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Blob theory has been widely applied to describe polymer conformations and dynamics in nanocon-
finement. In slit confinement, blob theory predicts a scaling exponent of 2/3 for polymer diffusivity
as a function of slit height, yet a large body of experimental studies using DNA produce a scal-
ing exponent significantly less than 2/3. In this work, we develop a theory that predicts that this
discrepancy occurs because the segment correlation function for a semiflexible chain such as DNA
does not follow the Flory exponent for length scales smaller than the persistence length. We show
that these short length scale effects contribute significantly to the scaling for the DNA diffusivity,
but do not appreciably affect the scalings for static properties. Our theory is fully supported by
Monte Carlo simulations, quantitative agreement with DNA experiments, and the results reconcile
this outstanding problem for confined polymers.

The conformation and dynamics of single DNA
molecules in confinement have been extensively stud-
ied, facilitated by nanofabrication techniques capable of
manufacturing devices with well-defined canonical ge-
ometries and direct visualization of single DNA via flu-
orescence microscopy. Practically, the understanding of
DNA physics in confinement is vital for the development
of nanodevices for genome analysis [1–4]. Moreover, sim-
ulations and experiments of DNA in confinement have
been used to critically examine classic and long-existing
theories in polymer physics.
Proposed by de Gennes [5], blob theory has been ap-

plied to predict the static and dynamic scaling behav-
ior of single polymers when varying the confining di-
mension, e.g. the nanochannel diameter [6, 7] or the
nanoslit height [8–11]. In slitlike confinement (two paral-
lel plates), blob theory predicts a scaling of DNA exten-
sion with respect to the slit height of R∥ ∼ H1/4, which
agrees with experiments [9, 10] and simulations [11]. De-
spite the success of blob theory in predicting scalings for
static properties, significant discrepancies exist between
blob theory and the results of experiments and simula-
tions for dynamic scalings: blob theory yields a scaling
for diffusivity versus slit height of D ∼ H2/3 which is
substantially larger than the scaling exponent seen in ex-
periments [8, 10, 12–14] and simulations [15].
In this work, we reconcile the predictions of blob the-

ory and experimental data by developing a modified the-
ory that approximately accounts for the pair correlation
of DNA segments at length scales smaller than the per-
sistence length. While pair correlations below the per-
sistence length have little effect on static scalings, they
dramatically affect the diffusivity. By accounting for the
difference between the DNA pair correlations below the
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FIG. 1. (Color online) Diffusivity as a function of slit height.
The symbols are from previous experiments [8] for both λ-
DNA and 1/2 λ-DNA. The two lines are calculated from Eq.
(9) using the prefactor c2 = 1.68. The triangle indicates the
de Gennes scaling of 2/3.

persistence length, we obtain the excellent agreement be-
tween theory and experiment seen in Fig. 1.

Let us first recall the classic blob theory arguments for
the scaling of DNA diffusivity in slits for the de Gennes
regime (Lp ≪ H ≪ Rg,bulk with persistence length, Lp,
and DNA bulk radius of gyration, Rg,bulk). Within the
slit, DNA is represented by a series of self-avoiding blobs,
each with diameter equal to the height H. Using Flory
scaling [16], the contour length within a blob is

Lblob ∼ H5/3L−1/3
p w−1/3, (1)

where w is the effective chain width. Here, we use a
simple Flory exponent of 3/5. (The precise value [17]
is 0.5877 ± 0.0006.) The number of blobs is Nblob =
L/Lblob, where L is the contour length. In the Zimm
model [18], the polymer in each blob is hydrodynamically
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coupled to its entrained solvent, resulting in a drag force
on each blob proportional to H. The resulting scaling of

diffusivity is D ∼ 1/(NblobH) ∼ H2/3L
−1/3
p w−1/3L−1.

To understand why the classic blob theory does not
capture experimental data, we need to consider a more
detailed approach which accounts for correlations at the
persistence length scale. The DNA diffusivity in slits is
determined by hydrodynamic interaction (HI) between
DNA segments. Here, HI refers to the force exerted on
a particle due to the flow induced by the movement of
another particle. The diffusivity in slits is approximated
[19] as

D =
kBT

L

∫ H/2

0

h(r)Ω(r)dr (2)

where kBT is the thermal energy, Ω(r) = 1/(6πrη) is
angle-preaveraged Oseen tensor in free solution, η is the
viscosity of the solvent, and h(r) ≡ 4πr2Lpg(r) is a di-
mensionless form of the pair correlation function, g(r).
Based on Eq. (1), the dimensionless pair correlation used
in the classic blob theory is

h(r) = c1r
2/3L−1/3

p w−1/3, (3)

where c1 is a prefactor. After substituting this expression
into Eq. (2), the resulting diffusivity is

D1 = c2H
2/3L−1/3

p w−1/3D0, (4)

where

D0 = kBT/(6πηL), (5)

is the Rouse diffusivity and c2 is a prefactor that corrects
for the approximation of a free solution Oseen tensor in
Eq. (2). Note that applying the precise Flory exponent
of 0.5877 yields the scaling D1 ∼ H0.7015.
As expected, this calculation reproduces the result

cited by many authors [8, 10, 12]. However, it fails to
explain the experimental data because the Flory pair cor-
relation function is used throughout the entire domain in
the integral of Eq. (2). DNA behaves like a stiff rod be-
low the persistence length, so we propose modifying the
pair correlation with the approximate form:

h(r) =

{
2, r < Lp/2

c1r
2/3L

−1/3
p w−1/3, r > Lp/2.

(6)

This modified pair correlation function minimally af-
fects the static properties of DNA in slits, such as the
scaling of DNA extension. Using blob theory and Eq.
(1), the in-plane DNA extension is determined as R|| ≈
HN

3/4
blob = H(L/Lblob)

3/4 ∼ H−1/4. If the modified h(r)
is considered, the calculation of Lblob is broken up into
two integrals.

Lblob =

∫ Lp/2

0

h(r)dr +

∫ H/2

Lp/2

h(r)dr (7)
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FIG. 2. The contour length inside a blob as a function of slit
height. The solid line is calculated from Eq. (8) using Lp =
50 nm, w = 5 nm, and a fit value c1 = 2.8. The dashed line
is the result from classic blob theory, Eq. (1). The statistical
errors are less than the symbol sizes. The inset plot shows
the normalized in-plane radius of gyration as a function of slit
height in simulations. The triangle indicates the de Gennes
scaling of −0.25.

Substituting Eq. (6), above equation becomes

Lblob =

H, H < Lp

c1
3
5

[(
H
2

)5/3 − (
Lp

2

)5/3
]
(Lpw)

−1/3
+ Lp, H > Lp.

(8)
For the de Gennes regime, where H is always at least
a few times Lp, this modification usually causes only a
few percent change in Lblob. As a result, the scaling
exponent of R|| versus H will be very close to the value
1/4 predicted by classic blob theory [10, 11].

To confirm this conjecture, we used Monte Carlo sim-
ulations for DNA in slits [11]. In the simulation, DNA is
modeled as a chain of Nb beads connected by (Nb−1) in-
extensible bonds of length lB , corresponding to a contour
length L = (Nb − 1)lB . Three types of interactions are
considered: hard-core repulsions between DNA beads,
hard-core repulsions between DNA beads and slit walls,
and bending energies between adjacent bonds. The hard-
core diameter of the bead, w, is set to equal the bond
length lB . The bending rigidity is set to reproduce the
persistence length Lp of 50 nm. The chain width is 5
nm and the contour length is 8 µm (Nb = 1601 beads).
The simulation starts from a random conformation. In
each Monte Carlo cycle, we perform either one crankshaft
move or one reptation move (randomly picking the type
of move). Each chain is allowed to equilibrate for 108

steps. After equilibration, we perform more than 109

steps, recording one configurations every 106 steps for
data analysis.

We used the simulation data to estimate the con-
tour length Lblob inside a spherical blob whose diameter
equals the slit height. Note that the slit heights H in all
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figures are always the effective slit height, i.e., the real
slit height Hreal minus the chain width w, because this
effective slit height is consistent with the slit height used
in theoretical predictions. Recall that Lblob corresponds
to the integral of h(r). For each bead in a given DNA
configuration, we counted how many beads are located
within the distance of H/2. Then, we multiply this num-
ber with the bond length to obtain Lblob. Figure 2 shows
Lblob as a function of slit height. The simulation results
with Lp = 50 nm are compared to Eq. (8) using a fit value
of c1 = 2.8. We note that although a simple piecewise
function is used in Eq. (8), good agreement is obtained
all through the Odijk and de Gennes regimes. There are
minor discrepancies when H ≈ Lp, where DNA behaves
as neither a stiff rod nor a long chain. The modifica-
tion of h(r) leads to only a few percent change of Lblob

when H > 2Lp = 100 nm. As a result, considering the
sub-persistence behavior of h(r) has a negligible effect
on Lblob as well as the scaling of DNA extension when
slit height is a few times the persistence length. Indeed,
the best power law fit to the in-plane extension in the de
Gennes regime [11] yields an exponent of −0.249±0.010,
as shown in the inset of Fig. 2 (also see supplemental
material). This exponent is very close to −1/4 predicted
by the classic blob theory.
While the modified pair correlation function in Eq. (6)

has minimal impact on the scaling for the size of the con-
fined chain, it has a much stronger impact on the diffu-
sivity because Ω(r) ∼ r−1 in Eq. (2), which dramatically
enhances the importance of the short-scale property of
h(r). Substituting Eq. (6) into Eq. (2), the diffusivity
becomes

D = D1 +D2 −D3, (9)

where

D2 ≈ 2ln(Lp/a)D0 (10)

D3 = c2(Lp/w)
1/3D0. (11)

The terms D2 and (D1 −D3) correspond to the integral
over the intervals [0, Lp/2] and [Lp/2, H/2] in Eq. (2),
respectively. In Eq. (10), a is the hydrodynamic radius of
the chain. In computing D2, we regularized the integral
to remove the singularity (see supplemental material).
Equation (10) approximately corresponds to the diffusiv-
ity of a randomly oriented rod with the length of Lp and
the radius of a [20–22]. Owing to the sharp cross-over
between forms of h(r) in Eq. (6), it would be inappro-
priate to regard c2 as a universal prefactor. Rather, we
would expect that c2 will have a slight dependence on the
ratio Lp/w that arises from the details of the crossover
from rod-like correlations to real chain correlations over
the length scale of the slit.
Our results so far already start to explain the deviation

between experiments and classic blob theory. Equation
(9) differs from Eq. (4) by two additional terms D2 and
−D3. Note that (D2 −D3) is positive and independent
of H, i.e. the scaling exponent is zero. The mixture of

10
1

10
2

10
310

0

10
1

10
2

H (nm)

D
 / 

D
0

 

 

0.5

Simulation: L
p
=50nm, w=5nm, L=8µm

Classic blob theory: Eq (4)
Modified theory: Eq (9)

FIG. 3. (Color online) Normalized DNA diffusivity as a func-
tion of slit height. The filled circles are located in 2Lp <
H < Rg,bulk. The fit value of the prefactor c2 in Eq. (9) is
1.68. For the parameters used in our simulations, the corre-
lation time for the Kirkwood diffusivity is around 106 steps
(see supplemental material). The statistical errors are less
than the symbol sizes.

two scaling exponents: D1 ∼ H2/3 and (D2 − D3) ∼
H0 results in an apparent exponent less than 2/3. This
finding qualitatively agrees with experimental results [8,
10, 12–14].

To obtain the quantitative results seen in Fig. 1, we
need to provide values for the hydrodynamic radius a
appearing in Eq. (10) and the prefactor c2 appearing in
Eqs. (4) and (11). We first set a = 1.25 nm, which was
determined from sedimentation data by Yamakawa and
Fujii [21]. To obtain c2, we fit the prediction of our theory
to the diffusion coefficient obtained from Monte Carlo
sampling of

Dsim =
kBT

N2
b

Nb∑
i,j

[
δij

6πηasim
I+Ωslit(rij)

]
, (12)

following the approach used in previous work [19, 23].
The first term is the Stokes friction on each bead, which
includes a parameter asim. Since the simulation model is
discrete, the hydrodynamic radius used in the simulations
should differ from the one used in a continuous model (see
supplemental material). For the touching bead model we
used here, the value asim = 1.38 nm leads to simulated
DNA diffusivities in free solution that match experimen-
tal data over a large range of DNA lengths [19, 24]. The
second term is the sum of the hydrodynamic interactions
between beads in the presence of slit walls, which is cal-
culated from the analytic solution of the Stokeslet in slits
[25] (see supplemental material).

The normalized (dimensionless) diffusivities calculated
from simulations are shown in Fig. 3. The best power-
law fit to the simulation data points in the region 2Lp <
H < Rg,bulk (blue filled circles) yields an apparent scaling
exponent of 0.523. This exponent is close to most experi-



4

ments [8, 10, 12], but less than the value 2/3 predicted by
classic blob theory (dashed black line). The solid (red)
line is calculated from Eq. (9) using the best fit to the
filled (blue) circles, giving a value of the prefactor c2 =
1.68 and in very good agreement with the simulations.
Our theory is only valid for the de Gennes regime. In

thin slits with H < Lp, the angled averaged free-solution
Oseen tensor is no longer a good approximation in Eq.
(2) as hydrodynamics will become partially screened near
the channel boundaries. Furthermore, in thin slits, chain
segments tend to align with slit walls, and this align-
ment also affects hydrodynamic interactions. As H in-
creases, Eq. (9) approaches the diffusivity scaling of clas-
sic blob theory, indicating a vanishing contribution of
sub-persistence length conformations to overall diffusiv-
ity for large slit heights. The simulation data for our 8
µm chain, naturally, follow neither our modified theory
or blob theory after the slit height passes one mum in
size because the chain diffusivity is transitioning to its
bulk value. Also, note that the diffusivity is normalized
with the Rouse diffusion coefficient, so the dimensionless
diffusivity in an infinitely wide slit is not unity.
We are now in a position to compare our theoretical

predictions with experimental results by Balducci et al.
[8], as shown in Fig. 1. The parameters used for the
theoretical predictions follow the experimental condition:
T = 22.5◦C, η = 1.1 cp, and L = 22 µm (YOYO-labelled
λ-DNA) or L = 11 µm (YOYO-labelled 1/2 λ-DNA).
Note that the DNA contour length is increased 38% by
YOYO labeling at a ratio of 1 dye/ 4 base pairs [26–29].
We set the effective chain width to w = 5 nm, which is
estimated by Balducci et al. [8]. The persistence length
is set to 50 nm [26, 30]. Using these parameters, Eq. (9)
agrees with the experimental results in moderate con-
finement in Fig. 1 with no adjustment of the the prefac-
tor c2 = 1.68, which was obtained from the independent
comparison to simulations.
Classic blob theory only gives the asymptotic behav-

ior for the diffusivity scaling, as demonstrated by the
dashed and solid lines in Fig. 3. We will now estimate
at what slit height and contour length the scaling of dif-
fusivity becomes sufficiently close to the de Gennes scal-
ing of 2/3. We define the apparent scaling exponent as
the slope of D-H curve in the log-log plot. The rela-
tive deviation of the slope from the de Gennes scaling
ϵ ≡ (2/3− slope)/(2/3) can be determined from Eq. (9).
For a given value of ϵ, the corresponding slit height is the
solution of D1 = (1 − ϵ)D for H. Picking a 5% error, ϵ
= 0.05, yields H = 4.3 µm. Using Eq. (8), the value of

Lblob is approximately 100 µm. If we assume that the ap-
plication of blob theory requires at least five blobs, then
the minimum contour length of DNA is about 500 µm (∼
1100 kbp) to observe an exponent close to the de Gennes
scaling for diffusivity. This value is one order of mag-
nitude greater than the contour length of DNA used in
previous experiments [8, 10, 12–14]. As a result, interpre-
tation of DNA dynamics in microfluidic and nanofluidic
devices nearly always requires modification of classic blob
theory.

In addition to resolving the longstanding mystery re-
garding observed scalings of DNA diffusivity in confine-
ment, this work deepens our fundamental understanding
of statics and dynamics of confined semiflexible chains.
The scaling behaviors in confinement have been tradi-
tionally interpreted using de Gennes’ blob theory. It is
very intriguing that this classic theory works well for stat-
ics (thermodynamics), but not for dynamics (hydrody-
namics). Our analysis gives a straightforward explana-
tion related to a correction to the pair correlation at short
length scales. Dynamics are sensitive to short length
scale chain statistics due to the 1/(distance) scaling of
the hydrodynamic interaction tensor which weights the
interactions. However, statics lack this nonlinear weight-
ing and hence are more forgiving to slight modifications
of short length scale pair correlations. Looking forward,
we expect that similar arguments may be applied to re-
solve the difference in diffusivity scaling exponents be-
tween blob theory (ν=2/3) and simulation [19, 23, 31]
(ν < 2/3) in square-channel (“tubes”) confinement. Fur-
thermore, other dynamical properties, e.g. the relaxation
time, are also expected to deviate from the classic blob
theory.

In conclusion, we find that the classic blob theory
should be modified to include the short-scale pair cor-
relation when applied to the dynamics of semiflexible
polymers in confinement. Via modification of the sub-
persistence pair correlation, we have reconciled DNA ex-
periments and simulation results with blob theory of
polymers in slitlike confinement. This modification is
necessary to interpret confined semiflexible polymer dy-
namics.
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FIG. S1. (Color online) A schematic for the analytic solution of Stokeslet in a slit (side view).

Reproduced from [1]. The two thick lines represent the two slit walls. A point unit force is applied

at the position of red dot. We solve the velocity at the point of P(x, y, z). The open circles are

the images of red dot.

I. THE EFFECT OF SLIT WALLS ON HYDRODYNAMIC INTERACTION

This section is to describe the method of calculating the hydrodynamic interaction

Ωslit(ri, rj) in Eq. (12). The physical meaning of Ωslit(ri, rj) is the velocity at the point

rj induced by a unit point force at the point ri in a slit. We use Uk
j to represent the (k,j)

component of Ωslit(ri, rj), which corresponds to the velocity in j-direction induced by a unit

point force in k-direction in slit. We calculate Uk
j using the analytic solution of the Stokes

flow for a stokeslet between two parallel flat plates [1]. Figure S1 shows the schematic for

the analytic solution. The analytic solution is obtained by image technique and considering

the no-slip condition on the two plates. The red dot is the position of the applied force, and

the open circles are the images of the red dot assuming the two slit walls are two mirrors.

We calculate the velocity at the point of P(x, y, z). The value of Uk
j depends on the slit

height H, the height h of the point ri, and the relative position of two points r = rj − ri.

So we write Uk
j as Uk

j (H, h, x, y, z). The expression of Uk
j is shown by the below equations.

We only show the equations when k and j correspond to X− or Y− direction, because

Z−direction components of Uk
j is not relevant to the in-plane diffusivity.

2



Uk
j (H, h, x, y, z) = uk

j + vkj + wk
j , (S1)

uk
j =

1

8πη

(
1

r0
δjk −

r0jr0k
r30

)
, (S2)

vkj =
1

8πη

∞∑
n=−∞,̸=0

[(
1

r0
− 1

R0

)
δjk +

rnjrnk
r3n

− RnjRnk

R3
n

]
, (S3)

wk
j = − 1

4πη

∂

∂rk

rj√
x2 + y2

∫ ∞

0

ξJ1

(
ξ
√
x2 + y2

)
A1(ξ)dξ, (S4)

where

rn = (rn1, rn2, rn3) = (x, y, z − h+ 2nH), (S5)

Rn = (Rn1, Rn2, Rn3) = (x, y, z + h+ 2nH), (S6)

k = x, y ; j = x, y ; n = 0,±1,±2, ... (S7)

A1(ξ) =
[
sinh2ξH − (ξH)2

]−1
(T1 + T2 + T3 − T4), (S8)

with

T1 = ξhHzsinhξ(H − z)sinhξ(H − h), (S9)

T2 = z [hsinhξHcoshξ(H − z − h)−Hsinhξhcoshξz] , (S10)

T3 = ξHzsinhξHcoshξ(H − z)
d

dξ

sinhξ(H − h)

sinhξH
, (S11)

T4 = Hsinhξz

[
sinhξH

d

dξ

sinhξh

sinhξH
+ ξH

d

dξ

sinhξ(H − h)

sinhξH

]
. (S12)

In Eq. (S1), the total velocity consists of three parts. The first part uk
j is the stokeslet in

free solution for the red dot in Fig. S1. The second part vkj is the Stokeslet for the open

circles in Fig. S1. The sum of the first and the second parts satisfies the no-slip condition

in X- and Y- directions. The third part wk
j is included to satisfy the no-slip condition in Z-

direction. In Eq. (S4), J1(x) is the Bessel function of the first kind.

Figure S2 shows the direction of flow field solved using Eq. (S1) when h = z = H/2. The

pattern of flow field is similar for other values of h and z. The direction of flow turns back

at the both sides (top and bottom) of the applied force.

When the in-plane distance is much larger than slit height, i.e.
√

x2 + y2 ≫ H, the

velocity can be approximated as

Uk
j = − 3z

2πη

h

H

(
1− z

H

)(
1− h

H

)
∂

∂rk

(
rj

x2 + y2

)
, (S13)
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FIG. S2. The in-plane flow field induced by a point force in a slit for the parameters h = z = H/2.

where r = (x, y, z). This far field approximation has been used in our calculation of diffu-

sivity when
√

x2 + y2 > 10H.

II. DNA DIFFUSIVITY CONTRIBUTED BY SHORT-SCALE HYDRODYNAMIC

INTERACTION

As shown by Eq. (6), we modify the pair correlation function on the sub-persistence length

scale. Substituting h(r) = 2 and Ω(r) = 1/(6πηr) into Eq. (2) will produce a singularity.

It is because the chain thickness is ignored in Ω(r) = 1/(6πηr). The thickness is crucial for

the integral near r = 0 in Eq. (2). Following the previous study of slender body theory [2],

we modify Ω(r) to be 1/(6πη
√
r2 + a2). Then, D2 in Eq. (10) is calculated as

D2 = 2asinh [Lp/(2a)]D0 ≈ 2ln(Lp/a)D0 (S14)

The function asinh(x) approaches ln(2x) very quickly. For example, asinh(x)/ln(2x) = 1.27,

1.04 or 1.01, when x = 1, 2 or 3.
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FIG. S3. The ratio of two diffusivities calculated from Eqs. (S15) and (S16) when a = 1.25 nm, w

= 5 nm, Nb = 11 and L = 50 nm.

III. EFFECT OF CHAIN DISCRETIZATION ON THE CALCULATION OF DIF-

FUSIVITY

The simulations use a touching bead model that introduces some discretization errors. In

order to match the simulations to the diffusivity of a continuous chain with hydrodynamic

radius a, we need to select a somewhat larger hydrodynamic radius asim in the simulations.

For example, consider the role of discretization in a touching bead model containing one

persistence length (Nb = 11 beads of size w = 5 nm) arranged on a straight line. The

corresponding diffusion coefficient from the simulation is

Drod
sim =

kBT

6πηNbw

[
w

asim
+

1

Nb

Nb∑
i,j=1,i̸=j

1

|i− j|

]
. (S15)

On the other hand, the diffusion coefficient for a continuous rod is derived as

Drod
real =

kBT

6πηL2

∫ L

0

dx1

∫ L

0

dx2
1√

(x1 − x2)2 + a2

=
kBT

6πηL

[
2 asinh

(
L

a

)
− 2

(√
1 +

( a
L

)2
− a

L

)]
,

(S16)

following the approach by Yamakawa and Fujii [3]. In this example problem, we would want

to pick asim such that the diffusion predicted by the discrete model in Eq. (S15) agrees with

the continuous result in Eq. (S16). As we see in Fig. S3, these models agree with asim = 1.434

nm.
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FIG. S4. (Color online) The normalized in-plane radius of gyration as a function of slit height.

The filled circles are located in 2Lp < H < Rg,bulk/2 according to the previous study [5]. The

dashed line is the best power law fit to filled circles. The parameters in simulations are Lp = 50

nm, L = 8 µm and w = 5 nm.

Our simulations do not correspond to the rod-like toy model, but rather use real wormlike

chains with excluded volume interactions. For the simulations, we use the value asim = 1.38

nm, which was determined by Tree et al. [4] to match the DNA diffusivities in free solution

produced by this simulation model to experimental data over a range of DNA lengths.

IV. SCALING OF DNA EXTENSION IN SLITS

Figure S4 shows the normalized in-plane radius of gyration as a function of slit height.

According to the previous study [5], we fit the data points in 2Lp < H < Rg,bulk/2. The

best power law fit yields an exponent of 0.249, which is very close to −1/4 predicted by the

classic blob theory.

V. CORRELATION OF THE DIFFUSIVITY IN MONTE CARLO SIMULATION

For every DNA configuration during simulations, we calculate the diffusivity using Eq.

(12) in the main article. The diffusivity loses correlation after a certain simulation steps.

We calculate the self-correlation of diffusivity as a function of simulation steps, as shown in

Fig. S5. The correlation times are around 106 steps. Our simulation is about 103 times of
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FIG. S5. (Color online) Self-correlation of diffusivity as a function of simulation steps. The

parameters in simulations are Lp = 50 nm, L = 8 µm and w = 5 nm.

the correlation time, and the statistical errors are less than the symbols in all figures.
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