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Using a mapping between a Rouse dumbbell model and fine-grained Monte Carlo sim-

ulations, we have computed the relaxation time of λ-DNA in a high ionic strength

buffer confined in a nanochannel. The relaxation time thus obtained agrees quanti-

tatively with experimental data (Reisner et al., Phys. Rev. Lett. 2005, 94, 196101)

using only a single O(1) fitting parameter to account for the uncertainty in model

parameters. In addition to validating our mapping, this agreement supports our pre-

vious estimates of the friction coefficient of DNA confined in a nanochannel (Tree et

al., Phys. Rev. Lett. 2012, 108, 228105), which have been difficult to validate due to

the lack of direct experimental data. Furthermore, the model calculation shows that

as the channel size passes below approximately 100 nm (or roughly the Kuhn length

of DNA) there is a dramatic drop in the relaxation time. Inasmuch as the chain

friction rises with decreasing channel size, the reduction in the relaxation time can

be solely attributed to the sharp decline in the fluctuations of the chain extension.

Practically, the low variance in the observed DNA extension in such small channels

has important implications for genome mapping.
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I. INTRODUCTION

The extension of a long DNA molecule confined in a nanochannel has attracted tremen-

dous attention1–4 in large part because it couples a fundamental polymer physics problem to

an important application in genomics, namely DNA barcoding5–9. The theoretical basis for

the equilibrium extension of DNA in a nanochannel has been addressed to varying degrees of

accuracy by theory and simulation for strong5,10–18, moderate17,19–32 and relatively weak33–36

confinement, leading to the reconciliation26,30 between early experimental observations37 and

the predictions of the classic theories from Odijk10 and de Gennes33. Due to both the paucity

of dynamic data in strong confinement and the computational difficulty of simulating the

dynamics of long chains, there is little work validating the computational predictions of con-

fined DNA dynamics in nanochannels with hydrodynamic interactions38. We show here that

the confined wormlike chain model used to model DNA extension can explain experimental

results37,39 for the relaxation time of a long DNA molecule in a nanochannel. Furthermore,

our simulations highlight a previously overlooked strong reduction in the relaxation time

as the channel size is reduced below the Kuhn length of the DNA, which has practical

implications for the practice of DNA barcoding7.

It is not trivial to compute the relaxation time of a long polymer in confinement. In

addition to obvious challenges in computing the hydrodynamics of confined polymers40, one

of the major challenges in modeling DNA in a nanochannel is selecting a model that can

accommodate the large separation of length and time scales. Explicitly, the effective width

of the polymer backbone, w, is small compared to the persistence length, lp, which itself is

small compared to the contour length, L, of the chain. The nanochannel width introduces

a fourth length scale, D, with the ratio D/lp determining the strength of the confinement.

In very weak confinement (D � lp) it is possible to use a coarse-grained, bead-spring

model34 parameterized to match experimental data41,42. However, this model cannot resolve

DNA deformation when the confinement length scale approaches the undeformed size of one

(Gaussian) “spring” of DNA. A natural solution to the resolution problem is to use a fine-

scale model, such as the wormlike osculating-sphere model (WOSM)30,38,43,44, where the DNA

is modeled by a string of beads of size w interacting via a discrete wormlike chain bending

potential11 and hard core excluded volume. This model can easily capture confinement down

to the strong confinement regime (D � lp), provided that we simultaneously ensure that the
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FIG. 1. Relaxation time (purple diamonds) obtained from Eq. 5 with c = 1.2 and the WOSM

compared to the experimental data of Reisner et al.37 (black triangles).

bond length, which is the bead size w for the WOSM, is small compared to the channel size

to avoid discretization artifacts30. These are not the only two model options; for example,

the discrete stretchable, shearable wormlike chain model45 represents an attractive choice,

but the dynamical implementation of this model for complicated problems remains a work

in progress. There are other options for simulating confined polymers that are well suited

to examining scaling laws, such as the bond fluctuation method46, but these models are

challenging to connect quantitatively to the experimental parameters.

For double-stranded DNA in nanochannels in a high ionic strength buffer, it is now ac-

cepted that most experiments are carried out in the crossover regime between the classical de

Gennes regime33 (suitable for l2p/w < D < Rg
21,26, where Rg is polymer’s radius of gyration

in free solution) and Odijk regime10 (suitable for D � lp). These circumstances necessitate

a fine-scale representation such as the WOSM. However, a typical molecule such as λ-DNA

(48,500 base pairs) requires simulation of several thousand beads and the longer molecules

used for genomic mapping7 require tens of thousands of beads. Dynamic simulations become

extremely expensive with high spatial discretization and large molecular weights, even with

fast implicit solvent methods for the hydrodynamic interactions in confinement40.

Fortunately, it is possible to arrive at a reasonable estimate for the polymer relaxation

time, τ , by mapping the chain dynamics to a one-dimensional, overdamped, Rouse dumbbell

model with a finite but non-zero equilibrium extension47,48. In the present contribution, we

show how the Monte Carlo methods used in our previous work to compute the extension26,30
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and the hydrodynamic mobility38 can be used to parameterize such a dumbbell model. The

ultimate result of our analysis is seen in Fig. 1, which compares our computational predic-

tions to the seminal experiments of Reisner et al.37. The agreement between our approach

and the experimental results shown in Fig. 1 lend confidence to our use of the WOSM,

the Kirkwood approximation employed to obtain the friction, and the assumptions made

in mapping the model to an overdamped, Rouse dumbbell. Furthermore, this agreement

provides a basis for considering the WOSM model in the engineering of nanochannel devices

for genomic mapping. However, there are certainly limitations to the computational model

and gaps in our understanding of the underlying physics, which are discussed in conjunction

with our modeling results.

II. METHODS

A. Dumbbell Model and Mapping

We begin by recalling the physics required to map the chain dynamics to a one-

dimensional, overdamped, Rouse dumbbell model with a finite equilibrium extension47,48.

In this model, the autocorrelation function C(t) of the fluctuation about the mean extension

〈X〉 is given by49

C(t) = 〈δX(0)δX(t)〉 = 〈δ2
X〉 exp(−t/τ) (1)

where

δX(t) ≡ X(t)− 〈X〉 (2)

is the deviation from the mean extension and

τ =
ζ

2keff

(3)

is the relaxation time. Two important terms appear in Eq. 3: ζ, the friction coefficient of

each of the two beads comprising the dumbbell and keff , the spring constant of the Hookean

spring between them47,48.

To map between the two models, both the friction coefficient, ζ, and the effective spring

constant, keff , of the dumbbell model must be defined in terms of the wormlike chain model.

Since the dumbbell model has no hydrodynamic interactions, the friction of the center-of-

mass of the dumbbell is simply equal to 2ζ. Equating the center-of-mass friction of the
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WOSM to that of the dumbbell defines ζ and provides the first part of the map. Per

this definition, the dumbbell friction is independent of conformation fluctuations. This is

appropriate, since the friction coefficient obtained from the WOSM employs a rigid-body

approximation50,51 similar to the mean field pre-averaging approximation used in the Zimm

model47. Accordingly, we focus on the case when the conformation is unperturbed by ex-

ternal forces (other than confinement). This means the relaxation time obtained by this

method is only valid for the fluctuations of the polymer about its equilibrium conformation.

We thus do not consider the possibility of a second relaxation time related to non-equilibrium

stretching52.

The spring constant of the Rouse dumbbell is obtained from the equipartition theorem,

which gives

keff =
kBT

〈δ2
X〉

(4)

where kB is Boltzmann’s constant, T is the absolute temperature and 〈δ2
X〉 is the variance in

the extension of the spring. Since the spring is harmonic, the probability density function of

the extension in the dumbbell model is Gaussian47, and is therefore completely described by

the mean span, 〈X〉, and variance 〈δ2
X〉. Subsequently, the first two moments of the extension

distribution function in the WOSM are used to define the dumbbell harmonic spring and are

thus sufficient to define the effective spring constant. This implies that the spring constant

mapping is only valid insofar as the extension distribution function is well described by its

first two moments. This certainly breaks down for extensions near the maximum contour

length and cases where the extension distribution is complicated or multi-modal as might

exist in the presence of backfolded states in tight confinement17,20,29. Note that for the chain

extension we chose to work in terms of the span, X53, rather than the end-to-end distance,

since the former is the experimentally relevant metric.

In the light of this mapping, it proves convenient to recast Eq. 3 in terms of the quantities

obtainable from the simulation of the WOSM. With this change of variables, the relaxation

time becomes
τ

τR

=
c

4

〈δ2
X〉
Llp

2ζ

ηL
(5)

where

τR ≡
ηL2lp
kBT

(6)

is the Rouse relaxation time for an ideal chain without the prefactor54,55. In Eq. 5, we
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included a prefactor c as an O(1) fitting parameter that we will use in the subsequent

analysis. Note that c = 4/π2 would be an appropriate choice resulting from matching the

center of mass diffusivity of a Rouse chain to a dumbbell model49.

While a simple dumbbell model may seem like a very crude approximation, a single

exponential decay of C(t) is consistent with experimental findings3,37. Furthermore, we do

not construct the dumbbell arbitrarily; instead, it is parameterized to match equilibrium

properties determined from Monte Carlo sampling of the fine-scale WOSM. This strategy

gives nearly quantitative agreement between the simulation results and experimental data

for the relaxation time with a single O(1) fitting parameter to account for the uncertainty

in the various physical parameters appearing in the detailed model.

B. Monte Carlo Simulations

To parameterize the dumbbell model, we employ the aforementioned WOSM in a square

nanochannel of size D as described in our previous publications30,38,56. To compute equi-

librium chain properties, we used a standard Metropolis algorithm with reptation and

crankshaft moves26. To calculate the values of ζ and 〈δ2
X〉 which we desire, we require a

fully parameterized WOSM, which includes an effective width, w, a persistence length, lp,

a contour length, L, and a hydrodynamic radius, a56. As the aim of our simulations is

ultimately a comparison with the experimental relaxation time data from Reisner et al.37,

we examine λ-DNA in channel sizes between 30 nm and 450 nm. We approximate the dyed

contour length of λ-DNA as L = 18.63 µm, as suggested by these authors37, which is within

the sizes we can compute using the standard Metropolis algorithm30,38.

In addition to the channel size and contour length, the model requires specifying the

persistence length, which parameterizes the bending energy, and an effective width of the

DNA, which parameterizes both the hard core, intrachain excluded volume interactions and

the hardcore interactions with the channel walls. Note that in the WOSM the discretization

length equals the effective width making the total contour length equal to the number of

beads times the effective width. While there is widespread agreement that the persistence

length of double-stranded DNA in a high ionic strength buffer is approximately 50 nm57,

there is less consensus surrounding the effective width.

In our previous work26, we suggested treating the effective width as a free parameter to fit
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1FIG. 2. (a) Fractional extension of DNA in a square nanochannel of size D from Monte Carlo

simulations (red circles) and from Reisner et al.37 (black triangles). Error bars for the simulation

data are the standard error, and when not explicitly shown, the error is of order of the symbol size.

Simulation parameters: lp = 50 nm, w = 10 nm, L = 18.63 µm (i.e. 1863 spheres). The same set

of parameters is used throughout this work. (b) Same data plotted in dimensionless log-log form.

The solid blue line is the prediction for the Odijk regime10 with no free parameters14. The dashed

line is the predicted slope for the proposed Gauss-de Gennes regime30, and the solid green line is

the scaling D1−1/ν with ν = 0.5876.

the simulation data for 〈X〉 to experimental data, provided that the end result is reasonably

close to the prediction from Stigter’s theory for short, rod-like DNA58. (For high ionic

strengths, Stigter’s theory58 predicts w ≈ 5 nm.) In our initial foray into this problem,26 we

concluded that an effective width between 4.6 nm and 12 nm seemed reasonable, with w = 7

nm being the best fit for the experimental extension data37 after trying to collapse it with de

Gennes scaling. Given the uncertainty in the exact value of the effective width, especially the

difference between DNA-DNA interactions and DNA-wall interactions, we decided to take a

simple, approximate approach in our work here. We set the effective width to be w = 10 nm

and combine this with an estimate of the persistence length with a single significant digit as

well, lp = 50 nm. These are reasonable order-of-magnitude estimates for both parameters,

and we conjecture that the adjustable parameter c in Eq. 5 will ultimately allow us to correct

for the uncertainty.

Figure 2(a) shows the WOSM mean span versus channel size compared to the exper-
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imental data of Reisner et al.37, which justifies our supposition regarding the parameter

estimates. There is very good agreement between the model predictions and the experimen-

tal data for large channel sizes, where we observe de Gennes scaling and expect excluded

volume to play a significant role30. However, for small channels, the WOSM values deviate

significantly from the experimental data, suggesting that as the channel size approaches the

effective width, hardcore interactions between the polymer and channel become increasingly

inadequate to describe the real system. We should also point out that the experimental

data were obtained in rectangular channels37, and there is a small correction for the channel

aspect ratio26 that is not incorporated into our analysis.

Figure 2(b) shows that the extension results are also consistent with the scaling produced

by prior simulation work. In the region D/lp ∼ 1, we observe a slope D−1 that is consistent

with extant simulation data by multiple groups23,24,26,30 and the existence of a Gauss-de

Gennes regime30. For the larger channel sizes, the scaling for the extension switches to

D1−1/ν with ν = 0.5877. The latter result is consistent with either a de Gennes regime33 or

an extended de Gennes regime19,26.

In addition to equilibrium values, we are interested in the chain friction, ζ, which is

determined by a rigid-body approximation to the diffusivity43,59. Specifically, similar to

our previous work38, the chain conformations used to obtain Fig. 2 are combined with

a numerically determined confined hydrodynamics tensor34. The confined hydrodynamic

tensor leaves a degree of freedom for the bead hydrodynamic radius, a. Our recent analysis

of the free solution diffusivity of DNA56 indicates that for a touching hydrodynamic bead

model, a value of a = 3 nm gives a good approximation of the diffusivity. We use this value,

noting that the WOSM model does not have touching hydrodynamic beads, which introduces

some error. Doing so, we again anticipate that the value of c in Eq. 5 will compensate for

the error introduced here.

Before proceeding, we should also justify the need for the new Monte Carlo simulations

presented here in the light of our previous work. In principle, we could use our existing

simulation data for short chains26,30,38 and then extrapolate to λ-DNA using scaling laws.

However, since these scaling laws are implicitly one of the things we are trying to evaluate,

such an approach seems questionable. The new calculations we used here are intended to

provide data at the molecular weight of λ-DNA and cover the full range of channel sizes

used in experiments37. We thus expect the trends in the mean span26,30 and hydrodynamic
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mobility30 as a function of confinement to be identical to our prior results, even if the

quantitative values may differ slightly. For instance, the parameters used in Fig. 2 correspond

to a monomer anisotropy ε ≡ w/lp = 0.2. In our recent work on the Gauss-de Gennes

regime30, we pointed out that the Gauss-de Gennes scaling 〈X〉 ∼ D−1 results from the

stiffness of the chain, much in the way that the range of molecular weights that exhibit ideal

chain scaling for the free solution radius of gyration increases with monomer anisotropy.

Using scaling arguments, we showed that the range of channel sizes in the Gauss-de Gennes

regime increases with increasing monomer anisotropy, and that this regime should disappear

entirely in the limit of a freely jointed chain. The relatively flexible chain model used here

suppresses the extent of the Gauss-de Gennes scaling 〈X〉 ∼ D−1, which is reflected in the

data in Fig. 2.

Additionally, we have also computed new results for the variance in the extension (span)

of the chain, a parameter appearing in the dumbbell model, and (in Section III B) we

confirm that the span distributions are reasonably Gaussian, which is an assumption in

the dumbbell model. The variance of the span has yet to be systematically studied as a

function of confinement and monomer anisotropy, although there are some intriguing new

results supporting the existence of an extended de Gennes regime32. In fact, all of the

physical quantities required to arrive at the relaxation time (average extension, variance in

the extension, and the hydrodynamic mobility) depend on the extent of confinement and

the physical properties of DNA, and a complete understanding of these relationships has

yet to be achieved3. Thus, while there are deep scientific insights to be mined by exploring

these dependencies in detail, for this work we keep our focus very practical — we simply

want to show that models and methodologies now exist to determine the relaxation time of

channel-confined DNA, and carefully assess the limitations of this approach.

III. RESULTS AND DISCUSSION

A. Computing the relaxation time

Figure 3 shows Metropolis Monte Carlo results for the variance in the extension, 〈δ2
X〉,

and the chain friction, ζ, as a function of channel size for λ-DNA. The friction and mean

span fluctuations in Fig. 3 along with the parameters necessary to define τR provide the
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FIG. 3. Normalized chain friction (left panel, orange triangles) and normalized fluctuations in the

mean span (right panel, blue squares) of the WOSM as a function of channel size.

necessary data to compute the relaxation time via Eq. 5. Using the aforementioned contour

and persistence lengths and assuming a viscosity of 1 cP and a temperature of 298 K gives

τR ≈ 4.2 s. Combining these results with the choice c = 1.2 gives the relaxation times shown

in Fig. 1, which are compared to the experimental data reported by Reisner et al.37.

The friction coefficient appearing in Fig. 3 behaves as expected, given previous computa-

tional results for the mobility of semiflexible chains in confinement38. In weak confinement,

the friction slowly increases as the channel size decreases, consistent with a blob theory. In

strong confinement, the friction diverges logarithmically, consistent with a lubrication model

for the relative motion of concentric cylinders. From this we conclude that these previously

observed38 trends are robust to the molecular weight, persistence length and effective width

used here.

The variance, on the other hand, shows more interesting behavior. The data show a small,

gradual increase in the variance as the channel size decreases until the channel size is around

the Kuhn length of DNA (100 nm). Although we are focusing primarily on the approach

required to produce Fig. 1, it is worthwhile to make a brief diversion here to discuss the

relatively flat response of the channel fluctuations for D > 100 nm. In a recent publication,

Dai and Doyle32 proposed that the fluctuations in the chain extension are given by

〈δX2〉 ∼= NblobR
2
blob (7)

where Nblob is the number of blobs and Rblob is the size of the blob. The ideas behind this

equation are that (i) the fluctuation of each blob is independent of the other blobs and (ii)
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the influence of confinement inside a blob is negligible. Their analysis then suggests that

the fluctuations in the extended de Gennes regime19 should have the scaling32

〈δX2〉 ∼= Llp (8)

which agrees with the result obtained from Flory theory26 for the extended de Gennes regime.

Interestingly, this logic also leads to the same scaling for the Gauss-de Gennes regime30 if

blob theory is indeed valid there. In the latter regime, the blob size is the channel size,

Rblob
∼= D (9)

The blobs are assumed to exhibit ideal chain statistics22,30,33,60

Lsublp ∼= D2 (10)

where Lsub is the contour length of the subchain inside a blob. The total number of blobs

is then

Nblob =
L

Lsub

∼= Llp
D2

(11)

Using Eq. 9 and Eq. 11 in Eq. 7 yields the same scaling for the extension fluctuations in the

extended de Gennes regime (Eq. 8) and the Gauss-de Gennes regime.

Regardless of the specifics of the regime, the lack of dependence of the variance on

the relaxation time means that, in moderate confinement, the relaxation time is especially

sensitive to the friction coefficient. As a result, the qualitative agreement between the

calculated and experimental relaxation times appearing in Fig. 1 provides evidence that, in

moderate confinement, the rigid-body assumptions used to obtain the friction coefficient are

adequate. While this evidence is not as strong as a direct experimental measurement of the

chain friction coefficient, it is still a significant result given the difficulty in obtaining both

experimental and computational data for the dynamics of moderately confined semiflexible

chains.

As the channel size is decreased further and falls below the Kuhn length, the variance

quickly drops, presumably due to the loss of the degrees of freedom associated with short

length-scale backfolds along the chain contour10,13,14,17,29. As stated above, unlike the vari-

ance in the extension, the friction diverges as the channel size decreases. Thus for strong

confinement, the variance in the mean span dominates the relaxation time.
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Since the two curves present in Fig. 3 are directly combined to give the relaxation time in

Fig. 1, we can assess the effect of both the friction and the variance in the extension on the

relaxation time. We turn our attention back to Fig. 1 to do so. Note that the overall shape

of the calculated and experimental relaxation time curves in Fig. 1 are similar, including the

presence of a maximum in the relaxation time near the Kuhn length. Given our assessment

of Fig. 3, we postulate that this maximum results from a tradeoff of increasing friction and

decreasing variance as the channel size decreases.

B. Model Assumptions, Limitations and Criticism

Having presented the evidence supporting our modeling approach, we now provide some

critical analysis of our assumptions and method. As mentioned, in order to map the detailed

WOSM to the one-dimensional dumbbell model, we assumed that small fluctuations about

the equilibrium extension were approximately Gaussian. Accordingly, we need information

on the probability density function, ψ(X), of the span of the detailed model. Naturally,

ψ(X) cannot be exactly Gaussian due to finite extensibility (i.e. X can not exceed L44) and

hairpin states may cause the distribution to be distinctly non-Gaussian20,29. To avoid any

complication due to global hairpins20, we initialized all of our Monte Carlo runs in extended

states. Subsequently, while many backfolded states were realized in weak confinement, no

global hairpins were detected for D . lp. This observation is consistent with the hypothesis

that hairpin formation is a rare, slow event in Metropolis Monte Carlo simulations of DNA

in tight confinement29. However, with this method we are unable to determine if hairpins are

in fact absent from the equilibrium ensemble, or if the simulation is incapable of reaching

the time scale necessary to observe such configurations. Regardless, it seems likely that

experimental measures of the relaxation time also neglect hairpins, since they are easily

observed2,27,37,61,62.

Figure 4(a) shows the resulting probability density functions, ψ(X), obtained from the

configurations of the WOSM, where the bulk of the probability density is reasonably well

approximated as Gaussian for all channel sizes. Indeed, this approximation is further sup-

ported by the normal probability plots shown in Fig. 4(b), which show that no significant

deviation from Gaussian behavior occurs until ±2 standard deviations. Since the chain has

a finite extension, there must be deviations from Gaussian behavior in the tails of the nor-
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mal probability plots. Additionally, note that there is poorer sampling in the tails of the

distributions, leading to substantial noise in this region.

Perhaps the most uncertain part of our analysis is the estimation of the various parameters

lp, w, a and even L in the presence of the intercalating dye, which is the main reason why

we chose to include a fitting parameter in Eq. 5. Indeed, it seems that all attempts to

quantitatively compare simulations and theory to experimental data for DNA are impacted

by the absence of reliable measurements for these parameters for dyed DNA.28 We have

adopted the standard approach here, increasing the contour length by 20-30% while assuming

the persistence length is unchanged, inspired by the success of these parameters in models

for DNA electrophoresis63.

Given the number of approximations required to reduce an intractable dynamic simu-

lation problem to a feasible Monte Carlo calculation, the quantitative agreement in Fig. 1

is satisfying, especially since all of the uncertainty in the parameters and the assumptions

required for the methodology seem to be reducible to a single O(1) fitting constant. In par-

ticular, while the Kirkwood approximation is known to be accurate for weak confinement34,

there are no experimental data or dynamic simulation data to assess its accuracy in strong

confinement. A possible route to improving the quantitative agreement is to modify the
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WOSM so that the spheres correspond to the hydrodynamic diameter a rather than the

excluded width w, thereby improving the accuracy of the hydrodynamic calculations while

simultaneously reducing discretization artifacts in the smaller channels. However, the trade-

off is an increased number of beads required to reach a particular contour length L; the

requisite hydrodynamics calculations entail improvements in the methodology that are cur-

rently in development. We also recognize the need to develop a more sophisticated model

for the DNA-wall interactions in the Odijk regime, where the hardcore excluded volume is

probably insufficient.

IV. CONCLUSION

In the present contribution, we showed how a one-dimensional, overdamped, Rouse dumb-

bell model, parameterized from detailed Monte Carlo simulations, can reasonably reproduce

the relaxation time data observed in experiments37 using a single O(1) fitting parameter.

While there are a number of assumptions underlying our analysis, the final result in Fig. 1

suggests that our model is sufficient to capture the extant experimental data. There are

two obvious routes to test our approach. One option is to acquire experimental data under

the same experimental conditions, since our simulation results make a testable prediction

about the shape of the relaxation time curve. However, it seems likely that additional exper-

imental data points would not invalidate our result, especially in light of the experimental

uncertainties. A more promising avenue is to acquire experimental data for the relaxation

time at different ionic strengths, which will alter simultaneously the persistence length and

the effective width56,64,65. Inasmuch as we have already used our adjustable parameter in

Eq. 5, changing ionic strength would provide a stringent test of our approach. Naturally, we

would also need to recompute the data in Fig. 3 for the new values of lp and w, but this is

a straightforward computational task.

If additional experimental data ultimately point out a shortcoming in our result, it is

worthwhile to consider what might be the weakest link connecting the detailed Monte Carlo

simulations to the relaxation time. Based on Fig. 4, it would seem that the assumption of a

Gaussian spring for the fluctuations about the equilibrium extension is a possible source of

error. While the bulk of the probability distribution is captured by a Gaussian distribution,

the tails certainly cannot be Gaussian. Moreover, depending on the amount of weight in
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the tails, they may make a non-trivial (but still finite) contribution to the variance in the

extension. Fortunately, there is already a body of literature on polymer rheology using

dumbbell models with more sophisticated spring laws47. Moreover, one should be able to

construct an appropriate spring by comparing its thermal properties to the histograms in

Fig. 4. While any such model is certainly more complicated than the Gaussian model we

used here, the additional degrees of freedom in a more complicated spring law — along with

a finite extensibility — should improve the agreement with experimental data.

Moving beyond the methodology, our results suggest that a dramatic reduction in the

fluctuations of the span of the chain as the channel size drops below the Kuhn length of the

DNA, not the increased friction, are responsible for a qualitative change in the relaxation

time. This phenomenon is not just a scientific curiosity; it is critical to the success of state-

of-the-art DNA mapping in nanochannels. In the commercial method6,7, the DNA molecules

are decorated with sequence-specific probes and injected into an array of nanochannels. The

resulting massively parallel array of linearized molecules is imaged in a series of consecutive

scans. The extension fluctuations thus set the lower bound for the error in a single snapshot

of the extension between two barcodes. The most recently reported nanochannel mapping

device7 uses 45 nm × 45 nm channels, which are well below the 100 nm Kuhn length of

DNA. Our data suggest that these channel sizes suppress the variance in distance between

barcodes, thereby permitting a robust identification of the structural variations that are

critical to understanding genomic diversity7.
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