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Abstract

Using Pruned-Enriched Rosenbluth Method (PERM) simulations of a discrete worm-

like chain model, we provide compelling evidence in support of Odijk’s prediction of

two distinct Odijk regimes for a long wormlike chain confined in a nanochannel. In

both cases, the chain of persistence length lp is renormalized into a series of deflection

segments of characteristic length D2/3l
1/3
p , where D is the channel size. In the first

(classic) Odijk regime, these deflection segments are linearly ordered. In the second

Odijk regime, thin, long wormlike chains can backfold at a length scale quantified by

the global persistence length. We have measured this quantity by simulations and

modified Odijk’s global persistence length theory to account for thermal fluctuations.

The global persistence length, which is defined to be independent of the effect of ex-

cluded volume, provides the requisite closure to Odijk’s scaling theory for the second

regime and thus allows us to resolve much of the confusion surrounding the so-called

“transition” regime for DNA confined in a nanochannel. We show that Odijk’s theory

for the backfolded regime correctly describes both the average chain extension and the

variance about this extension for wormlike chains in channel sizes between the classic

Odijk regime and the de Gennes blob regimes, with our data spanning several decades

in terms of Odijk’s scaling parameter ξ. Although the backfolded Odijk regime occu-

pies a very narrow range of D/lp, it is indeed a regime when viewed in terms of ξ and

grows in size with increasing monomer anisotropy.
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1 Introduction

The problem of a wormlike chain confined in a channel has attracted significant attention

since seminal experiments on DNA in nanochannels revealed a discrepancy between theory

and experiment.1 Subsequent research, driven primarily by simulation, has explained much

of the discrepancy. For a wormlike chain of persistence length lp and width w confined in

a square channel of size D, there are now simulation data that support the existence of at

least three regimes. The chain statistics in very tight channels, where D ≪ lp, correspond

to the classic Odijk regime2 of linearly ordered deflection segments. The prefactors for the

chain statistics in the classic Odijk regime are known3 and in quantitative agreement with

simulations.4 When the confinement is relatively weak, confined chains are in the de Gennes

regime and arrange themselves into a one-dimensional array of compression blobs.5 While

the original de Gennes model of isometric compression blobs only extends down to channels

of size D ≈ l2p/w, there is now convincing evidence6–8 for a so-called “extended de Gennes”

regime9–11 consisting of anisometric blobs that describes the chain statistics over the range

lp ≲D ≲ l2p/w.

The key outstanding question for channel-confined wormlike chains, which we address

here, concerns the chain statistics for channel sizes between D/lp ≪ 1 and D/lp ≈ 1. In

the context of DNA in a nanochannel,11,12 this range of channel sizes is often referred to

as the “transition regime” despite the fact that simulations of DNA models in channel

confinement4,7,11,13 indicate that the transition from the extended de Gennes regime to the

classic Odijk regime spans less than a decade in D/lp. Indeed, since DNA is generally taken

as the model polymer for studying channel-confined chains at the single molecule level, it is

not even clear whether there exists a universal regime spanning channel sizes from D/lp ≪ 1

to D/lp ≈ 1 or just some gradual transition from the classic Odijk regime to the extended

de Gennes regime. In this sense, the moniker “transition regime” splits the difference; these

channel sizes either correspond to a transition or a regime, but probably not both. While the

range of channel sizes spanning the gap between the classic Odijk regime and the extended de
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Gennes regime may be narrow, these channel sizes are highly relevant for practical purposes,

in particular in genomics,12,14,15 since they encompass fractional extensions from about 20%

to 85% for DNA.4

There exist three different explanations for the transition regime: (i) an ideal blob (Gauss-

de Gennes) model,4,16,17 which is inspired by simulation data4,11,13 for DNA indicating that

the mean extension in the transition regime scales like ⟨X⟩ ∼D−1, albeit over a narrow range

of channel sizes; (ii) a cooperative backfolding model,18 which was inferred from parameter-

ized simulation data for chains with the relatively small ratios of lp/w that characterize DNA;

and (iii) a theory by Odijk10 where the deflection segments can form hairpins with a charac-

teristic length scale g, which Odijk calls the global persistence length.19 Explanations (i-iii)

are conveniently divided into two categories, based upon their fundamental explanation of

the transition regime. Both the ideal blob and Odijk explanations posit a universal regime,

in the sense that the behavior should persist over many decades in some relevant scaling pa-

rameter. By contrast, the backfolding model supposes that no such universal regime exists,

and aims to describe a transition between the classic Odijk and extended de Gennes regimes.

Of the arguments supporting a universal regime, Odijk’s theory10 seems the most per-

suasive, since it merges Flory theory arguments that have been successful in explaining the

blob regimes12 with the undisputed presence of deflection segments in very tight confine-

ment. Moreover, Odijk’s theory suggests that the relevant scaling parameter for backfolded

chains is not D/lp, and thus permits the possibility of a universal regime spanning many

decades in another scaling parameter, ξ, for sufficiently large ratios of lp/w, even though

it only may span a narrow range in D/lp. Unfortunately, the closure of the Odijk scaling

theory10 requires a model for the global persistence length that correctly accounts for the

free energy costs for backfolding in the absence of excluded volume. Odijk19 provided a me-

chanical approximation for the global persistence length, which indicates that an enormous

contour length is required to observe backfolding of deflection segments.10,19 However, Odijk

was rather critical of his mechanical model of the global persistence length,19 since it failed
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to account for fluctuation effects.

In addition to its aforementioned positive qualities, Odijk’s global persistence length

theory is particularly appealing in the light of recent work on strongly confined wormlike

chains in slits.20 In agreement with a Flory theory by Odijk,10 there is now numerical evidence

that strongly confined chains perform a two-dimensional walk of deflection segments.20 This

walk gives rise to a number of different “sub-regimes,” depending on the chain contour length,

persistence length and excluded volume strength. Similar to the way in which blob regimes

in channels parallel those in slits, we expect to find multiple regimes of strongly confined

wormlike chains in channels. Indeed, Odijk’s theory for channel confinement10,19 posits that

a wormlike chain performs a one-dimensional walk of deflection segments with regimes that

depend the chain contour length and excluded volume strength.

In the present contribution, we compute the global persistence length via off-lattice,

Pruned-Enriched Rosenbluth Method (PERM) simulations21,22 of a discrete wormlike chain

model,23 which we have used recently4,20,24,25 to study very long wormlike chains in confine-

ment. We find that Odijk’s mechanical theory19 overestimates the global persistence length

by several orders of magnitude over the range of channel sizes where chains of contour length

L ≫ g are still accessible by simulation. By correcting Odijk’s theory for thermal fluctua-

tions,19 we provide the requisite closure to test Odijk’s proposition of a regime of backfolded

deflection segments.10 We show that this regime indeed exists, as the scaling theory not

only collapses the data for both the average chain extension and the variance about the

mean extension for channel sizes D ≲ lp, but provides a collapse of the data over more than

a decade in terms of Odijk’s scaling parameter ξ (see Eq. 15). These results suggest that

Odijk’s theory,10,19 as modified herein, is the correct description of the so-called “transition”

regime for DNA in a nanochannel. Moreover, moving beyond the specific case of DNA, we

confirm that the monomer anisotropy lp/w plays a key role in demarcating the transition to

the classic Odijk regime of linearly ordered deflection segments, with the width of the back-

folded regime increasing with the monomer anisotropy. As a result, the backfolded Odijk
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regime is very narrow for almost all practical situations, most notably for DNA.

2 Theoretical Background

2.1 Scaling theory

Odijk10 classified channel confinement for D ≲ lp into two regimes, based on whether or not

the chains should be able to backfold. The regime with no backfolding of deflection seg-

ments is the classic Odijk regime,2 which has been studied and confirmed in various theoret-

ical11,18,26,27 and experimental studies.28–31 The second regime, characterized by backfolded

deflection segments, was cast by Odijk into a modified Flory theory where the polymer is

treated as a renormalized “chain of deflection segments” confined in a channel.

To see clearly the connection between Odijk’s theory for a confined chain and standard

Flory theory, let us first recall the well established Flory theory results for a real chain in free

solution.32 The chain is described as a series of segments of width w with a typical bending

length scale lp. The persistence length lp is defined independent of excluded volume effects,

arising from the intrinsic stiffness of the polymer.33,34 The excluded volume strength can be

quantified by the z parameter,

z =
N2

lpv
′

ex

R3
=
w

lp
(
L

lp
)

1/2

(1)

which measures the total excluded volume of a “gas” of Nlp = L/lp monomers uniformly

distributed in a volume R3 when the coil obeys ideal chain statistics, R2 = Llp, with an

excluded volume per contact of

v′ex = l
2
pw (2)

The chain exhibits swollen coil behavior if z > 1 and Gaussian coil statistics if z < 1.

In free solution, the Flory free energy is the sum the entropic and excluded volume
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energetic contributions,

F

kBT
=
R2

Llp
+
N2

lpv
′

ex

R3
(3)

where R2 is the square of the end-to-end distance of the chain, kB is the Boltzmann constant

and T is the absolute temperature. Recall that the first term corresponds to the entropic

elasticity of an ideal chain and the second term is the z parameter evaluated at some value of

R. As noted by de Gennes, the first term is inaccurate because of the assumption of ideality,

while the second term is erroneous as it does not consider correlations between monomer

positions.35 However, cancellation of errors in the Flory free energy gives rise to remarkably

good scaling estimates of properties such as the average end-to-end distance.32,35

Odijk’s theory10 for a backfolded wormlike chain confined in a channel of size D between

D ≪ lp and D ≈ lp is built on an analogy with the Flory theory in free solution (Eq. 3).

However, instead of considering a chain of monomers of size w and persistence length lp,

Odijk considers a chain of deflection segments, where the renormalized monomers have a

length λ =D2/3l
1/3
p and a width w. The excluded volume per contact is

vex ≈ λ
2w (D/lp)

1/3
(4)

where the additional factor sin δ = (D/lp)1/3 accounts for the orientation of deflection seg-

ments, which are aligned at an average angle, δ, between each other.10 The characteristic

length scale for bending in this renormalized chain of deflection segments, which corresponds

to the formation of a hairpin, is the global persistence length g. Like the persistence length in

free solution, the global persistence length in confinement is defined independent of excluded

volume interactions.

For a confined chain of deflection segments, the analogy to the z parameter in Eq. 1 is10

Z =
N2
λvex

(Lg)1/2D2
(5)
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where Nλ ≡ L/λ is the number of deflection segments in a chain of length L and R2 = Lg

is the size of an ideal chain of such deflection segments with global persistence length g.

Accordingly, the denominator of Eq. 5 is the total volume available to such an ideal chain

in a channel of size D. In the development of his theory, Odijk10 also defined a second

parameter related to the excluded volume interactions for a single hairpin of length g,

ξ =
n2
λvex

gD2
=

gw

D5/3l
1/3
p

(6)

where nλ ≃ g/λ is the number of deflection segments in a single hairpin and gD2 is the volume

occupied by that hairpin.

Excluded volume thus plays a role at two different length scales in the Odijk theory. On

one hand, the ability to backfold is controlled by ξ; if ξ > 1 then the volume gD2 available to

a hairpin is too small to contain the excluded volume n2
λvex caused by the turn. On the other

hand, if the chain can backfold, the swelling of the chain of deflection segments by excluded

volume is controlled by Z; if Z > 1, then excluded volume amongst all of the deflection

segments plays an important role. Odijk’s theory10 thus consists of three possible cases: (i)

ξ > 1, where the chains cannot backfold, (ii) ξ < 1 and Z > 1, where the chains backfold and

experience excluded volume interactions, and (iii) ξ < 1 and Z < 1, where the chains backfold

but do not experience significant excluded volume interactions. Let us examine these three

cases in turn.

If ξ > 1, then the excluded volume caused by the backfolded deflection segments in a

hairpin exceeds the volume available in the channel containing those deflection segments.

Backfolding is thus suppressed and the deflection segments are linearly ordered.2,10 When

excluded volume interactions are strong enough to prevent backfolding, the mean extension

of the confined chain is close to its contour length L,2,3

⟨X⟩ = L

⎡
⎢
⎢
⎢
⎢
⎣

1 − α(
D

lp
)

2/3⎤
⎥
⎥
⎥
⎥
⎦

(7)
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and the variance δX2 ≡ ⟨(X − ⟨X⟩)2⟩ about this average extension is

δX2 = β
D2

lp
L. (8)

Burkhardt et al. 3 computed the prefactors for square channels to be α = 0.18274 and β =

0.00956. In the above expressions, we have used the mean span

⟨X⟩ ≡ ⟨xmax − xmin⟩ (9)

as the measure of the extension of the chain, where xmax and xmin refer to the maximum

and minimal axial positions respectively.11 For strongly stretched chains, or for asymptoti-

cally long chains in channel-confinement, the mean span and mean end-to-end distance are

indistinguishable.24

If ξ < 1, then the deflection segments are able to backfold due to the weakness of excluded

volume of a single hairpin interacting with itself. In this sense, a single hairpin is pseudo-

ideal. For long chains, there are also excluded volume interactions between hairpins. The

overall strength of the hairpin-hairpin excluded volume interaction is determined by Z, with

the value Z ≈ 1 demarcating the boundary between ideal and real behavior for the chain as

a whole. For the case ξ < 1, Odijk’s modification of the Flory theory in Eq. 3 leads to10

F

kBT
≅
L

λ
+
X2

Lg
+
N2
λvex

XD2
. (10)

The first term in Eq. 10, representing the confinement of the deflection segments,2 does

not appear in the original theory10 because it does not contribute to the calculation of the

average chain extension ⟨X⟩, even though it is the dominant term in the calculation of F . We

include it here since (i) we know from previous simulation work4 that the confinement free

energy is extensive in chain length and exhibits Odijk scaling F ∼ D−2/3 well past D/lp ≪ 1

and (ii) the neglect of such terms in the Flory theories for the confinement free energy in blob
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regimes9 led to some confusion about the existence of the extended de Gennes regime.4,7

Let us consider the two cases in turn. For the case ξ < 1 and Z > 1, minimizing the free

energy in Eq. 10 with respect to X leads to the average extension10

⟨X⟩ ∼ Lξ1/3. (11)

and the second derivative of the free energy produces the variance

δX2 ∼ gL, (12)

For the case where ξ < 1 and Z < 1, the extension of the chain of deflection segments will

exhibit ideal scaling19

⟨X⟩ ∼
√
gL, (13)

with a persistence length g. Accordingly, the variance for ξ < 1 and Z < 1 is the same as

Eq. 12. The crossover contour length, L∗, between Eq. 11 and Eq. 13, is given by Z = 1,

namely10

L∗ ≅ gξ
−2/3. (14)

Note that these are the limiting cases for ξ < 1, and we would expect to see smooth transitions

between real and ideal scaling for the extension near Z = 1.

For the backfolded Odijk regime (ξ < 1), in addition to L∗, there is also a second crossover

length L∗∗ = g where the chains are so short that they cannot even form a global persistence

length. Interestingly, for L < L∗∗, so long as these chains have a contour length of at least

L > λ, they exhibit the same extension and variance as the classic Odijk regime given by

Eq. 7 and Eq. 8 respectively, independent of the value of ξ. The linear ordering of such short

chains is driven by an insufficient number of segments to form a global hairpin, rather than

excluded volume interactions suppressing backfolding. In addition, there should exist other

sub-regimes for even shorter chains L < λ corresponding to the wall-induced orientation of a
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Figure 1: Phase diagram for confined wormlike chains based on the scaling theory of Odijk.10

Channel sizes D/lp ≲ 1 correspond to Odijk regimes, where ξ ≳ 1 is the classic Odijk regime2

and ξ ≲ 1 is the backfolded Odijk regime. For wider channels with D ≳ lp, there is a gradual
transition to blob regimes. This schematic is simplified to emphasize the importance of both
D/lp and ξ; note that ξ depends on D/lp via Eq. 15.

rod, analogous to the case of a slit.20

Figure 1 summarizes our discussion of Odijk’s scaling theory10 so far. This figure em-

phasizes that the chain statistics depend on two factors: (i) the channel size relative to the

persistence length, D/lp, and (ii) the relative strength of excluded volume to the channel

volume in a hairpin, ξ. Note that while both parameters are required to classify the various

regimes, ξ and D/lp are not independent variables. A rearrangement of Eq. 6 yields

ξ ≃ (
g

lp
)(

lp
D

)

5/3

(
w

lp
) , (15)

which shows how ξ is related to other relevant dimensionless length scales. In particular, ξ

has both an explicit dependence of (D/lp)−5/3 and an implicit dependence on D/lp through

the global persistence length. As the channel size increases and the chain exits the Odijk

regimes, we expect that g → lp.19 In other words, the global persistence length limits to the

persistence length of the chain in the absence of confinement, which further emphasizes that

both types of persistence lengths are defined independent of excluded volume interactions.
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2.2 Odijk theory for the Global Persistence Length

The challenge in applying Odijk’s theory10 is that it requires a model for the global persis-

tence length g to close the system of equations. Odijk developed a theory for the statistical

mechanics of hairpins for ideal wormlike chains confined in square channels, an outcome of

which is an expression for g.19 By determining the optimum chord length of the hairpin

that minimizes the bending penalty for hairpin formation, and estimating the free energy

of confinement of these hairpins, Odijk arrived at an expression for the global persistence

length,19

g = αr̄ exp(
F̄

kBT
) . (16)

The first term in Eq. 16 is the constant α = 3.3082, which Odijk obtained by numerical

integration from his model. The quantity r̄(D/lp) is the average length of a hairpin chord,

r̄

lp
=

1

6

⎧⎪⎪
⎨
⎪⎪⎩

[E2
m + 6

√
2Em (

D

lp
)]

1/2

−Em

⎫⎪⎪
⎬
⎪⎪⎭

, (17)

where a separate numerical integration produced Em = 1.5071. Odijk’s derivation corre-

sponds to the mechanical limit, F̄ = F̄mc, where F̄mc(D/lp) has the form

F̄mc

kBT
= Em (

lp
r̄
) − 3 ln(

D − r̄
√

2

D
) − ln(

8

3π
) (18)

and accounts for bending energy of the hairpin in addition to its translational and orienta-

tional entropy.

Odijk’s mechanical approximation for the global persistence length has no adjustable

parameters, which makes it a remarkable result. However, at the conclusion of his paper,19

Odijk provides an enumerated list of shortcomings in this model. Thus, in order to test

Odijk’s scaling theory, we need to first validate (and, if necessary, modify) Odijk’s mechanical

model for the global persistence length.
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3 Simulation Methodology

From a simulation standpoint, testing Odijk’s theory is reasonably difficult. The challenge

becomes clear when we consider Eq. 16 in the limit of a very small channel,

g

lp
≃ c1 (

lp
D

)

2

exp [c2 (
lp
D

)] for D/lp → 0 (19)

where c1 and c2 are O(1) constants. Thus, in the limit of narrow channels, the contour

length between hairpins diverges exponentially and hairpin formation becomes a rare event.

From a practical standpoint, this exponential divergence makes the observation of hairpins

in simulations increasingly difficult with decreasing channel size, necessitating simulation

of extraordinarily long chains. Coarse-graining of the model to access these length scales,

however, is limited by the ability of a coarse-grained model to resolve the sub-persistence

length scale information characterizing deflection segments, which is critical in this extreme-

confinement regime.7

To address this challenge, we exploit the capability of the Pruned-Enriched Rosenbluth

Method (PERM)21,22,36 to simulate long wormlike chains in narrow square channels with

a sufficiently fine-grained model, namely the discrete wormlike chain model.23 Our model

consists of a discretized chain of beads connected by rods of length a. For real chains, we

use a = w, and in the case of ideal chains, a is chosen such that 2lp ≥ a. Particularly for

simulations in the Odijk regime, we opt for D/a ≥ 5 in order to resolve deflection segments.24

We have described our simulation approach in some detail elsewhere4,24,36 and provide a brief

description of the methodology in the Supporting Information.

13



4 Results

4.1 Measuring the Global Persistence Length

The global persistence length g is defined independent of any excluded volume, as it plays

the one-dimensional analog to the three-dimensional persistence length lp in free solution,

and the effect of excluded volume only enters the scaling theory through the third term in

Eq. 10. We thus only need to work for the moment with ideal wormlike chains (w = 0).

In the context of the phase diagram in Figure 1, ideal wormlike chains are either linearly

ordered (if L < g) or backfolded (L > g) since ξ = 0 for w = 0 by Eq. 6.

To measure g as a function of the confinement, D/lp, we take advantage of qualitative

similarities between the properties of a wormlike chain in channel confinement and the prop-

erties of single wormlike chains in the nematic phase of lyotropic liquid crystalline solutions,

which has been studied extensively.10,19,37–39 Just as wormlike chains align parallel to the di-

rector axis in the nematic phase,40 wormlike chains in confinement align parallel to the axis

of the channel. There is no polarity associated with the channel axis, i.e. the unit vectors êx

and −êx are equivalent for a channel whose axis is parallel to the x axis, much the same as

the director vector. Furthermore, wormlike chains in the nematic phase form hairpins that

are separated by a length scale resembling the global persistence length.37,39 Accordingly, it

is convenient to define an orientational order parameter for the channel confined chains as

the second Legendre polynomial of cos θ,27,39,41

m ≡ ⟨P2(cos θ)⟩ =
1

2
(3 ⟨cos2 θ⟩ − 1) , (20)

where θ is the angle between the channel axis and a tangent to the polymer molecule. The

angle brackets in Eq. 20 denote both an ensemble average over multiple chains and an average

over the whole contour for long chains.

In the long-chain limit, the confined chain behaves like a one-dimensional ideal wormlike
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Figure 2: RMS end-to-end distance versus the contour length rescaled using the global
persistence length for ideal wormlike chains with 10 beads per persistence length (lp/a =

10). The colored curves correspond to simulation data for chains confined in 29 channels
logarithmically spaced between D/lp = 0.5 to D/lp = 20. The black dashed line shows the
result from Eq. 21 for m = 0, which is the expected behavior in free solution.

chain aligned along the x-axis with an effective persistence length of g, albeit with small-

scale excursions perpendicular to the channel.10,19,37,38 From the analogy between a wormlike

chain in the nematic phase and a wormlike chain in channel confinement, the projection of

the mean square end-to-end distance on the x-axis in the limit L≫ g can be written as39,42

R2
x =

1

3
(1 + 2m) [2gL − 2g2 (1 − exp (−L/g))] . (21)

The prefactor (1 + 2m)/3 = ⟨cos2 θ⟩ in Eq. 21, though not considered in Refs. 10 and 19,

accounts for the alignment of the chain along the channel axis. For a completely aligned

chain (m = 1), Eq. 21 reduces to the mean square end-to-end distance of a 1D wormlike chain

with persistence length g. On the contrary, for an isotropic chain in free solution (m = 0),

Eq. 21 gives the expression for the projection of the end-to-end distance for a 3D wormlike

chain with persistence length g. It should be noted that the scaling of Rx and X must be

the same in the long-chain limit; we use R2
x here as it has the relatively simple relation to g

embodied in Eq. 21.

Having first established that our simulations give the expected result for the orientational
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Figure 3: Collapse of global persistence length data for different values of lp and D. The
dotted line shows the result from Eq. 16. The solid line corresponds to Eq. 23. An extrap-
olation of Eq. 23 is also shown for D/lp < 0.5, where simulation data are absent. All values
of lp are in units of a.

order parameter (see Supporting Information), we calculated g by fitting our PERM simu-

lation data for various values of lp and D to Eq. 21. Figure 2 shows the rescaled value of R2
x

plotted as a function of L/g, for ideal wormlike chains confined in channels of sizes ranging

from D/lp = 0.5 to D/lp = 20. In accordance with Eq. 21, the data for all chains collapse

onto a single curve when L/g ≳ 10, since this collapse is enforced in our fits (see Support-

ing Information). We also observe that the end-to-end distance in the unconfined direction

approaches the curve for free solution (m = 0) as one increases the channel size, confirming

that the size of ideal wormlike chains parallel to the axis of the channel is unaffected by

confinement for D ≫ lp.24

As we obtained the values for g for each value of D/lp to produce Figure 2, we are now in

a position to test Odijk’s theory19 for the global persistence length. Figure 3 demonstrates

that the global persistence length is indeed a universal quantity, as all our data fall on a

single curve as a function of D/lp, irrespective of the value of lp. It is worth pointing out

that g is almost 10 times lp even for channels as big as D = lp. These results are consistent

with previous observations of the increase in the apparent persistence length of wormlike

chains in channel and tube confinement.43,44 Moreover, for D ≫ lp, the global persistence
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length approaches the native persistence length of the molecule, suggesting that the length

scale for backfolding approaches the persistence length in the de Gennes regime.19

Our simulation method for computing g has some advantages compared to Odijk’s the-

oretical approach19 since we can reliably determine g in the wide-channel limit and thus

obtain the right limiting value of g = lp. However, our method is much more limited in

the small-channel limit. We cannot directly verify the behavior of g/lp as D/lp → 0, since

our calculation of g relies on simulations of chains of contour length of the order of several

global persistence lengths. Because the value of g exponentially increases with decreasing

D/lp (Eq. 19), obtaining an estimate of g for D/lp < 0.5 becomes prohibitively expensive.

This exponential growth poses an intrinsic problem for simulations of the global persis-

tence length. For example, while other coarse-grained models such as the freely-jointed rod

model6,7 have been very successful at modeling the extended de Gennes regime, they cannot

be used to overcome this issue either, since these models lack the sub-persistence length

information critical in resolving the deflection segments.

Figure 3 also compares our simulation data with Eq. 16 for D < lp, as this is roughly

the range in which Odijk’s theory19 should be valid. Although our simulation data do not

agree quantitatively with his theory, we find a similar qualitative trend — in both Odijk’s

theory and our simulations, g/lp rapidly increases as D/lp decreases to values much lesser

than unity. However, it appears from Figure 3 that Odijk’s theory overestimates g by about

two orders of magnitude in the range of our simulation data.

Odijk derived the expression in Eq. 16 in the mechanical limit, neglecting any fluctuations

of the hairpin. In addition, the approximations used by Odijk en route to Eq. 16 consider

only the leading order terms in the perturbations to the shape of the hairpin about the lowest

energy state, resulting in systematic errors in the estimation of g. Odijk recognized these

potential shortcomings in his derivation10 and proposed that the free energy in the global
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persistence length of Eq. 16 should be of the form

F̄ = F̄mc +H(D/lp) (22)

where the second term corrects for the approximations in the mechanical limit.19

Although there is no obvious way to compute H(D/lp) theoretically,19 we can easily

estimate this quantity from the simulation results in Figure 3. For each channel size D/lp,

we use Eq. 22 as the free energy in Eq. 16 and solve for the correction term H. We find that

H is a weak function of D/lp for the channel sizes D ≤ lp where we could measure the global

persistence length, and it is almost constant in the range of our simulations (see Supporting

Information). The best fit constant to the data is H/kBT = −4.91, leading to the global

persistence length

g = αr̄ exp(
F̄mc

kBT
− 4.91) . (23)

As we see in Figure 3, this corrected form of the global persistence length for 0.5 <D/lp < 1

is in good quantitative agreement with our simulation data, as would be expected from the

relative insensitivity of H to the channel size.

From a practical standpoint, we can treat Eq. 23 as a useful functional form, valid over

the range of D/lp where we have obtained our data. In other words, Eq. 23 provides the

closure to Odijk’s Flory theory and thus allows us to evaluate the predictions of that theory

independent of the theory for the global persistence length. However, we need to be cautious

in extrapolating Eq. 23 for channels where D/lp < 0.5. Both Odijk’s model in Eq. 16 and our

modified version in Eq. 23 agree with the asymptotic result in Eq. 19, albeit with different

prefactors. However, it seems reasonable that H → 0 as D/lp → 0, since extreme confinement

would suppress the thermal fluctuations. This logic implies that H is indeed a function

of D/lp over some range of channel sizes. Thus, we would expect that the actual global

persistence length for D < lp/2 would lie somewhere between the extrapolation of Eq. 23 in

Figure 3 and the mechanical model.
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Nonetheless, the quantitative difference between the value of g from our simulations and

Odijk’s mechanical theory seems to clarify some apparent discrepancies in the literature.

Odijk used Eqs. 16-18 and an equation similar to Eq. 21 to calculate the mean end-to-end

distance of “ideal” wormlike chains with the same persistence length of DNA and showed that

resultant values are in agreement with experimental data from Reisner et al. 1 This agreement

now appears like a fortuitous cancellation of errors, as Odijk’s approach for estimating the

extension of DNA did not account for excluded volume, while making use of extraordinarily

high values for g. Furthermore, Wang et al. 11 observed that the values for the extension of

DNA in their simulations were much lower than what one would predict from the mechanical

theory. Our results for g, which are two orders of magnitude less than Odijk’s prediction,

are consistent with this observation.

4.2 Test of Scaling Theory

Now that we have computed the global persistence length, we are in a position to evaluate

Odijk’s scaling theory for the backfolding regime. Because we are addressing the problem

numerically, we can only evaluate his theory for cases where we can obtain g by the procedure

outlined above. Fortunately, this does not limit our analysis of real chains (w ≠ 0), since the

computationally accessible contour lengths of real chains are a subset of those we can achieve

with ideal chains. This is due to the fact that ideal chain simulations are cheaper than real

chain simulations, since we do not need to make expensive excluded volume calculations. As

a result, if we cannot simulate an ideal chain to sufficient length to measure g for a given

channel size, then we also cannot simulate a real chain to sufficient length L > L∗ to reach

the long chain limit, since L∗ ≫ g.

In what follows, we only present real chain data where we reach the long chain limit

⟨X⟩ ∼ L. Furthermore for the variance, we restrict ourselves to the subset of the latter data

where we also reach the long-chain limit δX2 ∼ L (see Supporting Information). The value

of g for all real chains confined in channels of size D has been computed for equivalent ideal
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chains confined in channels with size Deff, except for cases where Eq. 23 has been used as

an approximation. Note that we do not need to test the confinement free energy, since we

showed that F ∼D−2/3 for these channel sizes in a previous publication.4 This scaling of the

confinement free energy corresponds to the confinement of ideal wormlike chains, which is

accounted for by the L/λ term in Eq. 10. The magnitude of the excluded volume term is

small compared to this term and thus does not contribute at the leading order to the scaling

of the free energy.20

We begin our test of the scaling theory with the extension. We first need to identify the

blob-to-deflection segment transition in the phase diagram of Figure 1. To do this, we repeat

the analysis by Dai et al. 7 for our results with touching beads (a = w) and plot our extension

data rescaled in the same way as Dai et al. 7 in Figure 4. For real chains, the channel size

Deff = D − w represents the cross-sectional width available to the chain. For the extended

de Gennes regime,7,9,11 we would expect extension to have the scaling ⟨X⟩ ∼D
(ν−1)/ν
eff , where

ν = 0.587597(7) is the Flory exponent.45 We observe that although the data seem to collapse

all the way down to channel sizes D ≈ 0.8lp, there is a clear change in slope around Deff ≈ 2lp,

indicating that the chains are losing their blob character and are are no longer in the extended
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the typical range of the “transition” regime. A fit to the data for ξ < 0.2 reveals a relation
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de Gennes regime for smaller channels. This value, Deff ≈ 2lp, for the transition out of the

extended de Gennes regime is in agreement with the freely-jointed rod model of Dai et al. 7

These results show that the data are insensitive to the detailed model of the chain, confirming

the universal nature of the de Gennes blob regime.

Having confirmed that there is a transition to the blob regime at D/lp ≈ 2, we now turn

our attention to examining Odijk’s scaling theory for backfolded chains. Figure 5 shows

that the Odijk backfolding model in Eq. 11 with computed global persistence length values

from ideal wormlike chain simulations collapses all of the data for ξ ≪ 1 and Deff < 2lp,

independent of the particular values of lp/w and D/lp. As we would expect, the data do

not exhibit the scaling ⟨X⟩/L ∼ ξ1/3 for Deff > 2lp, even when ξ ≪ 1, since these channels

correspond to the blob regimes (see Supporting Information). While the range of Deff/lp

for the backfolded Odijk regime in Figure 4 may be small, this regime spans many decades

in ξ, thereby identifying ξ as the proper scaling variable. The lower bound on the value

of ξ for the backfolded Odijk regime for a given lp/w ratio can be estimated by using a
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channel size D ≈ 2lp as the boundary. At this channel size, g ≈ 2lp (from Figure 3), implying

that the lower bound is ξ ≈ 0.63(w/lp) from Eq. 15. Note that the range of fractional

extensions corresponding to the backfolded Odijk regime in Fig. 5 is between 0.2 and 0.8,

which is reminiscent of DNA extensions in the transition regime.11,46 This rapid increase in

the extension over a small range of channel sizes is due to the brisk increase in the scaling

parameter ξ with decrease in D, as the extension is related to ξ by Eq. 11. The rise in ξ is

in turn related to the exponential upsurge of g, since ξ is proportional to g (Eq. 6).

The deviation from the scaling ⟨X⟩ ∼ ξ1/3 takes place in the range ξ ≈ 1, as predicted by

Odijk’s scaling theory. The accuracy of his theory is remarkable in this respect, since the

statistics used to estimate the excluded volume (in particular the angle δ) are only valid for

D ≪ lp but still provide a reasonable estimate out to D ≈ lp. For ξ > 1, the chain approaches

full extension, as predicted by the Odijk scaling theory. Indeed, as we see in Figure 6, the

prefactors from Burkhardt et al. 3 lead to quantitative agreement with all of our simulation

data once the chains crossover to the classic Odijk regime.

It is natural to wonder why the calculations by Gompper and coworkers3,47 work so well

for real chains4,11 even though they take advantage of an ideal chain model. Indeed, the
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case is similar for analyses of the chain extension using numerical solutions of the modified

diffusion equation for the propagator.41 In these ideal chain models, the extension in the

Odijk regime was evaluated either by computing the rate of change of transverse displacement

along the length of the chain3,47 or the average angle between a deflection segment and the

channel axis.41 Both calculations inherently assume that there is no backfolding. Although

the results for extension from simulations of Gompper and coworkers3,47 and the numerical

estimates of Chen41 are in agreement with one another, it is now clear that these results are

valid only for short chains in the backfolded Odijk regime (L ≪ g) and real chains in the

classic Odijk regime. Because ideal wormlike chains in the extreme confinement limit (D ≲ lp)

are always in the backfolded Odijk regime (ξ = 0 identically), these results3,41,47 for extension

of ideal chains do not apply in the long-chain limit. Note that similar behavior is also

observed with the Odijk regime for wormlike chains confined in slits.20

The results for the Odijk backfolding theory are even more impressive for the chain

variance in Figure 7. For relatively large channels (Deff/lp ≈ 3 to Deff/lp ≈ 10), the variance

is independent of channel size, as observed previously6 in studies of the extended de Gennes

regime. Our results also confirm the expected scaling in the de Gennes regime, δX2 ∼

D
1/3
eff ,12 for the largest channels. Once the chain passes into the backfolded Odijk regime, the

fluctuations in the extension increase rapidly; note that the ordinate in Figure 7(a) spans

nine orders of magnitude. As real chains cross over from the extended de Gennes regime

to the backfolded Odijk regime, their rescaled variance δX2/Llp follows the g/4lp curve, as

shown in Figure 7(b). This implies that

δX2 ≈ 0.25Lg (24)

in accordance with Eq. 12. The collapse of the data onto Odijk’s theory is even more apparent

in Fig. 8, where we use the scaling variable ξ rather than the channel size Deff/lp. Similar to

what we saw for the extension in Fig. 5, the data collapse onto the Odijk theory for ξ < 0.1,
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given that Deff < 2lp. The collapse of the data for the variance in Fig. 8 looks sparser than

that for the extension in Fig. 5 for two reasons. First, it is difficult to reach the asymptotic

limit for the chain variance (see Supporting Information). Second, the scaling of the variance

in the backfolded Odijk regime given by Eq. 12 holds only for ξ < 0.1, while the scaling of

the extension in Eq. 11 is valid up to ξ ≈ 0.4. While this result is indeed a scaling law in

terms of g, the global persistence length itself is not a power law in channel size D, so there

is no simple power law of the form δX2 ∼Dx. Note that the variance data in Figure 7(b) fall

off the g/4lp curve at different values of Deff/lp depending on the monomer anisotropy, lp/w,

suggesting that the width of the backfolded regime is a function of lp/w. This dependence

of the width of the backfolded Odijk regime on the monomer anistropy will be addressed in

detail in Section 5.1.

Eventually, all real chains need to reach a channel size where ξ > 1. Since excluded volume

terminates the backfolded Odijk regime, chains with higher monomer anisotropy remain in

the backfolded Odijk regime down to smaller channel widths. The global persistence length

increases almost exponentially as the channel size decreases, so the maximum in the variance

of the extension also increases rapidly with monomer anisotropy. This peak in the variance
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in chain extension, taken together with the freely draining hydrodynamics for these channel

sizes,46 also explain the peak in the relaxation time for DNA in nanochannels around 100

nm.1,48 Similar to the chain extension, there is a broad transition for the δX2 out of the

backfolded Odijk regime and into the classic Odijk regime. As we see in Figure 7, all real

chains eventually collapse onto Eq. 8 for sufficiently small channels. As was the case with

the chain extension, the prefactor computed by Burkhardt et al. 3 is in remarkable agreement

with our simulation data.

The peak in the variance of the chain extension around D ≈ lp might lead one to think

that it represents a discontinuity in the second derivative of the confinement free energy.

This effect, coupled with the smoothness of the confinement free energy4 and the mean

extension over the same range of channel sizes, may lead one to speculate further that the

blob-to-deflection segment transition is a second-order phase transition. This supposition is

supported by the difficulty in obtaining variance data in the long-chain limit (see Supporting

Information). Indeed, the confinement free energy reaches the long chain limit very quickly4

compared to the variance in extension. However, the Odijk scaling theory makes it clear

that no such phase transition exists at D ≈ lp. The variance in the extension increases

exponentially for small channel sizes through the scaling of Eqs. 12 and 19. However, the

variance in the extension only diverges for ideal chains (w = 0), and this divergence only

takes place in the limit of vanishing channel size. As a result, our current understanding of

the Odijk theory and our simulation data suggest that there is no phase transition between

blobs and deflection segments.

5 Discussion

5.1 Possible Experimental Tests of the Odijk Theory

From a practical standpoint, is it possible to verify the backfolded Odijk regime experimen-

tally? To help answer this question, we computed the channel size corresponding to ξ = 1
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Figure 9: The range of the backfolded Odijk regime for DNA in a high ionic strength
buffer (lp/w = 10),4 RecA-DNA complex (lp/w = 230 assuming w = 5 nm),49 actin (lp/w =
2375),30,31 microtubules (lp/w =9600)31,50 and (6,5) single-walled carbon nanotubes (SWNT,
lp/w = 34210).51 For ideal wormlike chains, lp/w = ∞ and the backfolded Odijk regime
extends all the way down to D/lp = 0. Darker shade indicates the region in which we
have simulation data for g, while lighter shade signifies the region wherein Eq. 23 has been
extrapolated to obtain the value of g. The inset shows the range of the Odijk regimes as a
function of the value of monomer aspect ratio, lp/w. The vertical blue line corresponds to
the (6,5) SWNT, the wormlike macromolecule with the highest lp/w value considered here.
We set the upper limit of the backfolded Odijk regime to the scaling theory value of D/lp = 1
for simplicity, although this limit is closer to D/lp ≈ 2.

for a number of experimentally relevant wormlike chains, from the fairly flexible example of

double-stranded DNA to carbon nanotubes. In most cases, we expect the backfolded Odijk

regime to extend below the channel sizes where we obtained data for g. In these instances,

we have extrapolated our result in Eq. 23 to smaller channel sizes, with the caveat that this

extrapolation must fail at some point.

As we can see in Figure 9, the backfolded Odijk regime occupies a very narrow range

in channel sizes due to the exponential increase in the global persistence length as the

channel size decreases, even for extremely stiff molecules such as carbon nanotubes. The

inset of Figure 9 highlights the narrowness of the backfolded Odijk regime; in order for

the backfolded Odijk regime to span two decades in channel size, we would need to have a

monomer anisotropy lp/w = O(10100). This is clearly well outside the range of any of the

typical materials used to study channel confinement. Likewise, while DNA (lp/w = 10) is
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considered a stiff molecule in many polymer physics situations, the lp/w ratio of DNA in this

context is so low that the backfolded Odijk regime is almost non-existent. The compression

of the backfolded Odijk regime thus poses a significant problem for experiments if we use

the channel size as the control parameter; we can explore a wide range of ξ values over a

narrow range of channel sizes, but doing so in experiments requires an exquisite control over

the channel size that is unlikely to be achieved1 for the persistence length of DNA. We can

open up a wider range of channel sizes by increasing the persistence length, provided that

wormlike chains with these larger persistence lengths are available with contour lengths such

that L≫ g.

While it seems unlikely that the backfolded Odijk regime will be verified by experiments

that involve changing the channel size, it may be possible to test Odijk’s theory experimen-

tally instead by fixing the channel size and changing the molecular weight of the confined

chain. For example, consider the phase diagram for RecA-DNA in Figure 10. Relatively short

RecA-coated DNA has recently been used to study confined chains in the Odijk regime.49

To construct this phase diagram, we assumed that the effective width of RecA-coated DNA

is the same as naked DNA in the absence of a better estimate. For chains with L < g, we

would expect to observe the classic Odijk regime (⟨X⟩ ∼ L) because there are not a sufficient
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number of deflection segments to produce a global hairpin. This appears to be the case

in experiments so far using RecA-DNA49 (and actin filaments29) based on the microscopy

images. However, if we increase the contour length, such stiff molecules would eventually

exhibit a regime with backfolding and weak excluded volume interactions (i.e., g < L < L∗),

where ⟨X⟩ ∼ L1/2. A further increase in contour length would lead to an onset of excluded

volume interactions and a return to the scaling ⟨X⟩ ∼ L for the backfolded Odijk regime.

Counterintuitively, this test of the Odijk regime is best done in relatively wide channels

(D ≈ lp) rather than very small channels; as we see in Figure 10, the range of molecular

weights with ⟨X⟩ ∼ L1/2 widens substantially as the channel size increases. Indeed, with the

estimates we used to construct Figure 10, it may be possible to observe the first transition

using RecA-coated DNA at reasonable molecular weights. It seems unlikely that we would

reach the transition back to ⟨X⟩ ∼ L at L∗, since this would require RecA-coated DNA of

several hundred thousand base pairs. The upside of such an experiment is that, in order

to observe a reasonable range of molecular weights where g < L < L∗, the experiment needs

to be performed in a channel close to the persistence length. Thus, the fabrication of the

experimental system should be relatively easy, with the biochemistry being the limiting step.

5.2 Implications for Genomic Mapping

While the exponential increase in the global persistence length as the channel size decreases

makes fundamental studies of the different Odijk regimes difficult, it is critical to recent suc-

cesses using 45 nm channels for genomic mapping of DNA.15,52 In nanochannel mapping,53,54

DNA are labeled with sequence specific probes and stretched by injecting them into a chan-

nel. The physical distances between neighboring probes are measured using fluorescence

microscopy, and these data can be converted to genomic distances from the fractional ex-

tension of the chain. When implemented in a massively parallel way,15 this method can be

used to obtain information on structural variations in genomes that are difficult to assess by

other techniques.
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Clearly, the key to successful genomic mapping is to obtain linearly ordered probes; if

the probes are disordered due to backfolding of the chain, this may be interpreted as a

genomic reorganization rather than just a physical reorganization inside the channel. Based

on Odijk’s theory, there are two strategies to obtain linearly ordered deflection segments.

In the first strategy, we can work with a chain in the Odijk regime D ≲ lp so long as the

chain length satisfies L ≪ g, even if ξ < 1. This approach will lead to ordered deflection

segments and, in principle, can be implemented in circa 100 nm channels. Unfortunately,

working with such small fragments of DNA makes genome assembly more difficult and leads

to a large variance in chain extension.55 The second strategy involves working with very long

molecules, hundreds of kilobases in size, with the largest value of ξ achievable in experiments.

It is obvious that forming a global hairpin is a problem, since it leads to scrambling of the

genomic information. However, since global hairpin formation is a stochastic process, it is

possible to get linearly ordered genomic data from a single molecule that did not happen to

form a global hairpin. While this appears to be a possible strategy, we know from Odjik’s

theory that there will still be large fluctuations in the distance between barcodes in the

absence of a global hairpin. It is the second derivative of the Flory free energy in Eq. 10 that

drives the fluctuations, which is affected by the statistical probability of forming a hairpin

but does not require that such a hairpin actually form. This theoretical insight is supported

by the evolution of the genome mapping technology, where large fluctuations55 motivated the

switch from 100 nm channels54 to 45 nm channels15 in the current commercial technology.

Once the system is firmly entrenched in the classic Odijk regime, not only are the deflection

segments linearly ordered but the variance in the extension also drops precipitiously. As can

be seen from Figure 7(a) a small decrease in channel size going from the backfolded Odijk

regime to the classic Odijk regime can result in a decrease in variance by 3 to 4 orders of

magnitude.

Since DNA is a polyelectrolyte, its persistence length and effective width can be manip-

ulated by changing the ionic strength of the buffer. Thus, in an experimental system, the
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extent of confinement can be controlled by either changing the channel size or changing the

ionic strength of the system.28,53,56 Figure 11 provides a phase diagram for DNA in channel

confinement as a function of ionic strength and channel size. To construct this diagram, we

used Dobrynin’s theory57 for the persistence length of DNA58 and Stigter’s theory59 for the

effective width. Our results indicate that double-stranded DNA rapidly reaches the classic

Odijk regime and thus should not exhibit many hairpins in 45 nm channels at 100 mM salt,

which is similar to the point where the genomic mapping technology operates. Hairpin for-

mation could still occur due to kinetically trapped, frozen hairpin states as the DNA enters

the nanochannel.60 Our work certainly did not account for such cases, as our results are

restricted to equilibrium thermodynamics.

5.3 Implications for Theories of the Transition Regime

Our results strongly support Odijk’s theory of two deflection segment regimes, one with lin-

early ordered deflection segments and a second with backfolding. In this sense, they clarify

the confusion in the literature surrounding the so-called “transition regime” for DNA in a

nanochannel. Only by considering a wide range of monomer anisotropies, up to approxi-
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mately fifteen times stiffer than DNA, using many beads per persistence length, were we

able to observe the generality of Odijk’s scaling theory in Figures 5 and 7. We thus recog-

nize many of the prior generalizations related to the transition regime are extrapolations of

artifacts arising from the modest monomer anisotropy of DNA and the limited chain lengths

used in previous work.

With respect to the ideal blob (Gauss-de Gennes) model,4,16,61 there is indeed an apparent

exponent ⟨X⟩ ∼ D−1 at the start of the backfolded Odijk regime in Figure 4 for monomer

anisotropies similar to DNA4,7,11,13 using many different polymer models. Moreover, one of

the striking results from Dai et al. 7 is the collapse of the data in the transition regime using

the ordinate and abscissa of Figure 4, which we initially thought might support a regime

with the scaling

⟨X⟩

L
∼ (

D

lp
)

x

(
lp
w
)

1/ν−2

. (25)

However, in order for Eq. 25 to be congruent with Odijk’s theory with a scaling exponent

x = −1, the global persistence length would need to follow the power law g/lp ∼ (lp/D)4/3.

This is clearly not the case from the simulation data in Figure 3, even for channel sizes

D ≈ lp.

It is thus natural to wonder why the data collapse in both the blob regimes and the

backfolded Odijk regime using the approach in Figure 4. First, note that the exponent in

the ordinate of Figure 4 was chosen to ensure collapse in the blob regimes.7 If we use the

the classical value of the Flory exponent, ν = 3/5, then 1/ν − 2 = −1/3. Second, the mean

extension in the backfolded Odijk regime (Eq. 11) can be rewritten as

⟨X⟩

L
(
w

lp
)

−1/3

≃ (
g

lp
)

1/3

(
lp
D

)

5/9

= f (
D

lp
) , (26)

where the left hand hand side is the ordinate of Figure 4 and f is some function of D/lp.

Thus, the collapse of the data for different lp/w values in Figure 4 in the range Deff ≈ lp to

Deff ≈ 2lp is a serendipitous consequence of the scaling, ⟨X⟩ ∼ ξ1/3, in the backfolded Odijk
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regime rather than evidence of a scaling law for ⟨X⟩ in terms of D/lp.

Unlike the ideal-blob model, the cooperative backfolding model of Dai et al. 18 is not

directly contradicted by the results presented herein. Furthermore, Odijk’s theory clarifies

the region in phase space where the cooperativity model is potentially applicable. In the

cooperativity model, the extension of the chain proximate to the classic Odijk regime is

described by conformations consisting of regions of S-loops, and regions of linearly ordered

deflection segments.18 This premise is consistent with the physics of the transition at ξ ≈ 1

in Odijk’s theory.10 For ξ ≪ 1, the chain can have many hairpins present simultaneously

at some channel location x. Indeed, this is the basis for the Z parameter in Eq. 5. As ξ

increases, the ability to backfold decreases. As a result, the number of hairpins present at a

cross-sectional slice, x, should decrease, with an S-loop being the limiting case when ξ ≈ 1.

In the context of elucidating the universal behavior of a confined wormlike chain, modeling

the transitions between regimes is generally not a priority. However, in the context of DNA

in a nanochannel, Fig. 9 shows that the backfolded Odijk regime is almost entirely suppressed

and Fig. 11 shows that the genomic mapping technologies lie near ξ = 1. Thus, there is a

practical impetus to develop a model for the transition to the classic Odijk regime for DNA.

Intriguingly, Fig. 5 suggests that ξ may still be the relevant parameter for describing the

extension even as ξ approaches unity. While the extension data in Fig. 5 no longer follow the

scaling law ⟨X/L⟩ ∼ ξ1/3 as ξ → 1, the data still collapse when plotted as a function of ξ well

past ξ = 1. While the Flory theory in Eq. 10 is not the correct approach to describing the

transition at ξ = 1, the physics embodied in ξ (and, more importantly, the global persistence

length g) suggests the possibility of a more fundamental, predictive model of the transition

to the classic Odijk regime at ξ ≈ 1.

5.4 Comparison with Slit Confinement

It is worthwhile to briefly compare Odijk’s theory10 for the extreme confinement limits,

D ≲ lp to recent results for confinement in slits20 of size H ≲ lp. Similar to the case in
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channels, slit confinement also leads to different types of behavior in strong confinement

depending on the chain length, channel size and excluded volume interactions. One of the

advantages in describing slit confinement is that we know that the global persistence length

in a slit is bounded between g = 2lp, i.e. the persistence length of a wormlike chain in two

dimensions, and g = lp.

The situation for short chains (λ ≪ L ≪ g) is identical for slits and channels; the walls

orient the stiff chain, leading to an extension of the form of Eq. 7. The key difference is

the upper bound in molecular weight; since the global persistence length grows rapidly in a

channel as its cross-section decreases, the short-chain behavior persists up to much higher

molecular weights in a channel than it does in a slit.

As the chain length increases beyond the global persistence length, both slit-confined and

channel-confined chains undergo ideal random walks in the unconfined dimension(s) provided

that the chain is thin enough so that excluded volume interactions are weak (ξ < 1). The

random walk in the channel is one-dimensional, while the random walk in the slit is two-

dimensional, but the scaling of the size of the chain with molecular weight in both cases is

L1/2. In both slits and channels, the ideality of the random walk arises because the chains

can bend along the unconfined dimension(s) but they are too short to exhibit substantial

excluded volume interactions. Naturally, in both slits and channels, this scaling persists to

high molecular weights as w → 0, since the chain can bend many times without experiencing

substantial excluded volume interactions.

The key distinction between slits and channels takes place for long chains. In the slit

case, there exists a single long chain regime.20 Here, chains with contour length L≫Hlp/w

cross-over to a self-avoiding random walk in two dimensions, where the RMS end-to-end

distance scales like R ∼ L3/4. In channels, Odijk’s theory10 also predicts that chains with

L > L∗ and ξ < 1 have the scaling for a self-avoiding random walk in one-dimension, namely

⟨X⟩ ∼ L. Likewise, chains with ξ > 1 always have this extensive scaling, independent of L,

as long as L > λ. However, the dependence of ⟨X⟩ on the parameters w, lp, and D depends
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on whether excluded volume interactions are strong (ξ > 1) or weak (ξ < 1).

6 Concluding Remarks

In the present contribution, we have used large scale PERM simulations of an ideal worm-

like chain model to correct Odijk’s theory for the global persistence length19 to account for

fluctuation effects and other approximations down to channel sizes D/lp = 0.5. This result

provided the closure for Odijk’s scaling theory for confined wormlike chains.10 The theory

correctly predicts the confinement free energy,4 average chain extension, and the variance in

the extension, as well as the point at which excluded volume interactions suppress backfold-

ing. We have tested his theory from lp/w = 8.45 to lp/w = 145 using a simulation model that

resolves highly anisotropic chains with many beads per persistence length.

The concordance between the results presented here and Odijk’s theory implies that prior

models of the so-called transition regime,4,16,18 while in agreement with simulation data for

a limited range of monomer anisotropies, are not the correct description for the full range

of parameters. In fact, the sharp change in extension over a narrow range of channel sizes

in the transition regime is a result of the rapid increase of the global persistence length, as

one enters the backfolded Odijk regime from the extended de Gennes regime. Consequently,

given the confusion disseminated by the term “transition regime”, we propose abandoning

it in favor of the label “backfolded Odijk” regime for the universal regime when ξ ≪ 1 and

reserve the term “transition” for crossovers between universal regimes.

Our results, when combined with recent work on the extended de Gennes regime,7,8

validate Odijk’s description of channel-confined wormlike chains10 in Figure 12. While the

classic Odijk regime2 and the de Gennes regime5 have been accepted dogma for several

decades, they represent limiting cases that are difficult to access experimentally and thus

not a good description of typical experimental data.1,25,62,63 Although the effect of excluded

volume was not considered in the original theory of the classic Odijk regime,2 our results
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Figure 12: Summary of the regimes of confinement for a wormlike chain in a nanochannel
and the corresponding fractional extension. The blue-shaded region corresponds to the de
Gennes regime and the extended de Gennes regime, as they exhibit identical scaling of the
extension. Note that the lower bound in ξ for the backfolded Odijk regime is a function of
w/lp and is approximately given by 0.63(w/lp). However, we used the lower bound value of
10−3 only to illustrate that this regime can span many decades in ξ.

indicate that excluded volume is indeed necessary to suppress backfolding of long chains

in this regime. Most experimental systems either lie in the extended de Gennes regime or,

for a small range of channel sizes (but a large range of ⟨X⟩ and ξ), the backfolded Odijk

regime. Moreover, since the transitions between confinement regimes are not sharp and the

molecular weights required to reach the long-chain limit are large, a substantial portion of

the experimental data do not lie firmly in any well defined regime.

While we feel that the Odijk theory10 is now validated, this is not the first time that the

problem of channel-confined wormlike chains has been declared nearly “solved.” Naturally,

the Odijk theory still requires an experimental test, and this may not be an easy task. Aside

from the challenges we highlighted already concerning the narrowness of the backfolded Odijk

regime and the need to use very high molecular weight chains, most experimental systems

use rectangular channels due to fabrication limitations or the desire to increase experimental

throughput via tapered nanochannels.62 We recently found that such channels can exhibit
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mixing of regimes, where the two channel dimensions lie in different regimes and thus affect

the chain statistics differently.25 We expect that the behavior of g in this case will be a

non-trivial function of the aspect ratio of the channel, and the narrowness of the backfolded

Odijk regime will make it difficult to isolate this regime. Thus, while simulation and theory

now seem to be in accord, substantial challenges remain in the experimental area.
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