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The properties of channel-confined semiflexible polymers are determined by a compli-

cated interplay of chain stiffness and excluded volume effects. Using Pruned-Enriched

Rosenbluth Method (PERM) simulations, we study the equilibrium properties of

channel-confined polymers by systematically controlling chain stiffness and excluded

volume. Our calculations of chain extension and confinement free energy for freely

jointed chains with and without excluded volume show excellent agreement with the-

oretical predictions. For ideal wormlike chains, the extension is seen to crossover from

Odijk behavior in strong confinement to zero-stretching, bulk-like behavior in weak

confinement. In contrast, for self-avoiding wormlike chains, we always observe that

the linear scaling of the extension with the contour length is valid in the long-chain

limit irrespective of the regime of confinement, owing to the coexistence of stiffness

and excluded volume effects. We further propose that the long-chain limit for the

extension corresponds to chain lengths wherein the projection of the end-to-end dis-

tance along the axis of the channel is nearly equal to the mean span parallel to the

axis. For DNA in nanochannels, this limit was identified using PERM simulations

out to molecular weights of more than 1 megabase pairs; the molecular weight of

λ-DNA is found to exhibit nearly asymptotic fractional extension for channels sizes

used commonly in experiments.
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I. Introduction

A long polymer confined inside a narrow channel extends along the channel axis due

to constraints imposed by the walls.1,2. In weak confinement, where the channel size is

somewhat smaller than the polymer’s radius of gyration, de Gennes suggested that the

resulting chain configuration could be represented by a linearly ordered series of blobs,

where the subchain inside the blob obeys self-avoiding random walk statistics.1,3 Thus, the

de Gennes regime arises solely from excluded volume interactions. In strong confinement,

where the channel size is small compared to the persistence length of the chain, Odijk

proposed that the chain configuration is instead described by a series of deflection segments

that obey ideal wormlike chain statistics.4 In contrast to the de Gennes regime, the Odijk

regime produces chain extension even in the absence of excluded volume interactions due to

chain stiffness. When viewed in this light, it becomes clear that the Odijk and de Gennes

regimes are limiting cases for polymer extension corresponding to the dominance of either

chain stiffness or excluded volume.

Unfortunately, neither the Odijk theory nor the de Gennes theory appears to describe the

existing experimental data for DNA extension in a nanochannel.2,5–22 The apparent failure

of the classic de Gennes and Odijk theories, when applied to channel-confined DNA, lies

in the relative length scales characterizing the DNA experiments; the persistence length of

double-stranded DNA (lp ≈ 50 nm)23 is of the same order of magnitude as the channel sizes

used in experiments. As a result, the extension of DNA in nanochannel experiments results

from a competition between excluded volume effects and chain stiffness for all experimentally

relevant channel sizes and molecular weights. For this reason, we recently suggested that

it is useful to think of the transition from the Odijk regime to the de Gennes regime as

a rod-to-coil transition for the subchain used to renormalize the problem into a series of

deflection segments (the rods) or excluded volume de Gennes blobs (the coils).19 While the

details of the physics in the transition region remain a topic of debate, the existence of

at least one additional regime between the Odijk and de Gennes regimes now seems very

likely.11,13,17,19,24,25

In the present contribution, we explore this competition between excluded volume and

chain stiffness in considerably more detail than our recent letter.19 Our exposition is two-

fold. In the first part, we use Pruned-Enriched Rosenbluth method (PERM) simulations
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of a touching bead model to directly test the Odijk and de Gennes theories within the

limits of their underlying assumptions: for the Odijk regime, we consider an ideal wormlike

chain; for the de Gennes regime, we consider a self-avoiding, freely jointed chain. So long

as the assumptions of the theories are satisfied, we show that their predictions for the chain

extension and confinement free energy agree with the simulation data for sufficiently long

chains. We also show that our PERM calculations produce the undisputed results for the

confinement free energy and extension of an ideal, freely jointed chain. In the second part,

we compare the predictions of the chain extension for these idealized cases to the extension

of a self-avoiding wormlike chain in a nanochannel as a function of molecular weight and

channel size. Our simulations of real wormlike chains clearly produce the Odijk and de

Gennes regimes as the limiting cases. Analogous to DNA nanochannel experiments, much

of the phase space of our simulations is occupied by chains that satisfy neither theory.

We also show that the projection of the end-to-end distance of the confined chain along the

channel axis approaches its mean span in the long-chain limit, owing to the difficulty to form

hairpins (when stiffness dominates) or the weak penetration of the end of the chain into the

linearly ordered, self-avoiding blobs (when excluded volume dominates). We thus propose

that the “long-chain” limit corresponds to molecular weights where these two size metrics

are approximxately equal; data obtained outside of this limit is subject to artifacts due to

finite chain lengths. Remarkably, while recent simulations indicate that λ-DNA (48,500 base

pairs, bp) is well below the long-chain limit in free solution (∼ 1 Mbp),26 the amplification

of excluded volume effects in confinement2 lead to λ-DNA being a sufficiently long chain for

most nanochannel experiments measuring the extension.

II. Model and simulation method

A. Discrete wormlike chain model

Consider a wormlike chain of contour length L, persistence length lp and width w confined

in a square channel of size D as shown in Fig. 1(a). The length of the channel is much greater

than the contour length of the chain and hence there are no end-effects due to finite length

of the channel. For simplicity, we assume that the depletion length between the wall and

polymer due to excluded volume is w/2, which is not necessarily true in general. As a result,
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FIG. 1. (a) A WLC with contour length L, persistence length lp, and width w confined in a

square channel of size D. (b) Representation of the same chain in our DWLC model. After

discretization, the bond length a is set to the value of the width w.

the effective width of the channel accessible to the center of the chain is Deff = D − w.

To carry out the PERM simulations, we use an off-lattice, discrete wormlike chain (DWLC)

model.26,27. PERM simulations with lattice models have also been successfully used to an-

swer a wide variety of questions surrounding polymer confinement.28–31 However, these

models are known to introduce lattice artifacts, particularly where bending stiffness plays

a critical role in determining the properties of the polymer chain.31 Because our work de-

mands an accurate depiction of chain stiffness in the model, we sacrifice the computational

efficiency of a lattice model for the precision of an off-lattice model.

Our model is a touching-bead/necklace model of N + 1 beads connected by rigid bonds

of length a as shown in Fig. 1(b). Stiffness is imposed by a bending potential given by

βUbend = κ

N−1∑
i=1

(1− cos θi) (1)

between consecutive bonds. The parameter θi is the angle between bonds i and i + 1,

determined by cos θi = | (ri+2 − ri+1) · (ri+1 − ri) |/a2, where rk is the position vector of the
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kth bead. The quantity β = (kBT )
−1, where kB is the Boltzmann constant and T is the

absolute temperature. The bending constant κ is obtained by solving the equation

b

a
=

κ− 1 + κ cothκ

κ+ 1− κ cothκ
, (2)

where b = 2lp is the Kuhn length of the chain.26,32. Note that in the limit κ → 0, Eq. 2

reduces to the familiar result for a freely joined chain (FJC), b = a. The effect of self-

avoidance is incorporated by a hard sphere potential of the form

βUEV =

 ∞ if rij ≤ w,

0 otherwise,
(3)

where rij is the distance between the centers of the beads i and j, and w is the width of the

chain.

B. Variants of the DWLC model

In order to investigate the effects of stiffness and excluded volume on properties of confined

chains, we adopted a four-step approach in which we independently turned on/off stiffness

and excluded volume. Specifically we performed simulations for (i) ideal freely jointed

chains (IFJCs); (ii) real freely jointed chains (RFJCs); (iii) ideal wormlike chains (IWLCs)

and (iv) real wormlike chains (RWLCs), all confined in square channels of various sizes.

Since the words “ideal” and “real” appear in different contexts in various areas of polymer

physics,33–35 let us clarify what we mean by these terms. We use the word “ideal” to refer to

chains in which there are no excluded volume interactions between the beads. In contrast,

“real” refers to chains in which there exist repulsive interactions between non-neighboring

beads along the contour, as in a polymer dissolved in a good solvent.33 Thus, a given chain

is ideal in the limit w = 0, and is real for w > 0. Similarly, in the limit κ = 0, we recover a

freely jointed chain (FJC) from the DWLC model, and a wormlike chain (WLC) for κ > 0.

Note that the term “RFJC model” is somewhat of a misnomer, since one normally as-

sumes that there are no correlations between bond vectors along the contour in a freely

jointed chain model.33–35 The excluded volume interactions do introduce correlations be-

tween distal segments of the chain. However, we use the term RFJC to mean that the chain
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TABLE I: Presence or absence of stiffness and excluded volume in the four models
considered here.

Bending stiffness (κ) Excluded volume (w)

Ideal Freely Jointed Chain (IFJC) = 0 = 0

Real Freely Jointed Chain (RFJC) = 0 > 0

Ideal Wormlike Chain (IWLC) > 0 = 0

Real Wormlike Chain (RWLC) > 0 > 0

behaves like a FJC locally, as there is no bending stiffness between different beads of the

chain. Therefore, the four kinds of models considered in our work are all special cases of the

DWLC model for different values of κ and w. Table I summarizes the properties of the four

variants of the DWLC model used here.

C. Pruned-Enriched Rosenbluth Method (PERM) Simulation

As in our previous work,19,26 we use an off-lattice PERM algorithm to compute equilib-

rium properties of single polymer chains in confinement. PERM is a Monte Carlo chain-

growth algorithm that enables growth of a collection of single polymer molecules which

approximately follow a given probability distribution.36,37 In contrast, the more common

Metropolis Monte Carlo (MMC) algorithm employs “moves” in the conformations of a poly-

mer chain of a certain length starting from an initial condition.38,39 Algorithms based on

the Metropolis method are referred to as dynamic Monte Carlo algorithms as they sample

states from a Markov chain of states, i.e. a move is chosen probabilistically depending on

the previous state.40 On the other hand, PERM belongs to the class of so-called approx-

imate counting algorithms.40 Every sample in a PERM simulation consists of a “tour” of

configurations grown from a single bead to a maximum of N +1 beads. Each step of growth

ranging from i = 0 to i = N in a tour is associated with a weight Wi, the average ⟨Wi⟩ of

which is an estimate of the partition function, Zi, relative to the reference state.

PERM is a powerful technique for single molecule simulation of polymers and has several

advantages over conventional MMC methods. First, the free energy of a system (with respect

to a reference state) can be estimated directly from the simulation using

β∆Fi = − ln
Zi

Zref,i

≈ − ln

⟨
Wi

Wref,i

⟩
. (4)
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Here ∆Fi is the free energy of the polymer of length i, and Wref,i and Zref,i are the weight

and the partition function corresponding to the reference state. The average Wi/Wref,i is

computed over a total of Nt tours. The reference state we choose in our simulations depends

on the variant of the DWLC model under consideration as we explain later in Sec. IID.

Second, all equilibrium properties can be estimated as a function of contour length in a

single simulation. For example, the mean span Xi at any step i can be estimated as

⟨Xi⟩ =

Nt∑
t=1

W t
iX

t
i

Nt∑
t=1

W t
i

, (5)

where W t
i is the weight associated with the ith step after the tth tour among a maximum of

Nt tours. This attribute of PERM of calculating properties as a function of contour length

forms the methodological cornerstone of this paper.

Our PERM simulations are based on a parallel master-slave algorithm consisting of three

stages, similar to our previous paper:26 (i) an initial “blind” run to obtain estimates of

the partition function for a few hundred beads; (ii) several “non-blind” runs where we

incrementally increase the number of beads until the maximum number of beads are reached;

(iii) finally, a “full” run wherein properties of interest such as span or end-to-end distance

are calculated.37,41 Our algorithm employs a neighbor list resembling the Verlet list,42 unlike

the hashing-based neighbor lists used in lattice simulations.36,43,44 Nonetheless, a typical

simulation in a given channel with 105 beads for 4 × 105 tours running on 96 6-core Intel

Xeon X7542 “Westmere” processors takes between 6-8 hours of walltime, which is equivalent

to about 700 CPU hours. This large number of tours produce thousands of independent

realizations of chains spanning the configuration space, resulting in small error bars. Unless

otherwise specified, error bars are smaller than symbol sizes in all our figures. For further

details on our implementation of the simulation, we direct the reader to previous work from

our group.19,26

8



D. Free energy calculations

In all our simulations, the reference state for the estimation of the partition function is

an unconfined chain with no excluded volume. Other attributes of the reference chain, such

as a and lp, are set equal to the chain under consideration.26 In other words, the reference

state for simulations of both RWLCs and IWLCs is an unconfined IWLC with the same

persistence length. Likewise, the reference state for both IFJCs and RFJCs is an unconfined

IFJC.

The confinement free energy of a chain without excluded volume, ∆Fconf, id, is calculated

by

β∆Fconf, id = − ln
Zconf

Zref

≈ − ln

⟨
Wconf

Wref

⟩
, (6)

where the average of ratio of the weights of the confined chain and the unconfined chain,

Wconf/Wref, is evaluated in the course of the simulation. Note that ⟨Wconf/Wref⟩ is an estimate

of the ratio of the respective partition functions, Zconf/Zref.

Calculation of the confinement free energy of chains with excluded volume involves an

additional step as the reference state in our simulations is always an unconfined, ideal chain

with the same persistence length. First, the free energy of an unconfined chain with excluded

volume, ∆FEV, is obtained from a free-solution PERM simulation by

β∆FEV = − ln
ZEV

Zref

≈ − ln

⟨
WEV

Wref

⟩
, (7)

where ZEV and WEV are the partition function and the weight of the unconfined real chain

respectively. Second, the free energy of a confined real chain, ∆Fconf+EV, is calculated

through the estimation of the partition function, Zconf+EV, from a PERM simulation of the

confined chain as

β∆Fconf+EV = − ln
Zconf+EV

Zref

≈ − ln

⟨
Wconf+EV

Wref

⟩
, (8)

whereWconf+EV is the corresponding Rosenbluth weight. Finally, the confinement free energy

of the real chain, Fconf, EV, is calculated as

∆Fconf, EV = ∆Fconf+EV −∆FEV. (9)
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FIG. 2. Mean span (X), x-projection of the end-to-end distance (Rx) and x− x component of the

gyration tensor (Sx), normalized by the corresponding quantities in free solution for an ideal

FJC, plotted against D/a. The dashed line at unity is the expected result in the absence of

discretization error.1 All data points show simulation results for a contour length L/a = 5000.

E. Discretization

Three independent parameters characterize our DWLC model: lp, w and a. Given lp and

w, the ratios lp/a and w/a determine the number of discrete units per persistence length

and width respectively. By definition, the Kuhn length b must satisfy b ≥ a, because in the

limiting case of a freely joined chain (FJC), we have b = a. Moreover, if w < a there is a

possibility of the chain crossing itself, and this may result in an erroneous representation of

self-repulsion effects. This implies that w ≥ a. Here, we choose a = w,19 as this yields the

best compromise between correct physical representation and computational tractability. In

all our chains, b ≥ w, and hence a = w satisfies the constraints imposed by both stiffness

and excluded volume on the bond length.

Channel confinement introduces an additional parameter D, the channel size. A very

small D/a ratio can lead to discretization artifacts in the simulation results. In addition,

obtaining a reliable number of samples from PERM becomes increasingly difficult as D/a

decreases because, for small channels, the attrition rate is high due to collision with walls.

Therefore, to determine the role of D/a ratio in our simulations, we calculated the size of

ideal FJCs in confinement through PERM simulations.

Here, we make use of the fact that the size of an ideal flexible chain in the direction

parallel to the channel is unaffected by confinement.1 Note that the FJC does not model a
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truly “flexible chain” because of the rod-like nature of the model for length scales smaller

than the step size, b.45 However, an unconfined IFJC reproduces the properties of a flexible

polymer model such as a continuous Gaussian chain, given that L ≫ b.35,45 It is in this

context that we use FJC as a model for a flexible polymer. Consequently for an IFJC, we

expect that the mean span X,

X ≡ ⟨max(xi)−min(xi)⟩ , where (i ∈ [1, N + 1]), (10)

the x-projection of the end-to-end distance Rx,

Rx ≡
√⟨

(xN+1 − x1)
2⟩, (11)

and the x− x component of the gyration tensor Sx,

Sx ≡

√√√√⟨
1

N + 1

N+1∑
i=1

(xi − xcm)
2

⟩
(12)

in confinement must be identical to their respective values in free solution. Here, xi is the

x-coordinate of the ith bead, among a total of N +1 beads. However, when the bond length

is of the order of the confinement size, the assumption that the chain is flexible at the length

scale of the channel is no longer valid. Hence the size in confinement is not equal to the size

in the bulk.

Figure 2 shows the ratio of these quantities with the corresponding quantities in free

solution. As expected, the discretization error increases as D/a decreases. Moreover, for

D/a ≥ 5 there is no significant change in the ratio as D/a increases, and in this region,

the ratio of the sizes of the confined and unconfined chains is approximately 1. We use this

condition as a rule of thumb to choose the minimum D/a ratio for our simulations of FJCs.

Accordingly, all our simulations for FJCs in this paper are done with a ratio D/a ≥ 5.

III. Results and discussion

In Sec. II B, we classified the DWLC model into 4 broad variants, depending on the values

of w and κ. Here in Sec. IIIA, we examine the properties of confined chains when either
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FIG. 3. Average fractional extension as a function of contour length for IFJCs confined in square

channels of various sizes. Most data points are not visible as they overlap each other exactly. The

red line denotes the theoretical prediction in Eq. 13 for IFJCs in free solution.46 The dashed line

is the result for the mean span in the long-chain limit given by X =
√

8Lb/3π.46 All results show

a scaling of X ∼ L0.5 in the long-chain limit, as expected.

of w or κ (or both) are 0. Thus the limiting cases of no stiffness and no excluded volume

encompass (i) IFJCs (w = 0 and κ = 0), (ii) RFJCs (κ = 0), and (iii) IWLCs (w = 0). In

Sec. III B, we show simulation results for RWLCs with non-zero values of both w and κ. We

then end our discussion in Sec. III B 2 by outlining the implications of our findings to the

case of DNA confined in nanochannels.

A. Limiting cases

1. Ideal freely jointed chains (IFJC)

With a carefully discretized DWLC model, we begin with a review of the extension

and free energy of ideal flexible chains in confinement. The purpose of laying out the

properties of IFJCs is twofold. First, we wish to recapitulate well known results for IFJCs

in confinement, which will prove beneficial in elucidating the behavior in the presence of

stiffness and excluded volume. Second, because exact analytical results are available for

properties of ideal flexible chains in confinement, IFJCs are an ideal candidate for use in

validating our simulation code to high precision.

For a flexible ideal chain, confinement does not affect extension parallel to the axis of

the channel, i.e. the extension is identical to that in free solution.1,3 This can be readily
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recognized by examining the probability distribution of the end-to-end vectors R in 3 dimen-

sions, P3D(N,R), for a freely jointed chain with N segments. For an IFJC, the distribution

functions in the three orthonormal directions P1D(N,Rx), P1D(N,Ry) and P1D(N,Rz) are

independent of each other, i.e., P3D(N,R) = P1D(N,Rx)P1D(N,Ry)P1D(N,Rz).
35,47 There-

fore, for an IFJC confined in a square conduit as in Fig. 1, confinement alters the distribution

functions only in the y and z directions. In other words, P conf
1D (N,Rx) = P free

1D (N,Rx). Con-

sequently, metrics of size such as the averages of span (X), radius of gyration (Sx) and

end-to-end distance (Rx) are unaltered due to confinement.1,3

We confirm this prediction by comparing extension of IFJCs confined in channels against

the prediction for the mean span of IFJCs in free solution.46 To do so, we make use of an

expression derived by Daniels and Smithies 46 for the mean span of a 1D random walk. We

convert these equations to evaluate the mean span in 3D by dividing by
√
3 as

X =


1√
3

2N + 1

2N
N !(N

2

)
!
(N

2

)
!
− 1 (N even),

1√
3

2N + 2

2N
N !(N

2
− 1

2

)
!
(N

2
+ 1

2

)
!
− 1 (N odd),

(13)

where N is the normalized contour length L/b. In Fig. 3, we observe that the fractional

extension of IFJCs parallel to the channel axis is independent of the channel size and is

unperturbed by confinement in the channel. However, the prediction of Eq. 13 for the mean

span in 3D for L/b ≈ 1 is not accurate as the prefactor
√
3 is valid only when L ≫ b.

Nonetheless, the collapse of the extension data for all channels gives further credence to the

absence of discretization artifacts in these simulations.

Although the extension parallel to the channel is unchanged, there is an entropic penalty

to squeeze the chain into the channel, and hence the confined chain has a higher free energy

than the chain in the bulk. The change in free energy due to confinement in a channel for

a FJC with D ≫ b and L > b can be approximated as49

β∆F = − ln

[
P conf
1D (N,Rx)P

conf
1D (N,Ry)P

conf
1D (N,Rz)

P free
1D (N,Rx)P free

1D (N,Ry)P free
1D (N,Rz)

]
= − ln

(
P conf
1D (N,Ry)

P free
1D (N,Ry)

)
− ln

(
P conf
1D (N,Rz)

P free
1D (N,Rz)

)
. (14)

It is evident from Eq. 14 that the free energy of confinement arises due to constraints imposed

13



10−3

10−2

100 101 102 103 104 105

β
∆
F
/
L

L/b

(a)

D/b = 40

D/b = 45

D/b = 50

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

β
∆
F
D

2
/L

b

Rf/D

10−2

10−1

100

101

102

103

10−2 10−1 100 101

β
∆
F

Xf/D

(b)

2

1

1

1

FIG. 4. (a) Free energy of ideal FJCs in 3 square channels of different sizes. The free energy

values asymptote to the value given by Eq. 15 (dashed lines).19,48. In the inset, the free energy

values are shown to reach asymptotic scaling for all 3 channels when Rf ≈ D. The dashed line

signifies the theoretically expected limit, π2/3. (b) Free energy data for the 3 channels fall on a

universal curve as per scaling theory, with an asymptotic scaling ∆F ∼ (Xf/D)2 for Xf ≫ D.

The dashed lines show that the free energy of confinement is approximately 4kBT for Xf/D = 1.

The solid black lines show theoretical predictions: Eq. 17 for Xf/D . 149,50 and Eq. 15 for

Xf/D & 1. A scaling of ∆F ∼ (Xf/D)1 is also seen for Xf ≪ D.

in the y and z directions by the walls of the channel. Figure 4(a) shows the free energy of a

confined IFJC for various channel sizes as a function of contour length L. Unlike extension,

the free energy of confinement in different channels are never equal. Even at extremely

small contour lengths (order of a few beads), the free energy values are unequal in different

channels because of a different degree of entropy loss. However, in the long-chain limit,

∆F/L asymptotes to a constant value35 and this asymptotic value when L ≫ D ≫ b is

14



given by19,48

β∆F =
π2Lb

3D2
. (15)

Our simulation results in Fig. 4 show excellent agreement with this prediction.

Furthermore, akin to de Gennes’ scaling theory for flexible real chains,1,3,51 a scaling

equation of the form

β∆F = ϕ∆F

(
Rf

D

)
(16)

can be written, where Rf is the root mean square end-to-distance in free solution and ϕ∆F

is a function such that ϕ∆F (x) ∼ x2 as x → ∞ in the limit Rf ≫ D ≫ b.49 However, Eq. 16

does not hold if Rf ≪ D. Fortunately, in the limit Rf ≪ D or more precisely Xf ≪ D, the

confinement free energy in a channel is given by

β∆F = − ln

(
1− Xf

D

)2

, (17)

where Xf is the mean span in free solution.49,50 Now, the confinement free energy can be

written as a similar function of the mean span in free solution as

β∆F = Φ∆F

(
Xf

D

)
. (18)

Since the ratio Xf/Rf is a constant for Rf, Xf ≫ b, i.e Xf/Rf →
√
8/3π,46 Φ∆F (x) has the

following properties:

Φ(x) :

 = − ln (1− x2) if x ≪ 1,

∼ x2 if x ≫ 1.
(19)

To verify Eq. 19, we plot the confinement free energy against Xf/D for 3 channel sizes as

shown in Fig. 4(b). We observe that the free energy values for the three channels considered

all fall on the same curve irrespective of the contour length.

Plotting free energy as a function of Xf/D also provides us with a way to identify cut-offs

for the onset of asymptotic scaling. We find two distinct regimes in Fig. 4(b): (i) a weak

confinement regime, where the bulk size of the chain is less than that of the channel width,

and (ii) a strong confinement regime, where the average size of the chain in the bulk is

greater than D. In the former, our free energy calculations agree with Eq. 17. Moreover,

our data in Fig. 4(b) clearly show a distinct scaling of β∆F ∼ Xf/D in the weak confinement
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FIG. 5. Fractional extension of RFJCs (a = w = b) confined in channels with same Deff values as

in Fig. 3. The gray line corresponds to simulation results of a RFJC in free solution.

regime, because β∆F = − ln(1−Xf/D)2 ≈ 2Xf/D if Xf ≪ D.

In the strong confinement regime (Xf > D), the free energy values exhibit asymptotic

scaling for Xf/D & 1, endorsing the fact the free energy attains limiting scaling when the

chain as a whole feels the effect of confinement. Figure 4(b) also shows that ∆F ≈ 4kBT

when Xf = D thus supporting the widely prevalent notion that the confinement free energy

is O(kBT ) for a chain of unconfined size D.

2. Real freely jointed chains (RFJC)

In the presence of repulsive excluded volume interactions, confined flexible chains follow

statistics outlined by Daoud and de Gennes in their seminal paper.3 De Gennes1 proposed

that for a chain confined in a cylinder of diameter Dcyl, in the long chain limit (L ≫ Dcyl),

“the chain behaves as a sequence of blobs of diameter Dcyl which act as hard spheres and

pack into a regular one-dimensional array.”1 A similar depiction of the chain as a 1D self-

avoiding walk of blobs in square confinement leads to a predicted scaling, X ∼ L. Figure 5

shows fractional extension of RFJCs confined in square channels with the same Deff values

as in Fig. 3. We observe that at very small chain lengths, the extension of the chain is

the same as in free solution. However, as the chain length increases, the chain begins

to backfold because of collisions with the walls. In contrast to the IFJC, the increase in

backfolding induces self-repulsion, resulting in a rapid increase in the extension. Once the
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average monomer concentration attains a threshold value, backfolding at the length scale of

the channel size D is no longer possible due to self-avoidance.12,28,31 This leads to a linear

ordering of segments of the chain resulting in a linear scaling, X ∼ L.

Analogous to the case of ideal flexible chains, the properties of real flexible chains in

confinement have been studied with the use of diffusion-annihilation equations.47,52 However,

because of the difficulty in determining the annihilation term, a mean-field approximation

is employed to account for the excluded volume interactions by means of self-consistent

field theory.47 Werner et al. recently showed that mean-field approximation does not yield

satisfactory results as it neglects intrachain correlations, which are especially critical in

determining properties of self-avoiding chains in confinement.47

Nonetheless, scaling theory can still be applied to interpret the behavior of RFJCs in

confinement. For Xf ≫ Deff ≫ b, the extension parallel to the axis of a channel was written

by de Gennes in a scaling form as1,3,53

X

Xf

= ΦX

(
Xf

Deff

)
, (20)

where X is the extension (mean span) in confinement, and Xf is the mean span in free

solution. Similarly, a relation analogous to Eq. 18 for confinement free energy ∆F is1,3

β∆F = Φ∆F

(
Xf

Deff

)
, (21)

where the functions Φ are defined such that ΦX(x) ∼ x1/νF−1 and Φ∆F (x) ∼ x1/νF for x ≫ 1

in accordance with the scaling laws in the de Gennes regime. Here, νF ≃ 0.5877 is the Flory

exponent.54,55 Also, recall from Sec. IIA that Deff = D − w is the effective width of the

channel accessible to the centerline of the backbone of the polymer molecule. Note that for

x ≪ 1, Φ∆F (x) = (1− x)2, wherein the quantity D in Eq. 17 has been replaced by Deff.

Agreement with Eqs. 20 and 21 is indicated by the collapse of the X/Xf curves in Fig. 6(a)

and the β∆F curves in Fig. 6(b) respectively.

Furthermore, we observe in Fig. 6(a) that confined RFJCs behave virtually like unconfined

chains until the unconfined chain size Xf is approximately equal to the channel size Deff.

In other words, X ≈ Xf for Xf . Deff. Beyond this threshold value, i.e. when Xf & Deff,

there is a sharp increase in the extension of the confined chain culminating in a scaling of
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1/νF . The data

shown here corresponds to RFJCs of contour length L ranging from L = b to L = 5000b.

X/Xf ∼ (Xf/Deff)
1/νF−1.

The confinement free energy also exhibits two distinct regimes as shown in Fig. 6(b).

We find that free energy in the weak confinement regime (Xf . Deff) agrees well with the

following relation, which is essentially a restatement of Eq. 17:

β∆F = − ln (1−Xf/Deff)
2 . (22)

We also note that the slope of the ∆F curve abruptly changes when Xf/Deff ≈ 1 to a
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with an expected slope of -0.5 in the long-chain limit. The red dashed line corresponds to the

prediction in the Odijk regime given by Eq. 23.57

slope 1/νF as predicted by Daoud and de Gennes,3 indicating that the statistics of confined

RFJCs transition quickly to the long-chain limit once the chain size is large enough to form

a blob of size Deff. A careful examination of Fig. 6(b) shows that ∆F ≈ 4kBT for Xf ≈ Deff,

which is in agreement with previous predictions that the confinement free energy of a blob

is O(kBT ).
1,3,12,56

3. Ideal wormlike chains (IWLC)

In the seminal paper on properties of confined stiff polymers in extreme confinement,

Odijk introduced a new length scale, λ ≃ D2/3l
1/3
p , that corresponds to the length of a

deflection segment.4 According to Odijk’s theory, the extension of IWLCs with L ≫ λ in a

square channel of size D can be written as

X = L

[
1− α�

(
D

lp

)2/3
]
, (23)

when D ≪ lp. The prefactor has been calculated by Yang, Burkhardt, and Gompper 57 as

α� = 0.18274. Equation 23 shows that the scaling of the extension, X ∼ L, is markedly

different for IWLCs in comparison to IFJCs, where X ∼ L0.5 in the long-chain limit. More-

over, the extension of IFJCs is equal to the bulk value and therefore does not depend on D,
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unlike the extension of IWLCs in the Odijk regime. Furthermore, little is known about the

behavior of IWLCs when lp & D, as most studies with WLCs involve chains with excluded

volume.13,16,17,58 Here, we study the extension behavior of IWLCs in confinement as a func-

tion of channel size and contour length, in the interest of demarcating the effect of stiffness

on the properties of confined semiflexible polymers.

The fractional extension of stiff ideal chains confined in channels of various sizes is shown

in Fig. 7. We note here that unlike the figures in Secs. III A 1 and IIIA 2, we plot our

data with the contour length normalized with the persistence length, lp, as is the norm for

wormlike chains. For all the channels, we observe that X/L starts at 0.5, which is the value

of the fractional extension in the bulk for a rod given by

X

L
=

∫ π

0
| cos θ| sin θdθ∫ π

0
sin θdθ

= 0.5, (24)

where θ is the polar angle with the x axis.59 At these values of the contour length L, the

chain is almost unaffected by confinement and has virtually the same rotational freedom

as in free solution. For D . lp, as the chain length increases, the chain begins to feel

the walls and aligns with the axis of the channel. This is reflected in Fig. 7 as a rise in

the fractional extension from the bulk value, at short chain lengths. For D/lp = 0.20,

the fractional extension is practically at the asymptotic value when L/lp is approximately

0.5. At this value of L, the number of deflection segments (λ ≈ l
1/3
p D2/3) is approximately

L/(l
1/3
p D2/3) ≈ 1.5, even though the chain is smaller than a single persistence length. This

implies that the transition to asymptotic Odijk extension is rather quick, i.e. a chain that

can form a few deflection segments is sufficiently long to exhibit behavior as in Eq. 23.

For D/lp = 0.58 and 0.95, we observe significant stretching in the unconfined direction,

i.e. X/Xf > 1, as shown in Fig. 7. Particularly in the case of D/lp = 0.58, the chain seems

to follow Odijk-like X ∼ L behavior till about L/lp = 10. However, after the chain reaches

a certain length, which Odijk terms the global persistence length,10 the entropic constraints

of the walls are not strong enough to prevent formation of hairpins. Formation of hairpins

by ideal chains leads to an extension X that is not linear in the contour length.11,16 As

the channel size increases, the amount of backfolding of these IWLCs increases, leading to

decreasing fractional extension X/L with L. We note here that the noise in the data shown

in Fig. 7 at high L for intermediate channel sizes is due to high fluctuations of extension in
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this region of confinement. Similar behavior has been observed before, both in simulations60

and experiments.2,8

The fluctuations in the extension decrease as the channel size gets much bigger than the

persistence length. When D/lp = 19.90, the fractional extension of the chain is indistin-

guishable from the free solution curve, indicating stiffness has very little effect on stretching

of the chain in this regime. In other words, the chain behaves exactly like an IFJC confined

in a wide channel. For channel sizes such as D/lp = 3.11 and D/lp = 7.89, however, we

observe that the fractional extension is almost identical to that of a chain in bulk, though

there is moderate stretching.

Confinement free energy of channel-confined IWLCs as a function of channel size has been

studied by our group previously.19 It was found that the confinement free energy transitions

from ∆Fconf ∼ D−2/3 in the Odijk regime to ∆Fconf ∼ D−2 in weak confinement,19 in

agreement with free energy calculations of IWLCs confined in slits.48 In addition, these

results are also in qualitative agreement with recent work on confinement free energy of

IWLCs in channels.61 This D−2 scaling of the free energy is analogous to the case of confined

IFJCs shown in Sec.IIIA 1, again reinforcing the fact that confined IWLCs show the same

properties of equivalent IFJCs in weak confinement.

In summary, extension of IWLCs transitions from the Odijk regime in extreme confine-

ment (D ≪ lp) to the behavior of unconfined IWLCs in weak confinement (D ≫ lp). We

term this regime of weak confinement the “bulk-like” regime for IWLCs, as the extension is

given by the bulk extension, just as in the case of confined IFJCs. It is interesting to note

that our results also indicate the presence of a broad transition regime (0.5 . D/lp . 20)

between the Odijk regime and the bulk-like regime.

B. Real wormlike chains (RWLC)

1. Theoretical aspects

We now turn our attention to the case of RWLCs, which exhibit a nontrivial combina-

tion of the properties of RFJCs and IWLCs shown in Secs. III A 2 and IIIA 3 respectively.

When D ≪ lp, the chain is in the Odijk regime where the properties are dominated by chain

stiffness. In contrast, when D ≫ lp and L ≫ D, we recover the de Gennes regime, which is
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FIG. 8. Fractional extension of RWLCs with lp/a = 20 versus contour length for the same Deff

values as in Fig. 7. The gray line depicts the fractional extension for the chain in free solution

with an expected slope of −(1− νF) ≃ −0.42 in the long-chain limit. Our results agree with

predicted extension in the Odijk regime (red dashed line)57 and prior results for the long-chain

limit in the de Gennes regime (purple dotted line).19 However, most other curves fall in the

transition regime.

governed by excluded volume. However, in the region D ≈ lp, there are two contributing ef-

fects leading to stretching in the unconfined direction, namely stiffness and excluded volume.

This complicated interplay between stiffness and excluded volume is not well understood,

and hence there is little consensus about the mechanism of stretching in this transition

region.

Here, we seek to gain further understanding of the mechanism of stretching in confinement

by examining the effect of contour length on the extension. Figure 8 shows the fractional

extension of real wormlike chains (RWLCs) for the same Deff/lp values as in Fig. 7. For

Deff/lp = 0.20, the curve is identical to the case of an IWLC hinting that excluded volume

does not have any effect on stretching of the chain in the Odijk regime. For bigger channels

considered in Sec. IIIA 3, recall that we did not observe the scaling X ∼ L, presumably due

to long-range backfolding of the chain. In contrast, RWLCs reach an asymptotic value of the

fractional extension in the long-chain limit, regardless of the channel size. For instance, in the

case of Deff/lp = 0.58, the IWLC shows a drop in the fractional extension around L/lp = 20

as shown in Fig. 7. This descent of X/L is absent in Fig. 8, showing that backfolding is

minimal for RWLCs at this channel size. This stark contrast between extension behavior of

IWLCs and RWLCs demonstrates that excluded volume between distal segments suppresses
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backfolding of confined semiflexible chains.

For larger channels such as the one with size Deff/lp = 1.53, the drop in X/L around

L/lp = 10 in Fig. 8 signifies backfolding. However, as the chain length increases, this back-

folding in turn leads to an amplification of excluded volume interactions. Accordingly, the

curve plateaus to an asymptotic fractional extension with increasing chain length, showing

a linear scaling in the contour length, X ∼ L.

For the biggest channel, i.e. when Deff/lp = 19.90, we observe that the chain follows

the free solution curve up to about L/lp = 100, which is reminiscent of the behavior of

IWLCs in weak confinement. However, self-avoidance induced by backfolding eventually

causes the chain to swell in the direction parallel to the axis of the channel. Thereafter,

the X/L curve in Fig. 8 branches off from the free-solution curve, plateauing to the value

previously observed in the de Gennes regime.19 The resulting constant fractional extension

is a consequence of the cigar-like conformation formed by the chain in this regime.1

2. DNA in nanochannels and other practical implications

Following the seminal experiments by Reisner et al.,8 there has been tremendous interest

in understanding the static and dynamic properties of nanochannel-confined wormlike chains,

particularly DNA.10,11,16–19,58,62–64 In addition, nascent genome mapping technologies such

as DNA barcoding in nanochannels are based on the assumption that there is a one-to-one

linear relationship between the separation of markers in the channel and the genomic length

between two points on a DNA molecule.2,7,65 We know from results reported in the preceding

sections that the linear scaling, X ∼ L, for RWLCs in confinement is valid when the chain

is long enough to contain several statistical segments such as deflection segments or blobs,

depending on the regime of confinement. One of the aspects that is often overlooked is

whether the data obtained from the aforementioned experiments and simulations satisfies

conditions for the asymptotic linear scaling, X ∼ L, in channel confinement.

We recently showed that the onset of asymptotic scaling, X ∼ LνF , for unconfined DNA

in a high ionic strength buffer occurs at a molecular weight of approximately 1Mbp.26

One of the consequences of this outcome is that λ-DNA, the experimental workhorse, lies

well within the transition regime connecting νid = 0.5, for an ideal coil and νF = 0.5877, the

universal exponent for swollen coils in free solution. It is unclear how these molecular-weight
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dependent results for chains in the bulk reconcile with those in quasi-1D square confinement

as in a nanochannel. To resolve such uncertainties, we examine the finite length effects of

DNA in nanochannels to establish limits for the validity of the linear scaling of the extension,

X ∼ L.

In order to simulate DNA in nanochannels, it is important to choose the appropriate set

of parameters that account for the interactions present in an experimental system. As in our

previous work,17,19,26 we use parameters for DNA in a high ionic strength (165mM) buffer,

5×TBE, in which electrostatic interactions are highly screened. Such a value of the ionic

strength allows us to use a hard-core repulsion for the excluded volume potential as a good

approximation. Further, the value of the persistence length at high ionic strength is less

ambiguous, as there exist discrepancies for the value of lp at low ionic strengths.26,66,67 Con-

sequently, we use an effective width of w = 4.6 nm from Stigter’s theory68 and a persistence

length of lp = 53nm66,69 corresponding to the aforementioned ionic strength. Accordingly,

the contour length of DNA in units of base pairs (bp) is obtained from Nw/lbp, where

lbp = 0.34 nm is the rise per base pair in DNA.

In our recent work, simulations employing these parameters yielded good agreement with

experimental scattering data for the radius of gyration of unconfined DNA.26 Notwithstand-

ing this agreement, our simulation results did not conform with single molecule fluorescence

microscopy data.26 We believe that this discrepancy may be due to the presence of interca-

lating dyes in these experiments. These dyes alter the size of DNA by changing the contour

length (L),70–73 and conceivably even properties such as the width (w) and the persistence

length (lp).
71 There is also contrary evidence suggesting that the persistence length more or

less remains constant and is independent of the amount of bound YOYO-1.73 Additionally,

the dependence of w on the dye concentration is still unclear. This makes direct comparison

of simulations with experiments difficult, as most experiments with DNA in nanochannels

employ dyed DNA. Moreover, the effect of electrostatics on the wall-DNA interaction is still

unclear,2,17 and this further complicates modeling of DNA in a nanochannel. Our simula-

tions thus make the simplifying assumption that the depletion width due to electrostatic

interactions between the wall and DNA is w/2. In view of the confusion surrounding the

right parameters for dyed DNA, we stick to the parameters for undyed, “naked” DNA listed

in the previous paragraph.

Figure 9 displays results for extension of undyed DNA calculated using two metrics: (i)
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the channel Rx (filled symbols) normalized by the contour length for confined, undyed DNA in a

high ionic strength buffer. Note that the x axis at the bottom indicates the number of persistence

lengths of the chain and the x axis at the top denotes the length of DNA in units of kilobase

pairs. The red dashed-dotted line corresponds to the asymptotic fractional extension in the Odijk

regime.57. The dashed lines corresponding to the two biggest channels show the empirical fit

obtained by Tree, Wang, and Dorfman 19 for the long-chain limit in the de Gennes regime. The

molecular weight of λ-DNA is shown as a vertical gray dashed line.

the mean span (X); and (ii) x-projection of the end-to-end distance (Rx). As expected, we

see a trend similar to Fig. 8. Among the two metrics shown, the span (X), which is the

common experimental measure,8,9,17,74 is less sensitive to backfolding compared to the end-

to-end distance projection (Rx) on the channel axis. Unsurprisingly, in the Odijk regime,

X and Rx are almost identical except at very short lengths of the chain (L < O(λ)) due to

the absence of backfolding. In contrast, for the large channels, we observe that X and Rx

asymptotically approach a limiting value which in turn agrees with the predicted extension

in the de Gennes regime, independent of the metric used to describe the extension.19

An interesting feature of Fig. 9 is that X and Rx are equal in the long chain limit

irrespective of the confinement regime. This result is a testament to the notion of linear

ordering of blobs for self-avoiding chains in quasi-1D confinement, outside the Odijk regime.

Correspondingly, the apparent confusion surrounding the earliest reports of simulations on

DNA extension suggesting that X ̸∼ L seems be an effect of finite chain length as the longest

chain used in that work was 14.8 kbp long.13 Figure 9 also furnishes us with a convenient

rubric to check if a chain is sufficiently long to be in the asymptotic region of the blob regime
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in which X ∼ L applies. This is especially important for conventional Metropolis Monte

Carlo simulations, where each simulation gathers data for a single chain length. In order to

ascertain whether the chain is long enough to be in the asymptotic region, one might have

to perform multiple simulations at various lengths and verify that the properties fall on a

universal curve. A relatively simple and convenient way to ensure the validity of asymptotic

behavior (X ∼ L) is to calculate X and Rx from the same simulation, and check if the two

quantities are the same within the margin of error.

It is customary to presume that the span measured from fluorescence microscopy exper-

iments is the same as the end-to-distance, which itself is based on the assumption that the

chain has reached the asymptotic limit.2,8,74 However, our findings suggest that X and Rx

are not necessarily equal for λ-DNA, as there is a gradual deviation of Rx from X with

increase in channel size. We find from Fig. 9 that the relative error in fractional extension

for λ-DNA from the asymptotic value is less than 3% for the channel sizes considered here,

given that it is calculated from the mean span. In contrast, the error is as high as 20%

for the largest channel, if the fractional extension is calculated from the x-projection of the

end-to-end distance. This difference in the relative error of the fractional extension obtained

from the two metrics is apparent when the data is plotted with a logarithmic axis as shown

in Fig. 9. These results demonstrate that although λ-DNA is not truly in the asymptotic

limit, the fractional extension measured from the span is within 3% of the asymptotic value

for channel sizes typically used in experiments.

Furthermore, the w/lp ratio increases with decreasing ionic strength for DNA, indicating

that the excluded volume becomes increasingly more important at low ionic strengths.26

As most experiments are performed at ionic strengths lower than the one used in our

simulations,8,9,74 we expect excluded volume to have a stronger effect on extension data

obtained from experiments. This implies that the onset of asymptotic scaling, X ∼ L, oc-

curs for chains with lower L compared to the ones dealt in our work. Therefore, we conclude

that if the fractional extension is inferred from the measurement of the span, chains of the

contour length of λ-DNA or above yield nearly asymptotic results for X/L.
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IV. Concluding remarks

By independently controlling the effects of excluded volume and stiffness, we studied the

equilibrium properties of single polymer chains in channel confinement. Through our large

scale PERM simulations, we verified that confinement does not have any effect on the ex-

tension of ideal freely jointed chains, provided that the confinement size is not comparable

to the Kuhn length. Further, our extension and free energy calculations for self-avoiding

flexible chains agree well with de Gennes’ theory. We also demonstrated that as the confine-

ment width increases, the extension of ideal stiff chains exhibits a broad transition regime

between the Odijk regime and a stretch-free bulk-like regime.

For self-avoiding stiff chains, we confirmed that the extension is linear in the contour

length in the long-chain limit regardless of the regime of confinement, albeit due to different

underlying mechanisms. In the Odijk regime, this is due to the linear ordering of deflection

segments whereas outside the Odijk regime the arrangement of nearly non-interpenetrating

blobs in a channel leads to this linear scaling. The onset of this asymptotic scaling in

extension in the Odijk and the de Gennes regimes correspond to the chain length at which the

chain contains a few deflection segments or de Gennes blobs, as the case may be. However,

the behavior within the transition regime is a function of the interplay between stiffness and

excluded volume.11

Irrespective of the degree of confinement the projection of the end-to-distance on the axis

and the mean span parallel to the axis of the channel were found to be equal in the long-chain

limit. Although the chain length of λ-DNA is not sufficient to exactly satisfy this condition

for all the channel sizes considered here, we inferred that λ-DNA is long enough to exhibit

nearly asymptotic value of the fractional extension. This is because the fractional extension

measured from the mean span for λ-DNA in a high ionic strength buffer is within 3% of the

asymptotic value for square channels of sizes as high as 400 nm. The systematic error in the

fractional extension due to finite chain length of λ-DNA measured in experiments is therefore

negligible especially considering various other kinds of errors introduced in quantities such

as the exact geometry of the nanofabricated device, and the image processing required to

extract the mean extension from fluorescence intensity data.

Our findings remind us to be wary of finite chain length artifacts as we study the physics

of semiflexible polymers in confinement. Although long-range excluded volume effects are
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suppressed by the walls of the channels,26 one has to be cautious in interpreting results from

simulations and experiments, especially when dealing with short chain lengths. Dynamic

properties such as the diffusion coefficient,63 and the relaxation time in confinement60 are

also affected by finite chain length.26 Likewise, short length-scale effects arising from the

semiflexible nature of DNA have been shown to affect diffusivity in both slit-confinement75

and channel-confinement.63 It remains to be seen how the progression to asymptotic scaling

for dynamic properties is related to that of the static properties discussed here, keeping

in mind that the transition to asymptotic scaling is slower for dynamic properties in the

bulk.76,77
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