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Can we predict the microstructure of polymers?

I Microstructure dictates properties

I Microstructure depends on process
history

A very general
problem!

Polymer membranes

I clean water

I medical filters

Saedi et al. Can. J. Chem. Eng. (2014)

Polymer Blends

I commodity
plastics (e.g.
HIPS)

I block polymer
thin films www.leica-microsystems.com

Polymer composites

I bulk hetero-
junctions

I nano-
composites
Hoppe and Sariciftci J. Mater. Chem. (2006)

Biological patterning

I Eurasian jay
feathers

Parnell et al. Sci. Rep. (2015)
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How can we model microstructure formation?

A difficult challenge

I Complex thermodynamics out of equilibrium

I Spatially inhomogeneous (multi-phase)

I Multiple modes of transport (diffusion & convection)

I Large separation of length/time scales

Continuum fluid dynamics

Teran et al. Phys. Fluid. (2008)

Self-consistent field theory (SCFT)

Fredrickson. J. Chem. Phys. 6810 (2002)
Hall et al. Phys. Rev. Lett. 114501 (2006)

Key idea – cheaper models

Classical density functional theory
(CDFT)/“phase field” models
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Multi-fluid models

Two-fluid model
I Momentum equation

for each species

I Large drag enforces
cons. of momentum

de Gennes. J. Chem Phys. (1980)

The Rayleighian

A Lagrangian expression of “least
energy dissipation” for
overdamped systems (Re = 0).

R[{vi}] = Ḟ [{vi}] free energy

+ Φ[{vi}] dissipation

− λG[{vi}] constraints

δR

δvi
&

∂φi
∂t

= −∇ · (φivi)

Transport equations

Doi and Onuki. J Phys (Paris). 1992
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R[{vi}] = Ḟ [{vi}] free energy

+ Φ[{vi}] dissipation

− λG[{vi}] constraints

δR

δvi
&

∂φi
∂t

= −∇ · (φivi)

Transport equations

Doi and Onuki. J Phys (Paris). 1992
4



PFPD Software

Phase-Field Polymer Dynamics

Efficient, parallelized, object-oriented C++ program for simulating
the flow and phase behavior of inhomogeous polymeric fluids.

Field library (KTD)
Field vector/matrix operations

Operators
- Pseudospectral
- Hybrid
 (FD) BCs

Models
- Ternary FHG
- Block polymers

Time Int.
- Model B
- Model H

Scripts and plotting tools
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Integration of transport equations

Model B

Model H

∂φi
∂t

+ v · ∇φi = ∇ ·

∑
j

Mij({φ})∇µj

 Convection-Diffusion

µi =
δF [{φi}]
δφi Chemical Potential

0 = −∇p+∇ ·
[
η({φ})(∇v +∇vT )

]
−
N−1∑
i=0

φi∇µi Momentum

0 = ∇ · v
Incompressibility
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Stable and efficient time integration

Semi-implicit stabilization

I Unconditionally stable for practical use

I Inexpensive relative to fully implicit methods

φn+1 − φn
∆t

= ∇ · [M(φ)∇µni ] +m∇2µn+1
lin −m∇2µnlin

Variable time-stepping

I Step-doubling (50%
greater cost per step)

I Enables much larger step
sizes for slow dynamics
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State-of-the-art method for hydrodynamics

Variable-η Stokes equation

I Fixed-point method
I Enhanced efficiency with

− Anderson mixing
− 1st order continuation

I Solution for both PS and
hybrid discretizations

0 = −∇p−∇ ·Π
+∇ ·

[
η(φ)

(
∇v +∇vT

)]
0 = ∇ · v

Doi and Edwards. (1986)

∇2p = ∇∇ : (Θn −Π)

∇2v̂n+1 =
1

η∗
∇ · (Θn −Π− Ip)

where,

Θn = [η(φ)−η∗]
[
∇vn + (∇vn)T

]
(Figure courtesy of Tatsu Iwama)
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PFPD Software

Phase-Field Polymer Dynamics

Efficient, parallelized, object-oriented C++ program for simulating
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Field library (KTD)
Field vector/matrix operations
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Non-periodic Boundary Conditions

Pseudo-spectral derivatives

∂f

∂x
≈ FFT−1[−ikxf̂ ]

I periodic or homogeneous
BCs only

I very good accuracy

Finite differences

∂f

∂x
≈ fi+1 − fi−1

2∆x
I flexible BCs

I accuracy depends on
order of FD

x

y

A hybrid method

I Periodic BCs in y
(PS)

I Arbitrary BCs in x
(FD)
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Spinodal decomposition example (diffusion only)

Hybrid simulation

I Left and right BCs
∂φp
∂x

= 0,
∂3φp
∂x3

= 0

∂φn
∂x

= 0,
∂3φn
∂x3

= 0

I Top and bottom are
periodic

I (Top) Polymer
concentration

I (Bottom) Slice through
y = 32. Notice that the
slope at x = 0 and x = 64
is zero.

(Parameters: N = 5, χ = 1.361, κ = 4)
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PFPD Software

Phase-Field Polymer Dynamics

Efficient, parallelized, object-oriented C++ program for simulating
the flow and phase behavior of inhomogeous polymeric fluids.
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How can we model the free energy?

Analytical
approximations
to a field theory

0.01 0.1 1 10
0.01

0.1

1

10

kRg/2
1/2

Γ
-
1

Field theory
simulations
(SCFT/CL)

Numerical
approximations
to a field theory
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Deriving free energy functionals

Exact DFT

F [φ] = −kBT ln

∫
Dw

∫
Dφ exp(−βH[φ,w])−

∫
J(r)φ(r)

+

Mean-Field Approximation & Weak-Inhomogeneity*

↓
Random Phase Approximation (RPA)

F [φ] = F0[φ] +
1

2

∫
dr

∫
dr′ Γ(r − r′)δφ(r)δφ(r′) +O(δφ3)

* Other approximations are possible, e.g. slow gradient expansion

G.H. Fredrickson. The Equilibrium Theory of Inhomogeneous Polymers. Oxford (2006). 14



Square-gradient (Cahn–Hilliard) models

For a simple mixture the RPA (or gradient expansion) simplifies to:

F [φ] =

∫
dr

[
f0(φ) +

1

2
κ(φ) |∇φ|2

]

Flory–Huggins–de Gennes

f0(φ) =

2∑
i=1

φi
Ni

lnφi + χ12φ1φ2

κ(φ) = b2
(

1

18φ1φ2
− χ

)

Ginzburg–Landau

f0(φ) = a(φ)2 + bφ4

κ(φ) = κ

P.G. de Gennes. J. Chem. Phys. (1980). Cahn and Hilliard. J. Chem. Phys. (1958).
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Stability is a challenge at strong segregation

An unstable code is bad
I The parameter space is

very limited

I The quench depth can
vary with time

polymer

solvent

non-solvent

H

L-LG L-G

Why is it hard? Accuracy

Small w and small ∆φ means we
need a fine grid (small ∆x) and
accurate time integration (small
∆t).
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Interaction between small w and small ∆φ

binary polymer solution
N = 30, χ = 0.979

The key challenge

Resolve the curvature of the
asymmetric interfacial profile
within the order of accuracy
of ∆φ.
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Regularizing the free energy

Modified Flory–Huggins

f(φ) =
φ

N
lnφ+ (1−φ) ln(1−φ) +χφ(1−φ) +A exp(−φ/δ)
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0.1
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A = 10−2, δ = 5× 10−3
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Effect of regularization on the phase diagram

No regularization Regularized (A = δ = 5e− 3)
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Effect of regularization on the dynamics
No regularization Regularized (A = δ = 5e− 3)
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What about inhomogeneous polymer models?

Limitations of the RPA
I Γ(k) is a complex

function

I Limited to O(δφ2), i.e.
“weak segregation”

Leibler. J. Chem. Phys. (1980)
0.01 0.1 1 10

0.01

0.1
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10

kRg/2
1/2

Γ
-
1

Ohta-Kawasaki procedure

I Get non-local terms from
the small k and large k
limits of the RPA

I Local approximation
beyond O(δφ2)

Ohta & Kawasaki. Macromol. (1986) 0.01 0.1 1 10
0.01

0.1
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10

kRg/2
1/2

Γ
-
1
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Ohta-Kawasaki proof of principle

F [φ] =

∫
dr

[
f({φi}) +

∑
i

κi
2
|∇φi|2

+
1

2

∑
i

ξi

∫
dr

∫
dr′G(r, r′)δφi(r)δφi(r

′)

]

“OK Model” – Lam “OK Model” – Hex
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How can we model the free energy?

Analytical
approximations
to a field theory
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Force matching free energy functionals

A generic functional

Assume F [φ] can be written as a linear combination,

F [φ] =
∑
i

cifi[φ]

e.g. (Ohta-Kawasaki)

F [φ] =

∫
dr

{
c2φ(r)2 + c3φ(r)3 + c4φ(r)4

+ c5 |∇φ(r)|2 + c7

∫
dr′G(r − r′)φ(r)φ(r′)

}

Force matching to SCFT

Ψ =
1

V

∫
dr

[
δF [φ]

δφ(r)

∣∣∣∣∣
φ∗

− δFSCFT[φ]

δφ(r)

∣∣∣∣∣
φ∗

]2
24



Outlook of current and future capabilities

World-class software for the dynamics of polymeric liquids

I Parallel (GPU, MPI/OMP)

I Efficient, stable time-integration

I Flexible boundary conditions

I Extensible models (free energy, mobility, etc.)

Ongoing studies

1. NIPS model and
methods (in review)

2. Mass transfer (in prep.)

3. Coarsening (Jan Garcia)

4. Hydrodynamic
instabilities (macrovoids)

Low-hanging fruit

1. NIPS in flowing systems

− Jets

2. Alternative formulations
for NIPS

− Multiple solvents
− Block polymer additives

3. Reactive blending
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Clean water is a present and growing concern

July 7, 2015

U.S. Drought Monitor

D0 Abnormally Dry

D1 Moderate Drought

D2 Severe Drought

D3 Extreme Drought

D4 Exceptional Drought

Intensity:

http://droughtmonitor.unl.edu/

Author:
Brian Fuchs
National Drought Mitigation Center

Why membranes?

I Water is projected to
become increasingly
scarce.

I Filtration is a key
technology for water
purification.

http://www.kochmembrane.com/Learning-
Center/Configurations/What-are-Hollow-Fiber-Membranes.aspx
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Polymer membrane synthesis by immersion precipitation

Figure inspired by: www.synderfiltration.com/learning-center/articles/introduction-to-membranes

non-solvent 
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solution

nonsolvent

solvent
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solvent

non-solvent

H

L-LG L-G
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Microstructural variety in membranes

Uniform “Sponge” Asymmetric“Sponge”

Fingers or
Macro-voids

Skin Layer

Strathmann et al.
Desalination. (1975)
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Microstructural variety in membranes

Uniform “Sponge” Asymmetric“Sponge”

Fingers or
Macro-voids

Skin Layer

Strathmann et al.
Desalination. (1975)

I Model development and
characterization

I How develop asymmetry?

− Quench-depth gradient
− Coarsening/arrest (Jan)
− Mass-Transfer

I How do macrovoids form?
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A ternary solution model

Ḟ [{vi}] free energy

Φ[{vi}] dissipation

λG[{vi}] constraints

Transport Equations

I Diffusion & Momentum

I Coupled, Non-lin. PDEs

Solve numerically

I Pseudo-spectral on GPUs

I Semi-implicit stabilization

Ternary polymer solution
(Flory–Huggins–de Gennes)

F =

∫
dr

[
f({φi}) +

1

2

∑
i

κi |∇φi|2
]

Newtonian fluid with
φ-dependent viscosity

Φ =
1

2

∫
dr

[∑
i

ζi(vi − v)2

+2η({φi})D : D

]
Incompressibility

λG = p∇ · v
30



Characterization of model thermodynamics

φp φn

φs

0 32 64 96 128
x/R

0.0
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φ
p

1

N = 50
κ = 12
χ = 0.912
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Measured interface width for many parameters
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What explains the interface width data?

We are near the critical point, χc
We recover the mean-field critical
exponent,

l = l∞

(
χ− χc
χc

)−1/2
33



Microstructural variety in membranes

Uniform “Sponge” Asymmetric“Sponge”

Fingers or
Macro-voids

Skin Layer

Strathmann et al.
Desalination. (1975)
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Quench-depth gradient theory

polymer

solvent

non-solvent

H

L-LG L-G
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Isotropic spinodal decomposition
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There are two dynamic regimes
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Early-time regime — initiation of spinodal decomposition
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k
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λ-

Two key parameters

I qm – fastest growing
mode

I λm – rate of spinodal
decomposition

Linear stability analysis

Exponential growth of the
fastest growing mode,

δψ = exp[λ+(q)t]

φp φn

φs
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q m
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Long-time regime — coarsening

do
m

ain
 si

ze

time

slop
e=1/4

do
m

ain
 si

ze

time

slo
pe

=1/
3

do
m

ain
 si

ze

time

slo
pe

=1

surface diffusion bulk diffusion hydrodynamics
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Increasing the quench-depth
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Increasing the quench-depth
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Comparing to LSA
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The quench-depth graident theory is too simple

t=0 t=25 t=50 t=75 t=100 t=50
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How does a quench happen by mass transfer?

The kinetics of a mass-transfer-driven quench are inherently
different than a temperature-driven quench.

film

bath

Important questions

1. How does mass-transfer
initiate the quench?

2. How does the initial film
concentration affect the
quench?

3. What role does film
thickness play?

Key concept – time scales

Phase separation happens
much faster than bulk mass
transfer.
Pego. P. Roy. Soc. A-Math. Phy. 422, 261 (1989)
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Early-time behavior

A simplifying assumption

At short times we can neglect
the role of film thickness.

Example:

Simple diffusion from a step
function initial condition

Three possible cases

1. No phase separation, just
diffusion

2. Phase separation, single
domain film

3. Phase separation, multiple
domain film
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Ternary plot of immediate SDSD
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Real-space plot of immediate SDSD
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A finite-sized film can exhibit a delayed phase-separation

φp φn

φs
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The delayed phase separation
can produce either single or
multiple domains in the thin
film, depending on parameters
and initial conditions.

48



Finite-film data collapse with a similarity variable
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A comment about macrovoids

Sternling and
Scriven. AICHE

J. (1959)

Because there is no inertia,
the instability must be driven
by spinodal decomposition.
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What do we know so far about a mass-transfer driven
quench?

Important questions

1. How does mass-transfer
initiate the quench?

2. How does the initial film
concentration affect the
quench?

3. What role does film
thickness play?

Pego. P. Roy. Soc. A-Math. Phy. 422, 261 (1989)
Ball and Essery. J. Phys.-Condens. Mat. 2, 10303
(1990)

(1) Initiation

I Early-time or late-time are
qualitatively different

I Single domain films or
multiple domain films can
form

(2) Initial film concentration

I Imporant influence on
whether phase-separation is
instantaneous or delayed

(3) Role of film thickness

I Sets diffusion time-scale
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Conclusions

Software development

I Stable, efficient methods
and an extensible framework

I NIPS with flow &
formulations are promising
avenues for future research

Field library (KTD)
Field vector/matrix operations

Operators
- Pseudospectral
- Hybrid
 (FD) BCs

Models
- Ternary FHG
- Block polymers

Time Int.
- Model B
- Model H

Scripts and plotting tools

Polymer membranes

I Characterized the model and
spinodal decomp. kinetics

I Ongoing work:

− Mass transfer
− Coarsening and arrest
− Macrovoids

Saedi et al. Can. J. Chem. Eng. (2014)
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Effect of hydrodynamics

10−1

100

101

10−3 10−2 10−1 100 101 102 103 104

1

1

sc
al
ed

do
m
ai
n
si
ze
,q

m
/
〈q
〉

scaled simulation time, λmt

diffusion only
with hydrodynamics

54



Effect of hydrodynamics

10−1

100

101

10−3 10−2 10−1 100 101 102 103 104

1

1

sc
al
ed

do
m
ai
n
si
ze
,q

m
/
〈q
〉

scaled simulation time, λmt

diffusion only
with hydrodynamics

54


