxi-

mation out to Deff
∼= lp. In the Odijk regime, a chain of total length L consists of a series

of deflection segments with the mean span

⟨R∥⟩ = L
[
1− 2α (Deff/lp)

2/3
]

(3)

where α = 0.09137± 0.00007 [25]. The variance of the extension in this regime is

⟨R2
∥⟩ − ⟨R∥⟩2 = 2βLD2

eff l
−1
p (4)

where β = 0.00478± 0.00010 [25].

We can construct an approximate model for p(n) in the Odijk regime through the following

ansatz. We assume the chain is long compared to the distance n between barcodes and that

the barcodes are not located too close to the end of the chain, whereupon Ψij ≈ Ψn and

ψ(i+ n|i) ≈ p(n). If we further neglect the contribution of lateral fluctuations between the

two barcode points, Ψij(r⃗ij) ≈ Ψn(x), where x is the distance down the channel axis and

Ψn(x) is interpreted as the distribution function for the distance in the x-direction between

segments on the chain separated by a genomic length n. Equation (1) then reduces to

p(n) ≈
∫ ∞

λ/2

Ψn(x) dx (5)
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FIG. 2. Schematic illustration of the touching bead model. The “segments” of the chain, numbered

from k = 1 to k = N , are spherical beads of size w that experience hardcore bead-bead and bead-

wall interactions. The bending energy is computed from the discrete wormlike chain model in

Eq. (9) using the vectors u⃗ pointing between bead centers. For calculations of p(n), we compute

the distance x between each pair (i, j) in the direction of the channel axis.

In a high ionic strength buffer, the diffraction limit is long compared to the size of a deflection

segment. Neglecting prefactors of order unity, but retaining the definition of the diffraction

limit, this corresponds to [21]

λ/2 ≫ D
2/3
eff l

1/3
p (6)

Provided we satisfy Eq. (6), then the integral in Eq. (5) always involves many deflection

segments. It is thus reasonable to assume that the average distance, x̄, and variance, σ2,

between the two barcodes separated by a contour length L = r|i− j| > λ/2, where r is the

rise of double stranded DNA, are given by Eq. (3) and Eq. (4), respectively. If we further

assume a normal distribution for the distance between these barcodes,

Ψn(x) =
1√
2πσ2

exp

[
−(x− x̄)2

2σ2

]
, (7)

then Eq. (5) leads to

p(n) =
1

2
erfc

(
λ− 2x̄

23/2σ

)
(8)

where erfc(x) = (2/π1/2)
∫∞
x

exp(−t2)dt is the complementary error function. Equation (8)

is the key result of our analysis.

III. SIMULATION METHOD

The logic leading to Eq. (8) involves a number of assumptions. We tested these assump-

tions by using Monte Carlo simulations to directly compute p(n) from Eq. (2) in square
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nanochannels of width D. The “touching bead” simulation model we used here [29], illus-

trated in Fig. 2, is a modification of the model we used previously [20] to study the different

regimes of confined DNA. The chain consists of N = 2048 beads of size w = 4.6 nm. All

beads interact by a hardcore excluded volume with one another and with the walls, where-

upon we identify w as both the coarse-graining size (in the direction along the backbone)

and the effective width of the DNA chain (in the direction perpendicular to the backbone).

The value of 4.6 nm is the Stigter effective width [18, 30] for DNA in TBE 5x buffer [19, 20].

To provide a connection with experiments, we will ultimately convert the simulation data (in

terms of the beads) into the experimentally relevant genomic distances using the conversion

factor w/r. We take r = 0.34 nm/bp as the rise of DNA. Since intercalating dyes can intro-

duce an increase in the rise of DNA [31], this conversion should be considered approximate

and our results for the resolution limit are likely conservative estimates. Neighboring beads

also experience a bending potential given by the discretized wormlike chain model [32]

Ubend ≈ kBT (lp/w)
N−2∑
k=1

(1− u⃗k · u⃗k+1) (9)

where lp = 53 nm is the persistence length [17] and u⃗j = (r⃗j+1 − r⃗j)/l, j ∈ [1, N − 1] is the

unit vector between beads j and j + 1.

Chain configurations were generated using reptation and crankshaft moves in the Metropo-

lis scheme. Simulations for each channel size were performed in 12 replicates. The simula-

tions for a channel of size D were initialized using a configuration generated from preceding

simulations of a slightly smaller channel to guarantee acceptance of the initial configuration.

Upon increasing the channel size, we first waited for the mean extension to stabilize around

the average value in the larger channel, and then added an additional 2.048 × 107 equili-

bration steps before starting the production run. This approach introduces a slight bias

against hairpin configurations, which are difficult to form in the smallest channels. How-

ever, the long equilibration time and the small change in channel width between simulations

minimizes this bias.

To determine an appropriate sampling time for computing the chain statistics, we calcu-

lated the auto-covariance of the extension [33],

CR∥(n) =
⟨R∥(m)R∥(m+ n)⟩m − ⟨R∥⟩2

⟨R2
∥⟩ − ⟨R∥⟩2

(10)
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FIG. 3. Auto-covariance of the chain extension as a function of the number of Monte Carlo steps

normalized with the size of the chain. Symbols are averaged results over the 12 independent runs.

Figure 3 shows the decay of the auto-covariance with the number of Monte Carlo steps. On

average, the auto-covariance is sufficiently attenuated after approximately 2.048× 108 trial

moves. In what follows, we used sampling rates of 4.096 × 108 trial moves for the 10 nm

and 20 nm channels and 2.048 × 108 trial moves for the 30 nm and 40 nm channels, which

produces 10 statistically independent configurations per replicate.

In our prior work [20], we used a bead-rod model with a WCA potential [34] to provide

bead-bead excluded volume. With our code for this model, we were able to reach a long chain

(2048 beads, 9.42 µm contour length, 27.7 kbp) without sacrificing the spatial resolution. In

free solution, this model produces a root-mean-square end-to-end distance of 1.06 µm, a root-

mean-square radius of gyration of 0.43 µm and a mean span dimension of 0.88 µm. All of

these values agree well with our prior simulations [20], which themselves match experimental

results. Likewise, the results for the fractional extension of this chain exhibit the same scaling

laws as simulations of our prior model [20].

IV. RESULTS AND DISCUSSION

In Eq. (7), we assumed that the distance between barcodes is normally distributed, with

the mean and variance given by those for the mean span of a chain in the Odijk regime

[21, 25]. In Fig. 4, we compare this assumption to the simulation data for two barcodes
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FIG. 4. Comparison between Monte Carlo simulation data for the probability distribution Ψn and

the assumed form in Eq. (7) for two barcodes separated by n = 1001 base pairs for λ = 573 nm, lp

= 53 nm and w = 4.6 nm. The different curves correspond to Eq. (7) for channel sizes D between

10 and 40 nm, and the symbols are the values of the binned data.

separated by 1001 base pairs. Using a rise of 0.34 nm/bp and a persistence length of 53

nm, these data correspond to barcodes separated by 6.4 persistence lengths. The normal

distribution appears to be an excellent model for the simulation data in Fig. 4. Nevertheless,

there is reason to be cautious about assuming a normal distribution in Eq. (7), since it

permits unphysical stretching of the chain. Explicitly, the normal distribution is supported

over x ∈ (−∞,+∞), so there is a finite probability that two barcodes separated by a contour

length l will be separated by a linear distance x > l. For n = 1001 bp, the maximum

distance between barcodes is approximately 340 nm. Fortunately, for all of the cases plotted

in Fig. 4, the relatively small variance in the chain extension given by Eq. (4) leads to the

normal distribution being strongly attenuated near x = l. As a result, Ψij(x > l) makes

a negligible contribution to the integral in Eq. (5). The normal distribution also permits a

nonsensical probability that x < 0. Since the probability distribution decays quickly enough

at the upper bound x = l and the mean of the distribution is closer to x = l than x = 0,

then the probability distribution is exponentially small at the other physical limit, x = 0.

While the data in Fig. 4 give us confidence in the validity of using a normal distribution, we

will return to this issue after evaluating the corresponding theoretical predictions for p(n).

We thus turn our attention to the second key assumption of our theory, namely that the

8



theory (Eq. 3)
simulation

10 20 30 40 50

Nanochannel width, D (nm)

0.85

0.95

1.00

0.90

0.80
〈R

‖
〉/
L

 

 

FIG. 5. Comparison between the extension of the chain and the predictions from the Odijk regime

with no adjustable parameters given by Eq. (3). The simulations correspond to 2048 touching

wormlike beads with lp = 53 nm and w = 4.6 nm. The channel width accessible to the chain

is Deff = D − w. The error bars correspond to the standard deviation over the 12 independent

replicas.

distance between barcodes on the interior of the chain obey the statistics for a long chain in

the Odijk regime. Naturally, this can only be the case if the chain as a whole, which contains

a large number of deflection segments, also obeys the statistics for the Odijk regime. As we

can see in Fig. 5, the prediction of Eq. (3), which contains no adjustable parameters [25], is

an excellent fit for our smallest channel. As the effective channel size increases, there is a

systematic deviation between the predictions for the Odijk regime and the simulation data.

The origin of the deviation is apparent in Fig. 1(b), where the chain is beginning to form

hairpins [19]. However, the deviation from the theoretical prediction is quite small, ranging

from 0.1% to 3.2% for over the range D = 10 nm to D = 40 nm.

Figure 6 compares the predictions of Eq. (8) to our simulation data. Since we already

confirmed in Fig. 4 that the probability distribution p(n) is reasonably Gaussian for all of

these channel sizes, we can conclude that the deviation between the theory and simulation

in Fig. 6 is due to a gradual breakdown in the Odijk regime (Fig. 5) as the chain begins to

form hairpins (Fig. 1). Indeed, the agreement between the theoretical prediction and the

simulation data for p(n) in Fig. 6 mirrors the phenomenon we observed in Fig. 5. Nev-

ertheless, the approximate theoretical result given by Eq. (8) appears to be a quite good

description for all of these channels. Although the numerical results for the mean span and
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FIG. 6. Comparison between Monte Carlo simulation data for the probability of resolving two

barcodes separated by a genomic distance n, p(n), and the prediction from Eq. (8) for λ = 573

nm, lp = 53 nm and w = 4.6 nm. The different curves correspond to Eq. (8) for channel sizes D

between 10 and 40 nm, and the symbols are the values of the simulation data.

its variations in Eqs. (3) and (4) are only valid in the limit Deff ≪ lp, it seems that they

provide a reasonable approximation for the configuration of an internal segment of the chain

up to Deff ≈ 2lp/3.

We also investigated the effect of relaxing the assumption of a normal distribution in

Eq. (7) by considering other “Gaussian-like” distributions. A natural alternative is the in-

verse Gaussian distribution (also called the Wald distribution) [35]. In the large L limit,

the inverse Gaussian distribution limits to the normal distribution, making it an appropriate

choice for proximate barcodes separated by a handful of deflection segments. We also consid-

ered distributions that would remove the unphysical features of the normal distribution. The

log-normal distribution is supported on x ∈ (0,∞), removing the possibility for a “negative”

extension, and the raised cosine distribution has a finite support, which further removes the

possibility of overextension. As we can see in Fig. 7, the results for the resolution limit in

a 40 nm channel, which has the broadest distribution for Ψn, are effectively unchanged by

the choice of any of these “Gaussian-like” probability distributions. The results in Fig. 7

support our choice of the normal distribution to describe the probability distribution even

though its limits are not physical; the normal distribution gives essentially the same results

for p(n) as a more realistic model, such as the raised cosine distribution, while permitting

the simple expression for p(n) given by Eq. (8).
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FIG. 7. Comparison of the predictions for p(n) in the 40 nm channel corresponding to different

probability distributions for Ψn(x), using the the statistics for a chain in the Odijk regime given by

Eqs. (3) and (4). The various curves correspond to the normal distribution for R∥ (black, solid),

a raised cosine distribution for R∥ (blue, dots), a log-normal distribution for L−R∥ (red, dashed)

and an inverse Gaussian distribution for L−R∥ (green, solid).

All of our simulation data and discussion thus far focused on the configurations of con-

fined DNA in a high ionic strength buffer, where DNA-DNA and DNA-wall electrostatic

interactions are screened. In this case, the inequality given by Eq. (6) holds and the diffrac-

tion limit corresponds to many deflection segments. As the ionic strength of the solution is

decreased, the electrostatic interactions become sensible and lead to an increase in both the

persistence length of the DNA [22–24] and the effective width [18]. Schwartz and cowork-

ers [6, 15] have advocated the use of low ionic strength buffers to permit DNA barcoding

in relatively wide nanochannels (nanoslits). By increasing the persistence length, these

nanochannels still satisfy the criteria for the Odijk regime, Deff ≪ lp, especially when we

recall that Deff = D − w and the effective width w also increases as the ionic strength

decreases. We can make a crude estimate for the bounds of our theory by assuming that

these systems operate in a regime Deff ≈ lp, corresponding to the edge of the Odijk regime

in Fig. 5. In such circumstances, our theory would only be valid for λ/2 ≫ lp, corresponding

to ionic strengths down to around 0.1 - 1 mM [36]. This value is similar to the most recent

low ionic strength experiments aimed towards DNA barcoding [15], so our results represent

a conservative estimate for the maximum barcode density for these experiments. However,

we should use caution in applying the results for square nanochannels to nanoslits [37].
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V. CONCLUDING REMARKS

In the present contribution, we have developed an approximation for the probability of

resolving two nearby barcodes on a DNA molecule confined in a nanochannel as a function

of the channel size, the wavelength of the fluorescence, and the properties of the DNA (per-

sistence length and effective width). Although the final result in Eq. (8) required assuming

that (i) the linear distance between barcodes is normally distributed and (ii) that the statis-

tics for these short, internal sections of the chain are equivalent to an infinitely long chain,

we found that the theory leads to a reasonable description of the simulation data. While

we chose to use a normal distribution for algebraic simplicity, the results for the probability

of resolving two barcodes are essentially unchanged when we use more realistic probability

distributions (and the concomitantly more difficult algebra). Our results provide a theoret-

ical basis for claims that the resolution of DNA barcoding in nanochannels is around one

kilobase pair [16, 38].

Our conclusions are based exclusively on the equilibrium chain statistics. Such an analysis

tacitly assumes that we can actually measure the instantaneous chain configuration or, in the

case of barcoding, the instantaneous location of the two barcodes. While the fluorophores

used for DNA barcodes are bright enough to image before they photobleach, the rate of

photon emission relative to the fluctuations in the chain extension is probably low. As a

result, the photons need to be collected over a period of time to increase the signal-to-noise

ratio to an acceptable level. The imaged fluorophore “position” is then a smeared value

of the instantaneous positions corresponding to each photon emission. Our results likely

correspond to a theoretical lower bound on the minimum distance between fluorophores.

While we had success in determining the resolution limits in the Odijk regime, we have

less confidence that this approach can be extended easily into other regimes of confinement

[20, 37, 39, 40]. As the channel size increases, the size of the statistical segment increases

as well. For example, in the so-called “extended de Gennes” regime [20], which is more

representative of the confinement regime in recent DNA barcoding experiments [5, 7], the

chain consists of anisometric compression blobs with a characteristic size H ∼= (Dlp)
2/3w−1/3

[39]. For a 250 nm nanochannel with lp = 53 nm and w = 4.6 nm, the blob size (neglecting

prefactors of order unity) is commensurate with the diffraction limit and it is no longer

appropriate to adopt a resolution model that requires an assumption similar to Eq. (6).
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While we can certainly compute the probability of resolving two nearby barcodes using

Monte Carlo simulations of the type employed here, developing the corresponding theoretical

model remains challenging.

ACKNOWLEDGMENTS

This work was supported by the NIH (R01-HG005216 and R21-RR031230) and was car-

ried out in part using computing resources at the University of Minnesota Supercomputing

Institute.

[1] T. P. Niedringhaus, D. Milanova, M. B. Kerby, M. P. Snyder, and A. E. Barron, Anal. Chem.

83, 4327 (2011)

[2] Y. Ebenstein, N. Gassman, S. Kim, J. Antelman, Y. Kim, S. Ho, R. Samuel, X. Michalet, and

S. Weiss, Nano Lett. 9, 1598 (2009)

[3] R. K. Neely, P. Dedecker, J. Hotta, G. Urbanaviciute, S. Klimasauskas, and J. Hofkens, Chem.

Sci. 1, 453 (2010)

[4] B. R. Cipriany, R. Zhao, P. J. Murphy, S. L. Levy, C. P. Tan, H. G. Craighead, and P. D.

Soloway, Anal. Chem. 82, 2480 (2010)

[5] S. F. Lim, A. Karpusenko, J. J. Sakon, J. A. Hook, T. A. Lamar, and R. Riehn, Biomicrofluidics

5, 034106 (2011)

[6] K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and

D. C. Schwartz, Proc. Natl. Acad. Sci. USA 104, 2673 (2007)

[7] S. K. Das, M. D. Austin, M. C. Akana, P. Deshpande, H. Cao, and M. Xiao, Nucleic Acids

Res. 38, e177 (2010)

[8] D. C. Schwartz, X. Li, L. I. Hernandez, R. S. P., E. J. Huff, and Y.-K. Wang, Science 262,

110 (1993)

[9] A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, and D. Bensimon, Science

265, 2096 (1994)

[10] E. T. Dimalanta, A. Lim, R. Runnheim, C. Lamers, C. Churas, D. K. Forrest, J. J. de Pablo,

M. D. Graham, S. N. Coppersmith, S. Goldstein, and D. C. Schwartz, Anal. Chem. 76, 5293

13



(2004)

[11] E. Y. Chan, N. M. Goncalves, R. A. Haeusler, A. J. Hatch, J. W. Larson, A. M. Maletta, G. R.

Yantz, E. D. Carstea, M. Fuchs, G. G. Wong, S. R. Gullans, and R. Gilmanshin, Genome Res.

14, 1137 (2004)

[12] R. Dylla-Spears, J. E. Townsend, L. Jen-Jacobson, L. L. Sohn, and S. J. Muller, Lab Chip

10, 1543 (2010)

[13] R. H. Meltzer, J. R. Krogmeier, L. W. Kwok, R. Allen, B. Crane, J. W. Griffis, L. Knaian,

N. Kojanian, G. Malkin, M. K. Nahas, V. Papkov, S. Shaikh, K. Vyavahare, Q. Zhong,

Y. Zhou, J. W. Larson, and R. Gilmanshin, Lab Chip 11, 863 (2011)

[14] T. Su, S. K. Das, M. Xiao, and P. K. Purohit, PLoS ONE 6, e16890 (2011)

[15] Y. Kim, K. S. Kim, K. L. Kounovsky, R. Chang, G. Y. Jung, J. J. dePablo, K. Jo, and D. C.

Schwartz, Lab Chip 11, 1721 (2011)

[16] R. Riehn, M. Lu, Y.-M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, Proc. Natl. Acad. Sci.

USA 102, 10012 (2005)

[17] C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Science 265, 1599 (1994)

[18] D. Stigter, Biopolymers 16, 1435 (1977)

[19] T. Odijk, J. Chem. Phys. 125, 204904 (2006)

[20] Y. Wang, D. R. Tree, and K. D. Dorfman, Macromolecules 44, 6595 (2011)

[21] T. Odijk, Macromolecules 16, 1340 (1983)

[22] T. Odijk, J. Polymer Sci. B. 15, 477 (1977)

[23] J. Skolnick and M. Fixman, Macromolecules 10, 944 (1977)

[24] A. V. Dobrynin, Macromolecules 38, 9304 (2005)

[25] T. W. Burkhardt, Y. Yang, and G. Gompper, Phys. Rev. E 82, 041801 (2010)

[26] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press,

Oxford, U.K., 1986)

[27] J. L. Harden and M. Doi, J. Phys. Chem. 96, 4046 (1992)

[28] H. Cao, Z. N. Yu, J. Wang, J. O. Tegenfeldt, R. H. Austin, E. Chen, W. Wu, and S. Y. Chou,

Appl. Phys. Lett. 81, 174 (2002)

[29] P. J. Hagerman and B. H. Zimm, Biopolymers 20, 1481 (1981)

[30] D. Stigter, J. Colloid Interface Sci. 53, 296 (1975)

[31] T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu, Science 268, 83 (1995)

14



[32] J. Wang and H. Gao, J. Chem. Phys. 123, 084906 (2005)

[33] W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou,

E. Frey, and R. H. Austin, Phys. Rev. Lett. 94, 196101 (2005)

[34] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971)

[35] In addition to computing the values of α and β appearing in Eqs. (3) and (4), Burkhardt

et al. [25] showed that an analytical result for the chain extension (in the form of an inverse

Gaussian distribution) can be derived by replacing the hardcore repulsion by the walls with a

softer, parabolic potential.

[36] C. C. Hsieh, A. G. Balducci, and P. S. Doyle, Nano Lett. 8, 683 (2008)

[37] T. Odijk, Phys. Rev. E 77, 060901(R) (2008)

[38] W. Reisner, N. B. Larsen, A. Silahtaroglu, A. Kristensen, N. Tommerup, J. O. Tegenfeldt,

and H. Flyvbjerg, Proc. Natl. Acad. Sci. USA 107, 13294 (2010)

[39] F. Brochard-Wyart, T. Tanaka, N. Borghi, and P. G. de Gennes, Langmuir 21, 4144 (2005)

[40] P. Cifra, J. Chem. Phys. 131, 224903 (2009)

15


