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Abstract

De Gennes’ blob theory has been remarkably successful at describing weakly confined

polymers in both slits and channels, and comparable results surround Odijk’s theory of deflec-

tion segments for strongly confined wormlike polymers in nanochannels. However, given the

success of Odijk’s theory in channels, it is remarkable that there is no comprehensive theory for

the simple case of a wormlike polymer strongly confined between two parallel plates. We pro-

pose such a theory by drawing inspiration from the existing literature on ideal wormlike chains

in slits and Daoud and de Gennes’ idea of mapping a slit-confined chain to a two-dimensional

chain. We postulate that the chain can be quantitatively described as a two-dimensional worm-

like chain with a weak perturbation in the confining dimension due to deflection segments.

By incorporating the effects of real chains, where the variable slit depth adds additional sub-

tlety due to concomitant changes in the strength of excluded volume interactions, our theory

predicts the existence of three distinct subregimes. We investigate the validity of our claims

by performing Monte Carlo simulations of a slit-confined wormlike chain using an off-lattice

implementation of the pruned-enriched Rosenbluth method. From these simulations, we find

strong numerical evidence supporting our predictions, including the existence of subregimes

within the Odijk regime.
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1



1 Introduction

The subject of confined wormlike polymers has garnered recent attention due to the confluence

of fundamental questions in polymer physics and the demand for new genomic analysis tools.1,2

One of the simplest modes of confinement, both theoretically and experimentally, involves placing

a wormlike chain between two parallel planes. This type of confinement exhibits a rich set of

equilibrium behavior due to the interplay between confinement, chain stiffness, excluded volume

interactions and chain length.3–10 However, despite the apparently simple geometry, details sur-

rounding strongly confined wormlike polymers in slits remain remarkably controversial.7–9 In this

article, we attempt to resolve the issue by proposing a comprehensive theory of the Odijk regime

in slits, which we subsequently support with Monte Carlo simulations.

The source of disagreement in the literature surrounds a divergence of approach in attempting to

resolve the details of the Odijk regime in slits. Using a combination of field theory and simulation,

Burkhardt et al.11–13 and Chen and Sullivan 14 have examined polymers absent any intra-chain

interactions (i.e. ideal chains). By different methods, both groups11–14 produce strong, independent

evidence for the existence of deflection segments in slits, and Burkhardt et al.11–13 provide precise

predictions of the relevant numerical prefactors. Alternatively, Doyle et al.7,9 and Cifra 8 have

studied real chain models, which include excluded volume interactions and aim to directly compare

with experiments using DNA. In the latter work, the evidence for the Odijk regime is less clear —

so much so that one study suggests that the Odijk regime may not even exist in slit confinement.8

We reconcile these threads in the literature with a theory for strongly confined polymers in slits

based on the two simple postulates that are embodied in the schematic shown in Figure 1. We first

posit that a sufficiently long, strongly-confined chain may be viewed as a two-dimensional chain

with weak swelling in the direction normal to the confinement plane due to deflection segments,

as seen in the left panel in Figure 1. Such a theory is plausible if the formation of deflection

segments is (i) independent of chain properties such as persistence length and excluded volume

and (ii) separable from the behavior of the chain along the other dimensions. The fact that the

chain is essentially two-dimensional should not be particularly surprising, since it is analogous to
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H = w

H > w

H ≫ w

Figure 1: Schematic representation of real chains in varying degrees of strong, uniaxial confine-
ment (i.e. H� lp). The left presents a top-down view, showing a two-dimensional wormlike chain
composed of deflection segments. The right shows a cross-sectional view, which highlights the
effect of excluded volume strength. For H = w, the polymer becomes a wormlike chain confined
to a plane and is a purely, two-dimensional self-avoiding walk. Alternatively, when H � w the
probability of segment interactions is greatly suppressed and the chain becomes ideal. Note that
this schematic does not depict a fixed value of the persistence length, which must be much greater
than the slit height in all cases.

the mapping proposed by Daoud and de Gennes 15 for blob regimes in weak confinement. Indeed,

this analogy is easily visualized if one imagines that the beads of the chain in the left panel of

Figure 1 are replaced by blobs.

The second postulate concerns the nature of chains with excluded volume and is shown in the

right panel of Figure 1. When the slight height, H, is much greater than the chain width, w, the

probability of intra-chain interactions becomes vanishingly small and the ideal limit is recovered.

The opposite happens when H = w. Here, the chain cannot avoid itself and becomes equivalent

to a purely two-dimensional, self-avoiding wormlike chain in the plane of confinement.16,17 The

case H > w exhibits some probability of interaction and is thus a more complicated, intermediate

state. Using these insights, we propose that a theory that aims to describe slit-confined chains with

excluded volume must be consistent with the ideal chain case discussed in the previous paragraph

when H� w and must also reduce to a real, two-dimensional wormlike chain when H = w.
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We proceed to incorporate these postulates into a theory of the Odijk regime in slits. First, we

extend the ideal chain results of Burkhardt et al.11–13 and Chen and Sullivan 14 into a theory that

quantitatively relates a strongly confined chain and a 2D wormlike chain. We then incorporate the

effects of excluded volume using a Flory theory originally proposed by Odijk,6 which accounts

for both the limits H � w and H = w described in Figure 1. Having reviewed and expanded on

the theory of the Odijk regime in slits, we compare its predictions to numerical results of a discrete

wormlike chain model using an off-lattice version of the pruned-enriched Rosenbluth method.18

The method allows us to explore a large region of the applicable parameter space over which we

find excellent agreement with our theory. Finally, we conclude with a brief discussion of some of

the implications of our findings.

2 Theoretical Results

2.1 Ideal Chains

We now consider detailed theoretical results for the equilibrium behavior of an ideal wormlike

chain in the Odijk regime in slits. Alongside our own results, we also review prior work on ideal

chains, which is necessary for a self-contained discussion of chains with excluded volume in Sec-

tion 2.2. Given the need to review this material and our desire to preserve logical continuity, ideas

and equations attributable to other authors are often simply distinguished with a citation. Con-

versely, an equation with no such citation can be considered an original contribution.

A slit-confined, ideal wormlike chain has three length scales which characterize its behavior:

a slit height, H, a contour length L and a persistence length lp. In the present work, we will

focus solely on the region of the parameter space where H � lp, which we take as the definition

of the Odijk regime. Furthermore, we restrict our scope to proper uniaxial confinement, with an

infinite domain extending in the directions tangent to the floor and ceiling of the slit. In practice

slits must of course have side walls, but it is anticipated that the walls are unimportant for the

equilibrium conformation as long as the polymer size, R, is small compared to the distance between
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the walls.6,19

The Odijk regime is distinguished by the emergence of a new length scale, which manifests

itself when H� lp.20 This length scale, called the deflection length20

λ = H2/3l1/3
p (1)

describes the contour length of the confined chain between intermittent collisions with the top

and bottom of the slit walls (see Figure 1). Since the persistence length is large on the scale of

confinement, bending of the chain is minimal between such deflections, and a segment of the chain

of the size of the deflection length is essentially rod-like.

In addition to the restriction that H be much less than lp, the contour length of the chain must be

sufficiently long to enter the Odijk regime. In fact, given that H � lp we can distinguish between

three regimes of behavior based upon the contour length of the chain. When L� λ we achieve

the Odijk regime, where we have sufficient chain length to exhibit a large number of deflection

segments. On the other hand, if L� H the chain is weakly confined and behaves similar to rod-

like particle in the bulk. Due to the separation of length scales between H and λ when lp is large,

there is an intermediate regime which arises when H � L� λ . This regime is characterized by

orientational ordering of the stiff chain, similar to nematic ordering of rod-like liquid crystals.21

The transition from bulk behavior to the Odijk regime can be characterized by both a projection

of the contour length onto the plane of confinement, L‖, as well as a confinement free energy, ∆Fc.

We define the projected contour length as the length of the chain contour projected onto the plane

parallel to the slit surface

L‖ =
〈∫ L

0

∣∣∣∣∂r‖
∂ s

∣∣∣∣ds
〉

(2)

where r‖(s) = e⊥×r(s)×e⊥ is the projection of the contour of the chain, r(s), onto the slit surface

assuming that e⊥ is a unit normal to the plane of confinement. The confinement free energy is given

by

∆Fc = kBT ln
Z
Z0

(3)
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where Z is the configurational partition function, Z0 is the partition function for an ideal, uncon-

fined wormlike chain, kB is Boltzmann’s constant and T is the absolute temperature.

Focusing on the projected contour length for the moment, we note that it is difficult to obtain an

analytical expression from Eq. 2, and we are forced to rely on numerical techniques. Fortunately

some simple trigonometric arguments are sufficient to obtain approximate expressions for L‖ in

each regime. When L�H, the polymer is rod-like, and we can approximate the projected contour

length as

L‖ ≈ L〈cosθ〉 (4)

where θ is the smaller angle between L and L‖. Because L is smaller than the slit height, the rod is

free to rotate isotropically, giving21

L‖ =
πL
4

(5)

which is what we would expect as bulk-like behavior. In the orientation regime, when H� L� λ ,

the chain is still rod-like but can no longer rotate freely. In this case we can assume that θ ≈ H/L

is small and we can expand the right hand side of Eq. 4 to give20

L‖ ≈ L

[
1− 1

2

(
H
L

)2
]

(6)

A more careful evaluation of Eq. 2 yields only a change to the prefactor11–13

L‖ = L

[
1−αL

(
H
L

)2
]

(7)

with αL = 0.09137. Finally, in the Odijk regime, L� λ and the chain consists of Nλ = L/λ deflec-

tion segments. Assuming each deflection segment contributes a portion similar to the orientation

regime, we substitute L = λ into the right-hand side of Eq. 7 and multiply by Nλ to obtain11–13,20

L‖ = L

[
1−αL

(
H
lp

)2/3
]

(8)
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The confinement free energy also shows distinctive behavior in each of the three regimes. When

L� H, a combination of a loss of translational and rotational entropy gives rise to22,23

∆Fc =− ln
(

1− L
2H

)
(9)

This free energy is identical to that of a weakly confined polymer in larger slits (H � lp) and is

exactly half that of a weakly confined polymer in a square channel.22,24 When H � L� λ , the

loss of rotational entropy becomes more severe and21,23

∆Fc = kBT ln
(

2L
H

)
(10)

When L� λ , dimensional analysis suggests that the confinement free energy ∆F is O(kBT ) per

deflection segment is20,21,25

∆Fc ∼ kBT
L
λ

(11)

Odijk has pointed out that Eq. 11 is not equivalent to Nλ independent segments with a free energy

given by Eq. 10.20,21 Instead, Eq. 11 also accounts for the correlation between successive deflec-

tion segments due to chain connectivity.21 Rearranging Eq. 11 and introducing a dimensionless

confinement free energy per persistence length F , gives11–13,25

F ≡ ∆Fc

kBT
lp

L
= A

lp

λ
(12)

where A= 1.1036 is a geometry-dependent prefactor previously calculated by Burkhardt et al.11–13

It is worth pointing out that since the Odijk regime is asymptotically approached when H �

lp, the confinement free energy smoothly varies between the strong confinement limit20 and the

weak confinement limit15,26 as a function of H/lp. Accordingly, Chen and Sullivan provide an
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interpolation formula for the free energy of ideal chains as a function of slit height,14

F =
π2/3(lp/H)2

[5.146(lp/H)2 +1.984(lp/H)+1]2/3 (13)

valid at all values of H/lp. Note that Eq. 13 reduces to Eq. 12 in the limit H/lp� 1.

In many experimental systems, L� λ and the chain is long enough to be safely considered in

the Odijk regime. In such systems (e.g. fluorescence microscopy experiments involving double-

stranded DNA), the polymer size projected onto the confinement plane, R‖, is directly observed.

For our purposes it is more convenient to deal with the root-mean-square end-to-end distance

R≡ 〈|r(L)− r(0)|2〉1/2 (14)

Using simple trigonometric arguments similar to those above, R‖ can be related to R by

R‖ = R

[
1− γ

(
H
R

)2
]

(15)

where γ is some unknown constant. Importantly, the ratio R‖/R given by Eq. 15 approaches one

with increasing chain length regardless of the slit height, unlike L‖/L, which remains a function

of H/lp. Therefore, because R� λ � H is a requirement for the Odijk regime, one may safely

assume that for most practical purposes R‖ and R are interchangeable.

Given its experimental importance, we would certainly like to find an expression for the end-to-

end distance as a function of L, lp and H for an ideal chain, which seems to be absent in the existing

literature. As long as L� λ , the formation of deflection segments in strong confinement decouples

the behavior of the chain in the directions parallel and perpendicular to the plane of confinement.

Thus, in e⊥ the chain configurations are dominated by stochastic collisions of deflection segments

with the top and bottom of the slit, irrespective of the horizontal position of the chain. However,

since the parallel axes contain no impediments, the chain is free to swell horizontally and perform

some type of two-dimensional random walk.6,9 As stated in the outset, this assumption is similar to
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Daoud and de Gennes’ blob theory,15 and forms the basis of several Flory theories used to explain

the behavior of real chains in the Odijk regime.6,9 However, instead of a two-dimensional walk of

blobs, in the strong confinement, we have a two-dimensional walk of deflection segments.

Moving to express these ideas more formally, dimensional analysis reveals that the square end-

to-end distance is a function of L/lp and λ/lp only

R2

lp
2 = f

(
L
lp
,

λ

lp

)
(16)

In Eq. 16, the dependence of R on slit height is expressed in terms of λ/lp only, since λ is the

only quantity that depends on H. Hypothesizing that the random walk behavior of the chain is

decoupled from the slit height leads us to

R2

lp
2 = g

(
L
lp

)
h
(

λ

lp

)
(17)

Here g accounts for the walk in the plane of confinement and h accounts for the excursions of the

chain in e⊥.

We hypothesize that since the chain is wormlike in the bulk, g(L/lp) also describes a wormlike

chain, in contrast to a different type walk such as a random flight. If the chain is indeed wormlike,

g can be described by the Kratky-Porod model for a two-dimensional wormlike chain16,17

g
(

L
lp

)
=

4L
lp

[
1− 2lp

L

(
1− e−L/(2lp)

)]
(18)

As an additional check, one may also evaluate the bond autocorrelation function

C(s) = 〈u(s) ·u(0)〉 (19)

where u = ∂r/∂ s is a tangent vector to the chain contour. C(s) gives the directional correlation

between chain segments as a function of the distance along the backbone of the chain, and for an
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ideal, 2D wormlike chain is given by 16,17

C(s) = exp
(
− s

2lp

)
(20)

Notably, the characteristic decay length for a 2D wormlike chain is twice the persistence length lp

of a wormlike chain in bulk solution.

To complete our description of the end-to-end distance, we still need to account for the change

in R due to the change in slit height. Because H � lp, the dimensionless quantity λ/lp is small

and h(λ/lp) may be expressed as a series expansion

h
(

λ

lp

)
= 1−2αR

λ

lp
+O

[(
λ

lp

)2
]

(21)

where we define αR to be a positive constant. We expect this approximation to be very good for

large lp, similar to Eq. 8 for the projected contour length.

Combining Eq. 1, Eq. 18 and Eq. 21 gives

R2 = 4Llp

[
1− 2lp

L

(
1− e−L/(2lp)

)][
1−2αR

(
H
lp

)2/3
]

(22)

where we have dropped the second order terms in λ/lp. In addition to providing a quantitative

prediction, Eq. 22 implies that we can distinguish between two subregimes based on the projected

contour length of the chain. For L� 2lp, we find an “Odijk–rod” regime where the chain behaves

like a stiff rod in the plane of confinement. Simplifying Eq. 22 in the rod limit gives

R = L

[
1−αR

(
H
lp

)2/3
]

(23)

where the Taylor series expansion
√

1−λ/lp ≈ 1− λ/2lp has been used to approximate the

square root function to first order in λ/lp. Alternatively, when L� 2lp, we encounter an “Odijk–

Gaussian” regime where the chain obeys a random walk in the plane of confinement. Here Eq. 22
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simplifies to

R = 2(Llp)
1/2

[
1−αR

(
H
lp

)2/3
]

(24)

Note that the “rod” and “Gaussian” terminology employed here reference the rod-like and Gaussian-

like regimes of dilute-solution ideal wormlike chains, typically associated with the Kratky-Porod

model.25,27

2.2 Real Chains

Up to this point, we have limited our discussion to ideal chains. We now abandon this assumption

and consider a polymer with a hardcore diameter w confined in a slit of height H. Fortunately, the

effects of excluded volume interactions are suppressed for very stiff chains and many of the results

of Section 2.1 are directly applicable. Indeed, if we consider a chain shorter than 2lp, intra-chain

interactions are negligible, and the equations contained in Section 2.1 for the projected contour

length, confinement free energy and end-to-end distance remain valid.

For chains longer than 2lp, the impact of excluded volume can no longer be neglected. Here, the

effects of stiffness on the in-plane walk are diminished, and the conformation becomes much more

likely to experience intra-chain interactions. We expect that both the experimentally relevant, end-

to-end distance and the confinement free energy of the chain will be sensitive to these interactions.

For example, in Section 2.1, we demonstrated that for large values of L, the end-to-end distance

of an ideal chain scales like L1/2 in a subregime we labelled “Odijk-Gaussian.” As indicated

in Figure 1, we expect to recover this regime for real chains when H � w. However, when H

approaches w, we expect the polymer size to scale like L3/4, the Flory scaling for a self-avoiding

walk in two-dimensions.15,17

Two Flory theories have appeared in the literature in an attempt to explain the effect of excluded

volume on a long chain in strong, slit-like confinement.6,9 Despite their well-known shortcomings

in describing free energies,28–30 both Flory theories provide insight into the crossover from Gaus-

sian to self-avoiding behavior.

11



Dai et al.9 have proposed a theory based on the idea of mapping a chain to a two-dimensional

projection on the plane of confinement. In their model they define a projected contour length

equivalent to Eq. 8 and an empirically–defined, projected persistence length, lp,‖, which varies

smoothly between lp and 2lp. Two-dimensional excluded volume interactions are then expressed

in terms of an excluded area9

aev = l2
p,‖+1.3wlp,‖ (25)

For our purposes, we note that since w≤H� 2lp, the second term in Eq. 25 is at least an order of

magnitude smaller than the first. This reduces the excluded area to

aev = l2
p,‖ (26)

which is the same as the excluded area which Hsu et al. used for a wormlike chain confined to a

flat plane.17

Using Eq. 26, one may write a Flory free energy describing a virtual two-dimensional chain9,17

F
kBT
∼

R2
‖

L‖lp,‖
+N2

lp,‖

l2
p,‖
R2
‖

(27)

where Nlp,‖ = L‖/lp,‖ is the number of persistence lengths of the virtual chain. By minimizing

Eq. 27 with respect to R‖ one finds a polymer size

R‖
lp,‖
∼
(

L‖
lp,‖

)3/4

(28)

which gives the needed 3/4 scaling for a self-avoiding walk. While the latter Flory theory is

appealing, Hsu et al. have elegantly shown that the theory embodied in Eq. 27 lacks a crossover

to L1/2
‖ for any chain length or excluded volume strength.17 As such, we are unable to recover the

ideal chain limit for H� w using such a model.

An alternative Flory theory by Odijk postulates an excluded volume based on isotropic inter-
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actions between Nλ = L/λ deflection segments,6

vev = λ
2w (29)

As we will see, the three-dimensional nature of the excluded volume expressed in Eq. 29 gives a

crossover with an explicit dependence on w/H.

Following Odijk’s approach, we write6

F
kBT
∼ L

λ
+

R2

2Llp
+

L2w
R2H

(30)

where Eq. 30 includes an additional term for the confinement of deflection segments (see Sec-

tion 2.1). Note that the L/λ term dominates the others, but falls out when differentiating with

respect to R.31 It also is convenient for a future comparison to include a factor of 2 alongside lp in

Eq. 30, since 2lp is the correlation length for a 2D wormlike chain. Differentiating and solving for

the in-plane end-to-end distance yields

R
lp
∼
(

L
2lp

)1/2( Lw
2lpH

)1/4

(31)

This result immediately shows the desired dependence on w/H, and we follow Odijk in defining

an excluded volume parameter6

z≡
(

Lw
2lpH

)1/2

(32)

Thus when z� 1 the polymer size of the scales like L3/4 and when z� 1, the polymer shows ideal

scaling
R
lp
∼
(

L
2lp

)1/2

(33)

Comparing the result for ideal chains in Odijk’s theory in Eq. 33 with Eq. 24 from Section 2.1 is

instructive, since they must agree when w�H. Here we find that Odijk’s theory agrees in part with

Eq. 24. Recall that Eq. 24 was a result of a decomposition into two functions R = g(L/lp)h(λ/lp),
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where g accounted for the random walk and h accounted for the fluctuations of the deflection

segments in the axis normal to the plane of confinement. Aside from an unimportant difference

in prefactor, Eq. 33 agrees with the function g(L/lp), but neglects the term due to h(λ/lp). In

other words, Odijk’s Flory theory correctly accounts for the physics of the two-dimensional walk

only and neglects the (admittedly small) effect due to the change in deflection length when the slit

height changes. We postulate that the same decomposition can be done for chains with excluded

volume
R2

lp
2 = g̃

(
L
lp
,

w
H

)
h̃
(

λ

lp

)
(34)

Using Eq. 31 to obtain g̃ and our analysis from Section 2.1 to obtain h̃ gives

R = c(Llp)
1/2
(

Lw
2lpH

)1/4
[

1−αR

(
H
lp

)2/3
]

(35)

for z� 1, where c is some O(1) prefactor.

In addition to the effect on R, excluded volume interactions should also impact the free en-

ergy of confinement for strongly confined chain. Even with the aforementioned shortcomings in

describing free energies,28–30 Odijk’s Flory theory expressed in Eq. 30 provides considerable in-

sight. Substituting Eq. 31 into Eq. 30 gives

F ∼ L
λ
+

(
Lw

2lpH

)1/2

(36)

which shows two terms. The first term is due to the confinement of an ideal chain derived in Sec-

tion 2.1. The second term is due to binary collisions between deflection segments and is equivalent

to z. It is the second term that is problematic, due to the neglect of chain connectivity in the mean

field approximation inherent in the Flory theory.28,30 Instead, directly analogous to a self-avoiding

walk, this term becomes linear in the contour length with some unknown functional dependence

on the excluded volume strength.28,30 Defining an excess free energy as the free energy difference

between the confined chain with excluded volume and the confined ideal chain, one can formally
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express this as

∆Fex ≡ F−Fid =
L
lp

µex

(w
H

)
(37)

where µex(w/H) is the excess chemical potential.

In summary, due to the influence of excluded volume interactions, we can now identify a third

subregime within the Odijk regime, in addition to the regimes discussed in Section 2.1. We label

this regime an “Odijk-Flory” regime, in analogy to the “Odijk-Gaussian” regime for ideal chains.

Here, chains longer than Hlp/w show swollen coil behavior with a size given by Eq. 35 and an

excess free energy given by Eq. 37. For the reader’s convenience all of the regimes and subregimes

discussed in Section 2 are summarized in Table 1.

Table 1: Regimes of strongly confined chains in slits

bulk orientation
Odijk

Rod Gaussian Flory

L� H H� L� λ λ � L� 2lp 2lp� L� lpH/w lpH/w� L

L‖
πL
4

Eq. 7 Eq. 8

R L L Eq. 23 Eq. 24 Eq. 35

β∆Fc Eq. 9 Eq. 10
L
λ

L
λ
+

L
lp

µex

3 Simulation Results

3.1 Model and Methods

Having laid out a theory for the Odijk regime in slits, we examine its validity by numerical simu-

lation. To model semiflexible chains, we use a discrete wormlike chain model (DWLC), which is a

straightforward discretization of the continuous wormlike chain model used in Section 2.25,27,32–34

The main advantage of such a fine-grained model is the ability to resolve sub-persistence length

features, which are critical to the study of polymers in the Odijk regime, since deflection segments
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may be substantially smaller than the persistence length.20 In our implementation, the polymer

is described as a series of beads connected by N bonds of fixed length a giving a contour length

L = aN. Let the vector ri = (xi,yi,zi), i ∈ [1,N + 1] describe the positions of the beads along the

contour and let ui = (ri+1−ri)/a be the unit vector of the ith bond. In the DWLC model a bending

potential is enforced between consecutive bonds

Ubend = kBT κ

N−1

∑
i=1

(1−ui+1 ·ui) (38)

with a bending elasticity κ . The persistence length may be expressed in terms of κ by considering

the equilibrium probability density function for the bond angle of an ideal wormlike chain27

lp

a
=

1
2

κ−1+κ cothκ

κ +1−κ cothκ
(39)

Note that we take the relation between the bending constant and the persistence length embodied

in Eq. 39 as the definition of the persistence length, rather than the characteristic length scale of

decay of the correlation between successive bonds. As has been discussed by Hsu et al.,35 these

definitions are only equivalent when the chain has no excluded volume, and we find that Eq. 39

conveniently separates the effects of stiffness due to bending elasticity and stiffness due to proximal

intra-chain interactions.

We consider both ideal and real chains, where real chains are endowed with excluded volume

interactions between chain segments. This is accomplished by considering spherical beads located

at bond joints with hard core repulsion potential described by

Uev(ri j) =
N

∑
i=1

i−1

∑
j=1


∞, |ri j| ≤ w

0, |ri j|> w

(40)

where w is the bead radius and |ri j| is the distance between the centers of beads i and j. While it

appears from Eq. 40 that w is a freely varying parameter, unphysical chain-crossing occurs when w
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is less than the bond length a. Accordingly, we choose to set w = a, resulting in a chain composed

of osculating hard spheres. Notably, the choice of a hard core potential also increases the speed of

the algorithm.

Both ideal and real chains must also interact with the slit walls. Similar to the excluded volume

interaction, chains interact with confinement via a hard potential

Uwall(r) =
N

∑
i=1


∞, |ri · e⊥| ≥ H/2

0, otherwise

(41)

where ri is the vector from the origin to the center of bead i, and H is the slit height. Note that

Eq. 41 confines the centerline of the chain, and that this potential corresponds to a physically larger

channel for a polymer with excluded volume interactions. For our hard-bead model, this means

that the “true” slit height is H +w, if we assume that the bead–wall interaction is the same as

the bead–bead interaction.11–13,34 A hard potential is of course an approximation, and in a real

experimental system both the interaction potential and the notion of an effective slit height become

more complicated. We expect this approximation to break down as the length scales w and H

converge, and therefore recommend caution in interpreting our results when w≈H. Notice further

that the notation for the slit height used here is different than in our previous work where the

true slit height was denoted by H and centerline confinement was given as an effective slit height,

Heff.24,25,34,36

We calculate equilibrium properties of the DWLC model using an off-lattice implementation

of the pruned-enriched Rosenbluth method (PERM).18,25,27 PERM is a chain growth Monte Carlo

algorithm with many advantages over conventional Markov-chain algorithms for very long chains

in confinement, since the relaxation time of chains in the latter class of algorithms scale as O(N2).25

Additionally, PERM natively obtains properties as a function of chain length, which is especially

useful for the problem at hand.

In the present manuscript, self-avoiding chains are grown up to 5×104 +1 beads on a DELL

17



Linux cluster using a master/slave parallel algorithm as in our previous work.25,27 Static properties

were calculated using ≈ 105 tours, which is sufficient to ensure that the standard error of most

properties are smaller than the plotted symbol size, unless otherwise noted. In order to streamline

future discussion, Table 2 outlines the specific data sets referenced in Sections 3.2 and 3.3.

Table 2: PERM data sets

Confined Ideal Chains

L/a lp/a H/a # Tours ×105

set 1 [1, 50001] a 5000 (5, 500) b 10.5

set 2 [1, 50001] (50, 5000) 5 25.5

set 3 c [1, 50001] (101.5, 103.5) (1, 100) 5.5

set 4 d [1, 50001] {5, 50, 500, 5000} (50, 500) 0.5

Confined EV Chains

L/w lp/w H/w # Tours ×105

set 5 [1, 50001] (50, 5000) 5 5.5

set 6 c [1, 50001] (101.5, 103.5) (1, 100) 11

Unconfined EV Chains

L/w lp/w # Tours ×105

set 7 [1, 50001] (101.5, 103.5) 5.5
a Linearly spaced ranges are denoted with square braces; b Logarithmically spaced ranges are

denoted with round braces; c Data vary such that H/lp is a constant value at 10−1.5; d Runs were
performed for the given range of H/lp at each of these values of lp/a.

We are specifically interested in calculating polymer properties relevant for the theory of

strongly confined chains presented in Section 2. Most of the properties of interest are calculated

in a straightforward manner by discretizing their previously given definitions. However, there is

some art to efficiently calculating static properties in PERM and further details can be found in our

previous work.25,27

For clarity’s sake, a brief discussion of the free energy calculations in PERM is also warranted.
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In PERM, the free energy

∆F(n) = kBT ln
〈W (n)〉
〈W0(n)〉

(42)

is obtained from a ratio of the Rosenbluth weight of the nth bead of the chain W (n) and the Rosen-

bluth weight of an ideal, wormlike chain in the bulk W0(n).18,24,25,27 In other words, the reference

state for the free energy is an ideal, wormlike chain. To obtain the confinement free energy of

an ideal chain, this reference state is sufficient, and ∆Fc can be obtained from Eq. 42 in a single

simulation.

The introduction of excluded volume interactions complicates the picture however, since the

confinement free energy for a real chain has a real chain reference state. In this case, the free energy

of confinement requires a simulation of a chain with excluded volume in the bulk in addition to

the confined chain calculation. Therefore, we first perform a simulation of a confined chain with

excluded volume and use Eq. 42 to obtain ∆F̃ . Then, we evaluate Eq. 42 in a simulation of a real

chain in the bulk to obtain ∆F̃0. The confinement free energy of a chain with excluded volume is

then obtained as a difference between these free energies

∆F̃c = ∆F̃−∆F̃0 (43)

To obtain the excess free energy of a confined chain a similar subtraction procedure is performed to

change the reference state to a confined, ideal chain. Here, the excess free energy is the difference

between the result of a simulation of a confined chain with excluded volume and a confined, ideal

chain

∆Fex = ∆F̃−∆Fc (44)

3.2 Ideal Chains

We are now prepared to compare results from PERM simulations to the predictions contained in

Section 2 for the Odijk regime in slits. As was the case in Section 2.1, in this section we neglect

any effects due to excluded volume and examine ideal chains.
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We begin by attempting to verify the existence of the weak confinement and orientation regimes

for L�H and H� L� λ respectively. To this end, Figure 2(a) shows the projected contour length

for various values of H/lp as a function of chain length. The agreement with both the functional

form and prefactors of the theory in Section 2.1 is excellent. As expected the projected contour

length follows Eq. 5 for L�H, transitions near L≈H and then follows Eq. 7 for L�H. The data

fall off of Eq. 7 at even larger values of L, presumably as the chain enters the Odijk regime. This

presumption is supported by the fact that chains with smaller H/lp values follow Eq. 7 for longer

chain lengths, suggesting that the width of the orientation regime is governed by the deflection

segment length.

Figure 2(b) shows a similar story for the confinement free energy versus contour length. For

chains much smaller than H the data show excellent agreement with Eq. 9, again without any

fitting parameters. The data transition at L≈H and follow Eq. 10 for chains much greater than H.

As is the case for the projected contour length, the width of the orientation regime depends on the

ratio of H/lp. This observation again supports the fact that the upper bound is determined by the

deflection segment length, as discussed in Section 2.1.

To examine the transition to the Odijk regime more closely, we focus on Figure 3(a), which

rescales the data shown in Figure 2(a) for the projected contour length as a function of chain length.

The data in the figure are again consistent with the ideal chain theory presented in Section 2.1. Just

as in Figure 2(a), the portion of the curve for L� λ agrees quantitatively with the theory for

the orientation regime in Eq. 7. Around L ≈ λ the data transition towards Odijk scaling, and for

L & 10λ it appears to have reached the “long-chain limit.” In this limit, when L� λ , the data

converge to a value of αL = 0.09137, consistent with prior calculations by Burkhardt et al.11–13

In addition to the data as a function of chain length, Figure 3(b) extracts the longest chain

lengths in panel (a) and replots them as a function of H/lp. The agreement between these data

and Eq. 8 explains why the data in Figure 3(a) collapse for different channel sizes. Furthermore, it

appears that Eq. 8 is a good description of the data even for the largest channel sizes in the data set

(H/lp ≈ 0.1). Therefore, at least for the projected contour length, we can consider the chain to be
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(a)

(b)

1
Figure 2: PERM data for (a) the projected contour length of slit-confined, ideal chains and (b) the
confinement free energy of slit-confined, ideal chains as a function of chain length. In both panels,
simulations are run with either a fixed slit height (solid lines) or a fixed persistence length (dashed
lines) which corresponds to set 1 and set 2 in Table 2.

in the Odijk regime even for a rather aggressive value of H ≈ 0.1lp.

As is the case with the projected contour length in Figure 3, Figure 4(a) shows data for the con-

finement free energy as a function of contour length. The results for the free energy are congruent

with both the results for the projected contour length and the theory in Section 2.1. Unlike Fig-

ure 2(b), the data for the free energy of confinement in Figure 4(a) are normalized by the number of

deflection segments. This causes a peak in the data at L≈H, where the entropic penalty of adding

an additional monomer is greatest due to a loss of rotational degrees of freedom. While the peak

in Figure 4(a) is at L≈ H, it appears to move as H/lp changes; this effect is caused by scaling the

x-axis with respect to λ . As expected, the free energy becomes extensive and proportional to kBT
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Figure 3: PERM data for the projected contour length of a slit-confined chain versus (a) chain
length and (b) normalized slit height (for the largest L only). Simulation data sets include data at
a constant slit height (squares and solid lines) and a constant chain persistence length (circles and
dashed lines). These data correspond to sets 1 and 2 in Table 2 respectively. The dashed line in
the main portion of panel (a) is given by Eq. 7 and the solid curve in (a) and (b) is given by Eq. 8.
Because of the rescaled y-axis in panel (a), Eq. 8 reduces to a constant value of 0.09137.

in the long chain limit. It is a satisfying check of our intuition that the free energy is almost exactly

kBT per deflection segment in this limit. As one might also suspect, the free energy approaches the

long chain limit asymptotically, and for most practical purposes, the deviation from the asymptote

becomes small when L & 10λ .

For very long chains in Figure 4(a), there is some observable spread in the data that appears to

disagree with the prefactor of 1.1036 obtained from Burkhardt et al.11–13 This apparent disagree-

ment is due to the finite values of H/lp used in the PERM simulations. The inset to Figure 4(a)

shows the largest chain lengths in the main panel, replotted versus H/lp and compared to the pref-
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actor from Burkhardt et al.. The inset shows that for values of H/lp . 10−2, the PERM data agree

very well with a value of 1.1036, but slit heights larger than this deviate below the curve. Thus

in contrast to the projected contour length, the free energy is more sensitive to the slit height and

one may need to consider smaller ratios of H/lp to observe Odijk scaling behavior. This can be

understood by recognizing that the prefactor for the free energy is an order of magnitude larger

than the corresponding prefactor for the projected contour length. Thus terms of order (λ/lp)
2

may also make a substantial contribution to the free energy at the values of H/lp in the simulation

data set.

Figure 4(b) examines the dependence of the free energy on H/lp even further. Here, simulation

data for the confinement free energy per persistence length for chains of length L/a = 50001 are

shown versus a much larger range of H/lp than in panel (a). When the data is plotted this way, one

can compare to the interpolation formula of Chen and Sullivan 14 (Eq. 13) in addition to Eq. 12.

For larger slit heights, the PERM data show a smooth transition from Odijk scaling when H� lp to

ideal scaling when H� lp, similar to the results of Chen and Sullivan using polymer field theory.14

Across the entire range of confinement strengths the PERM data agree very well with Eq. 13. When

the free energy is normalized with the persistence length, H/lp ≈ 0.1 appears to denote the onset

of Odijk scaling, in contrast to the results in the inset of panel (a). This discrepancy is due to the

difference in scaling of the y-axis, which in panel (a) divides by the small term λ/lp.

We now turn our attention to the theory in Section 2.1 for the projected size of the confined

chain. Recall that in Eq. 15, we used a simple trigonometric argument to claim that the projected

size, R‖, was equivalent to the conventional end-to-end distance for large R. Figure 5 shows PERM

data for the relative error in this approximation versus R/H. For small values of R/H the relative

error remains O(10−1) but falls precipitously for R� H. The slope of −2 evident on the right

hand side of the figure is consistent with the prediction from Eq. 15. From the figure, it is clear

that R≈ R‖ is excellent for values of R & 10H.

Having established that R is a reasonable metric, we would like to validate the key assumptions

of our theory. Recall that in Section 2.1 we postulated that the function describing R could be
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Figure 4: PERM data for confinement free energy of a slit-confined chain (a) normalized by the
number of deflection segments and (b) normalized by the number of persistence lengths. The data
in the main panel (a) are shown versus the number of deflection lengths and versus H/lp in the
inset. The data in panel (b) are shown versus H/lp. Simulation data sets include data at a constant
slit height (squares and solid lines), constant chain persistence length (circles and dashed lines),
and variable slit height and persistence length (filled triangles). These data correspond to sets 1, 2
and 4 in Table 2 respectively. Note that the dashed line in panel (a) corresponds to Eq. 12, which
reduces to a constant value of 1.1036.11–13

decomposed into some function g(L/lp) describing a random walk and another function h(λ/lp)

to account for the deflection segments. Focusing on g(L/lp) for the moment, we postulated that

the confined chain could be approximated as a two-dimensional walk of persistent segments, i.e. a

2D wormlike chain.

To test this hypothesis, Figure 6 shows simulation results for the bond autocorrelation function

C(s) for simulations at various values of H/lp. In order to collapse the data to a single curve, the
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Figure 5: Simulation data for the relative error between R‖ and R as a function of the rms end-to-
end distance of the chain.

autocorrelation function in Figure 6 has been rescaled by the power lp/λ . The collapse is very

good, and as expected from Eq. 20, the bond correlations for s� λ decay exponentially with a

characteristic length of 2lp. This is indicative of a two-dimensional wormlike chain and provides

confirmation of our hypothesis.

However, as was the case with the confinement free energy and the projected contour length,

there is also some nuance to the behavior of C(s) as a function of the distance along the contour. In

Figure 6, we observe that for s� λ the correlations decay with a characteristic length of lp, exactly

half of the value observed for large s. Of course, the relationship C(s) = exp(−s/lp) shown by the

dashed line in the figure is exactly what one would expect for an unconfined, three-dimensional

wormlike chain. Thus, the chain is experiencing correlations indicative of bulk, 3D behavior on

length scales much less than λ and confined, 2D behavior on length scales much greater than λ .

In addition to the interest to the problem at hand, this result provides a satisfying example of an

oft-made assumption that properties below the scale of confinement can be treated as effectively

bulk-like.

Additionally, the results encapsulated in Figure 6 are somewhat at odds with previous work,

which discuss bond correlations in terms of a projected persistence length, lp,‖, that depends on

H/lp.9 However, there are at least two good explanations as to why our data disagree. First, up to
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Figure 6: Simulation data for the bond autocorrelation function C(s) versus contour distance s for
various values of H/lp. The data presented in this figure correspond to sets 1 and 2 in Table 2. The
autocorrelation function has been rescaled by a power of lp/λ in order to collapse all of the data
to a single curve. The dashed line depicts the curve C(s) = exp(−s/lp).

this point, we have not considered the effect of excluded volume as was done in prior work. Indeed,

Hsu et al. have shown that simple relationships between various definitions of the persistence

length break down upon inclusion of excluded volume.35 Secondly, and more importantly, the

authors of the previous study consider a much wider range of values of H/lp, whereas we limit

ourselves to the Odijk regime, where H � lp. If we also restrict the equations provided in Ref. 9

to the Odijk regime, we find that Eq. 20 and the results in Figure 6 are both in good agreement.9

Having confirmed that the random walk is indeed wormlike, we proceed to test the predictions

of Eq. 18 for g(L/lp) versus the values of R obtained form our PERM simulations. Accordingly,

Figure 7(a) shows PERM simulation data compared to Eq. 18 for a range of values of H/lp. Note

that Eq. 18 is simply the result for the end-to-end distance of a 2D wormlike chain16,17 and does not

include any dependence on the slit height. The data agree very well with Eq. 18, and the curves are

practically indistinguishable except for some notable sampling error that accompanies simulations

of extremely large chains in PERM. In fact, at first glance it appears that the simulation data are in

quantitative agreement with the prediction even without accounting for the dependence on H/lp.

To investigate this further, the inset in Figure 7(a) shows the relative error between R2 and g by
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plotting

1− R2

l2
p

1
g
= 1−h

(
λ

lp

)
(45)

as a function of the number of deflection segments for different values of H/lp, where we have

used Eq. 17 as our definition for h. As anticipated, there is a small, but systematic deviation in the

data as a function of H/lp. To explain this deviation, we anticipated in Section 2.1 that h could be

expressed as the series expansion given by Eq. 21. Using Eq. 21 as a guide, we rescale the relative

error by by λ/lp and obtain Figure 7(b). The collapse of the data is excellent (again with some

notable sampling error for long chains), showing that the first-order terms are sufficient to capture

the dependence of R2 on H/lp. Additionally, a fit to the data in the range L/λ ∈ [1,10] yields a

value of αR = 0.1039(5), which completes the expression for the square end-to-end distance in

Eq. 22.

Since Eq. 22 appears to quantitatively describe the end-to-end distance, it should estimate

the in-plane size from a polymer’s free solution molecular weight, persistence length and the slit

height. This should be an excellent approximation for long chains, since we believe the difference

to be minimal between R‖ and R when R� H. In addition, since the value of αR is O(10−1) and

λ/lp� 1, Eq. 18 should also be an excellent approximation for R‖, as is evident in Figure 7(a).

Other useful approximations are contained in Equations 23 and 24 which contain assumptions

about the contour length as described in Section 2.1. These equations are also displayed in Fig-

ure 7(a).

Finally, we close this section with a comment about an alternative theory, which we label

the “projected 2D chain theory”.9 In this theory, the statistics of the three-dimensional chain are

interpreted in terms of a mapping to a two-dimensional chain. The parameters of the mapping

are L‖ and lp,‖, the contour length and persistence length of a chain projected onto the surface

of confinement. Similar to Section 2.1, the projected 2D chain theory describes the chain as a

two-dimensional walk, making the difference between the two theories subtle to distinguish. The

key difference lies in the dependence of the chain statistics on H/lp, which is embedded in the

parameter L‖ (as seen in Figure 3) for the projected 2D chain theory and is independent of L for
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Figure 7: Simulation data for the end-to-end distance of ideal chains as a function of contour
length. The data in the figure correspond to sets 1 and 2 in Table 2. The data in panel (a) is scaled
by the size of an ideal, 2D chain. The solid curve in panel (a) corresponds to g(L/lp) given by
Eq. 18, the dashed curve gives Eq. 23 and the dot-dashed curve gives Eq. 24. The inset to panel (a)
shows the relative error by approximating R≈ g without including a dependence on the slit height.
Panel (b) shows a rescaled value of the relative error which accounts for the first term in the series
expansion of h(λ/lp) in Eq. 21. The dashed line shows the prediction of Eq. 24 with a value of
αR = 0.1039(5).

our treatment in Section 2.1.

Since we have calculated R2, L‖ and lp,‖, we are in a position to evaluate the claims of the

projected 2D chain theory respecting the dependence of R2 on H/lp. According to the theory, the

crossovers between subregimes depends on the value of L‖/lp,‖ rather than L/lp. Therefore, since

L‖ depends on H/lp, one would expect a weak slit height dependence on the crossover between

subregimes. However, the data collapse in Figure 7(b) does not support this interpretation, since we
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have assumed that h is independent of L/lp. Additionally, the projected 2D chain theory predicts

that the dependence of R on H/lp changes between subregimes, because R ∼ L for the Odijk-rod

subregime and R∼ L1/2 for the Odijk-Gaussian subregime. By contrast, the collapse in Figure 7(b)

shows that the dependence of R on slit height is independent of the change in subregime. Finally,

there is a statistically significant (albeit small) difference between the values of the constants αR

and αL. This difference provides further evidence that the slit height dependence of L‖ cannot

completely account for the slit height dependence of R.

3.3 Real Chains

Building on our discussion of ideal chains, we now turn our attention to the results of PERM

simulations which incorporate excluded volume effects. As Section 2.2 indicates, one expects the

impact of excluded volume to be minimal on the behavior of short chains and on metrics which

depend solely on proximal chain-chain interactions. In agreement with this hypothesis, we do not

observe changes to L‖ following the inclusion of excluded volume interactions, and we therefore

omit it from further discussion. However, we do expect a change in behavior for metrics such as

the end-to-end distance and confinement free energy, which depend on interactions between distal

polymer segments. Such expectations were outlined in Section 2.2, where we harmonized a Flory

theory by Odijk6 and the theory for ideal chains in Section 2.1.

One of the most apparent predictions of the Flory theory in Section 2.1 is a change in the scaling

of the end-to-end distance from R ∼ L1/2 to R ∼ L3/4 for self-avoiding chains in the long-chain

limit. To test this prediction, Figure 8(a) shows the computed mean square end-to-end distance

(normalized by the size of an ideal chain) as a function of the contour length (normalized by 2lp).

Note that this normalization changes the slope to R2/L∼ L0 for ideal chains and to R2/L∼ L1/2 for

swollen chains. In the figure, the end-to-end distance is calculated at a fixed value of H/lp, while

w/H is free to vary. As such, the change in scaling of the polymer size as the excluded volume

strength varies is unambiguous, since the degree of freedom due to w/H is absent for ideal chains.

The results shown in Figure 8(a) agree with Odijk’s Flory theory and do indeed give a slope
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of 1/2 in the long chain limit. This is most readily apparent for chains where w→ H, which

show a very short crossover to the self-avoiding behavior. We further anticipate that chains with

w� H also show a slope of 1/2 in the long chain limit, but finite computational resources limit

our ability to check this hypothesis. In addition to agreement with the slope predicted by scaling

theory, the results agree with Eq. 35, describing the end-to-end distance in the so-called Odijk-

Flory subregime. Using a least-squares fit to the data in the figure, we obtain the prefactor c =

0.593(3) for Eq. 35, which agrees with our expectation that c should be O(1).

Beyond describing the long-chain limit, Odijk’s theory also predicts the crossover behavior ac-

cording to our original conceptualization of the problem embodied in the schematic in Figure 1(b).

The results in Figure 8(a) are in good agreement with this prediction. For chains with w� H, the

behavior very closely resembles the ideal chain case from Figure 7(a) and follows the curve de-

scribing the end-to-end distance of an ideal, two-dimensional wormlike chain given by Eq. 18. As

w/H increases, the excluded volume strength increases and the curve shows a slope of 1/2, indi-

cating a two-dimensional self-avoiding walk. Figure 8(b) further examines the crossover in terms

of the excluded volume parameter z given in Eq. 32. The data collapse nicely to a single curve in

the large z limit, which confirms that Eq. 32 does indeed describe the crossover to self-avoiding

chains in the Odijk regime.

In Figure 1 we also proposed that a strongly confined polymer should behave like a two-

dimensional, self-avoiding wormlike chain in the limit that w→ H. To evaluate this claim, Fig-

ure 8(a) and Figure 8(b) also show data from lattice simulations of 2D, self-avoiding wormlike

chain from Hsu et al.17 To compare both data sets, it was necessary to compute the persistence

length of the lattice chains simulated by Hsu et al. in a manner consistent with our approach from

Section 3.1. Therefore, instead of using the empirically determined values given in Ref. 17, we

used the relation

lp = lb

[
2exp

(
− εb

kBT

)]−1

(46)

where lb is the bond length of the lattice chain and εb is the energy penalty for bending. Using

this definition of the persistence length and the data for the R2 versus L in Ref. 17, we find ex-
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(b)

1
Figure 8: PERM data for the normalized end-to-end distance of real chains as a function of (a) nor-
malized projected contour length and (b) excluded volume parameter. In both panels, simulations
are run at a fixed value of H/lp = 101.5, and the different colored symbols correspond to varying
values of w/lp as indicated by the colorbar. PERM data correspond to set 6 in Table 2. The solid
lines in both panels (a) and (b) correspond to data found in Hsu et al.17 for 2D wormlike chains on
a lattice.

cellent agreement with the slit data in the limit that w→ H. In fact, with no fitting parameters,

both the scaling crossover and prefactors agree, providing strong evidence that as the chain width

approaches H, the slit-confined chain becomes two-dimensional.

As was the case with ideal chains, we expect that the polymer size will have a weak dependence

on the change in deflection segment length as the slit height changes in the form of some function

h̃(λ/lp). In the ideal chain case, we had a closed form expression for g(L/lp), so we could examine
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h by the decomposition

h =
R2

l2
p

1
g

(47)

which is equivalent to its definition in Eq. 17. However, while g(L/lp) is known for ideal chains,

no closed form expression is available for g̃(L/lp,w/H) when excluded volume is introduced. We

circumvent this problem by performing multiple simulations at constant L/lp and w/H and look

for the relative change in R2 when the value of λ/lp is varied.

Defining the relative change in the square end-to-end distance as the difference between R2 at

one value of λ/lp, and R2
0 at another, much smaller value of λ0/lp,0, we obtain

R2
0−R2

R2
0

=
g̃0h̃0− g̃h̃

g̃0h̃0
(48)

In Eq. 48, g̃ and g̃0 cancel as long as we hold L/lp and w/H constant, which is easily done in

PERM. Assuming that h̃ can be expanded like Eq. 21, and dropping terms of order (λ/lp)
2 gives

1− R2

R2
0
= 2αR

(
λ

lp
− λ0

lp,0

)
(49)

Note that when λ0/lp,0→ 0, R0→ l2
pg̃ and we recover the relative error expression used in Sec-

tion 3.2.

We proceed to examine h̃ in Figure 9 in a manner similar to our analysis of the ideal function h

in Figure 7. Accordingly, the inset shows the relative change in the end-to-end distance, 1−R2/R2
0,

as a function of the number of deflection segments, which does indeed change as we vary H/lp.

Similar to the inset in Figure 7(a), the change is small but systematic. To collapse the data, Eq. 49

is rearranged to rescale the y-axis by dividing by the difference in λ/lp and the result is shown

in the main panel in Figure 9. The data collapse very cleanly for small values of L/λ , but show

significant sampling error for larger contour lengths, similar to Figure 7(b). The axis choice in

Fig. 9 exaggerates the sampling error, since the relative error between the two measures of R2

is divided by the difference between two small numbers: λ/lp and λ0/lp,0. A fit to the data in
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Figure 9: The relative change in square end-to-end distance between simulations with different
values of H/lp as a function of the number of deflection segments. The inset shows the absolute
value of the relative change and the main panel shows the absolute value of the relative change
scaled by the difference in λ/lp between the simulations. The absolute value is used since the data
are presented on a log scale and sampling error leads to a fluctuation in the sign of the error for
large L. The data in the figure were obtained at a constant value of H/w = 5 and correspond to set
5 in Table 2. The dashed line in the figure corresponds to a value of 2α . The value of H/lp varies
from 10−3 to 10−1.

the range L ∈ [1,10] gives a value of the constant αR = 0.108(1), which is close to the value of

0.1039(5) for ideal chains obtained in Section 3.2. Indeed the agreement is good, considering that

the error estimates given are from fits over limited ranges due to the sampling error for large L.

The fact that αR is similar between real chains and ideal chains parallels the consistency of L‖,

and provides evidence that the formation of deflection segments is unaffected by the inclusion of

excluded volume interactions.

Finally we close this section with a discussion of the free energy of the confined chain. Odijk’s

theory in Section 2.2 presents two components that contribute to the total free energy of a confined

chain with excluded volume relative to an ideal, unconfined reference state

∆Fconf,ev = ∆Fc +∆Fex (50)

The first is the free energy required to confine an ideal chain, ∆Fc, and the second is the free

energy due to excluded volume interactions of the confined chain, ∆Fex. As it often appears in the
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literature, it is also convenient to define a free energy of confinement ∆F̃c as the free energy required

to confine a chain with excluded volume interactions relative to an excluded volume reference state.

The main panel in Figure 10 shows an example of all three of these free energies (normalized

by kBT ) as a function of the number of persistence lengths. Two obvious conclusions jump out

from the data. First, we observe that ∆Fc� ∆Fex, and therefore the free energy required to confine

a chain dominates the total free energy. This finding matches our intuition developed from Odijk’s

Flory theory in Section 2.2. Second, we see that ∆Fc ≈ ∆F̃c. This observation is related to the fact

that the excess free energy is much smaller than the confinement free energy, but we stress that the

statements are not equivalent since ∆F̃c has a different reference state. Nevertheless, since the two

confinement free energies are so similar, for most practical purposes the confinement free energy

of a chain with excluded volume can be described by Eq. 12, which was originally discussed in

terms of the ideal chain only.

While not dominant in terms of magnitude, the excess free energy is still important, since it

determines the crossover from Odijk-Gaussian to Odijk-Flory behavior. Thus for small values

of L/lp the excess free energy is practically zero as indicated by the noisy fluctuations about the

value of 10−4 for β∆Fex in Figure 10. However as L/lp increases, the number of possible intrachain

interactions follows suit, and the excess free energy eventually scales linearly in L/lp, parallel to

∆Fc in the long chain limit. The linear scaling in L/lp contradicts the Flory theory in Section 2.2,

but coincides with the predictions of modern renormalization group theory.30

The excess free energy also changes with excluded volume strength, but since Flory theory

fails to describe this effect, we are not aware of any theory that makes a quantitative prediction to

which we can compare. Accordingly, we simply report the change in the excess free energy per

persistence length for very long chains as a function of w/H in the inset in Figure 10. In the figure

we observe that the excess free energy is small for small w, monotonically increases as the ratio

w/H gets larger and saturates as w approaches the slit height.

Before leaving the subject of confined chains with excluded volume, we comment briefly on

previous work that has also posited the existence of self-crossing and non-self-crossing regimes
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Figure 10: (main) Normalized ideal free energy of confinement, real free energy of confinement
and excess free energy versus the number of persistence lengths for a chain with H/lp = 10−1.5

and w/H = 0.398. (inset) Excess free energy per persistence length for long chains (L/a = 50001)
with a fixed value of H/lp = 10−1.5 and varying values of w/H. The data used for both the main
panel and the inset correspond to sets 3, 5 and 7 in Table 2.

for strongly confined chains in slits.9 As the nomenclature implies, the distinction between these

possible regimes occurs when H = 2w; when H < 2w, excluded volume interactions prevent chain

segments from crossing, whereas when H ≥ 2w no such restriction is imposed. In contrast with

this idea, Figures 8 and 10 show a gradual excluded volume crossover suggested by Eq. 30 rather

than a topologically constrained state. Due to these observations, we find no evidence to support

the idea that a prohibition of self-crossing is responsible for the self-avoidance of strongly confined

chains in slits. Furthermore, we suggest that a potential crossover at H = 2w may not be universal

and would be an artifact of hard beads, since softer beads could cross, depending on the choice of

potential and length scale.

4 Conclusion

We have presented a comprehensive theory for the Odijk regime in nanoslits that reconciles details

from both the literature on ideal chains and the literature on real chains. In particular we have

shown that there are three regimes of behavior for slits where H� lp, which we labelled the weak

confinement regime, the orientational regime and the Odijk regime. Furthermore, we demonstrated
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three subregimes of behavior for long chains: an Odijk-rod regime, and Odijk-Gaussian regime

and an Odijk-Flory regime, the last of which only occurs for chains with excluded volume. For

the Odijk regime in particular we developed a theory which describes the end-to-end distance in

terms of a two-dimensional wormlike chain with out-of-plane fluctuations described by a series

expansion in λ/lp.

Numerical results are in excellent agreement with the theory. Results for the projected persis-

tence length and confinement free energy are consistent with the three regime picture, and results

for the end-to-end distance provide firm evidence for three subregimes within the Odijk regime.

Additionally, we find quantitative agreement with the theory for the end-to-end distance, and using

our PERM simulations we find several previously unknown prefactors for chains with excluded

volume. Interestingly we find that, while conceptually important, the influence of the slit height on

the end-to-end distance of an ideal chain is practically negligible. However, this is not the case for

real chains, where the slit height strongly influences the excluded volume interactions of the chain.

Finally we note that this problem is quite mature in terms of theory and simulation, yet work

remains to relate these rather abstract regimes to actual experimental systems. Such experiments

can be quite difficult in practice, since one must use a system with a large persistence length lp�H

and long chains L�H relative to the slit height. Despite the difficulty, there are notable examples

of recent successes in measuring semiflexible chains in the Odijk regime by Nöding and Köster 37

and by Frykholm et al.38 Nevertheless, it remains to be seen if the regimes we have outlined can

be observed in real systems, or whether effects such as soft or long-range potentials play a more

dominant role.
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