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Can we predict the microstructure of polymers?

I Microstructure dictates properties

I Microstructure depends on process
history

A very general
problem!

Polymer membranes

I clean water

I medical filters

Saedi et al. Can. J. Chem. Eng. (2014)

Polymer Blends

I commodity
plastics (e.g.
HIPS)

I block polymer
thin films www.leica-microsystems.com

Polymer composites

I bulk hetero-
junctions

I nano-
composites
Hoppe and Sariciftci J. Mater. Chem. (2006)

Biological patterning

I Eurasian jay
feathers

Parnell et al. Sci. Rep. (2015)

3



Can we predict the microstructure of polymers?

I Microstructure dictates properties

I Microstructure depends on process
history

A very general
problem!

Polymer membranes

I clean water

I medical filters

Saedi et al. Can. J. Chem. Eng. (2014)

Polymer Blends

I commodity
plastics (e.g.
HIPS)

I block polymer
thin films www.leica-microsystems.com

Polymer composites

I bulk hetero-
junctions

I nano-
composites
Hoppe and Sariciftci J. Mater. Chem. (2006)

Biological patterning

I Eurasian jay
feathers

Parnell et al. Sci. Rep. (2015)

3



Clean water is a present and growing concern

July 7, 2015

U.S. Drought Monitor

D0 Abnormally Dry

D1 Moderate Drought

D2 Severe Drought

D3 Extreme Drought

D4 Exceptional Drought

Intensity:

http://droughtmonitor.unl.edu/

Author:
Brian Fuchs
National Drought Mitigation Center

Why membranes?

I Water is projected to
become increasingly
scarce.

I Filtration is a key
technology for water
purification.

http://www.kochmembrane.com/Learning-
Center/Configurations/What-are-Hollow-Fiber-Membranes.aspx
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Polymer membrane synthesis by immersion precipitation

Figure inspired by: www.synderfiltration.com/learning-center/articles/introduction-to-membranes
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Microstructural variety in membranes

Uniform “Sponge” Asymmetric“Sponge”

Fingers or
Macro-voids

Skin Layer

Strathmann et al.
Desalination. (1975)
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How can we model microstructure formation?

A difficult challenge

I Complex thermodynamics out of equilibrium

I Spatially inhomogeneous (multi-phase)

I Multiple modes of transport (diffusion & convection)

I Large separation of length/time scales

Continuum fluid dynamics

Teran et al. Phys. Fluid. (2008)

Self-consistent field theory (SCFT)

Fredrickson. J. Chem. Phys. 6810 (2002)
Hall et al. Phys. Rev. Lett. 114501 (2006)

Key idea – cheaper models

Classical density functional theory
(CDFT)/“phase field” models
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Multi-fluid models

Two-fluid model
I Momentum equation

for each species

I Large drag enforces
cons. of momentum

de Gennes. J. Chem Phys. (1980)

The Rayleighian

A Lagrangian expression of “least
energy dissipation” for
overdamped systems (Re = 0).

R[{vi}] = Ḟ [{vi}] free energy

+ Φ[{vi}] dissipation

− λG[{vi}] constraints

δR

δvi
&

∂φi
∂t

= −∇ · (φivi)

Transport equations

Doi and Onuki. J Phys (Paris). 1992
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A ternary solution model

Ḟ [{vi}] free energy

Φ[{vi}] dissipation

λG[{vi}] constraints

Transport Equations

I Diffusion & Momentum

I Coupled, Non-lin. PDEs

Solve numerically

I Pseudo-spectral on GPUs

I Semi-implicit stabilization

Ternary polymer solution
(Flory–Huggins–de Gennes)

F =

∫
dr

[
f({φi}) +

1

2

∑
i

κi |∇φi|2
]

Newtonian fluid with
φ-dependent viscosity

Φ =
1

2

∫
dr

[∑
i

ζi(vi − v)2

+2η({φi})D : D

]
Incompressibility

λG = p∇ · v
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Transport equations

Model B

Model H

∂φi
∂t

+ v · ∇φi = ∇ ·

∑
j

Mij({φ})∇µj

 Convection-Diffusion

µi =
δF [{φi}]
δφi Chemical Potential

0 = −∇p+∇ ·
[
η({φ})(∇v +∇vT )

]
−
N−1∑
i=0

φi∇µi Momentum

0 = ∇ · v
Incompressibility
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Characterization of model thermodynamics
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Calculated interface width for many parameters
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What explains the interface width data?
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We are near the critical point, χc
We recover the mean-field critical exponent,

l = l∞

(
χ− χc
χc

)−1/2
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Characterization of phase separation dynamics
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There are two dynamic regimes
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Early-time regime — initiation of spinodal decomposition
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Two key parameters

I qm – fastest growing
mode

I λm – rate of spinodal
decomposition

Linear stability analysis

Exponential growth of the
fastest growing mode,

δψ = exp[λ+(q)t]
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Long-time regime — coarsening
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Comparing simulations to the LSA
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Comparing simulations to the LSA
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How does a quench happen by mass transfer?

film

bath

Qualitative features of NIPS
(mass-transfer) v. TIPS (temp.)

1. Inherent anisotropy and
inhomogeneities

2. Driving force (solvent exchange) and
phase separation inseparably linked
by mass transfer

Important questions

1. What is the effect of the initial
bath/film concentration?

2. What role does film thickness play?

3. How does mass transfer path affect
microstructure?
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Anisotropic quench

The bath interface gives rise to:

I Surface-directed spinodal decomposition

I Surface hydrodynamic instabilities
Ball and Essery. J. Phys.-Condens. Mat. 2, 10303 (1990)
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Early-time behavior – the infinite film limit

Key concept – time scales

I Phase separation is faster
than solvent exchange

I At short times we can
neglect the role of film
thickness.

Pego. P. Roy. Soc. A-Math. Phy. 422, 261 (1989)

Simple diffusion from a initial step

Three possible cases

1. No phase separation, just
diffusion (steady)

2. Phase separation, single
domain film (steady)

3. Phase separation, multiple
domain film (unsteady)
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Immediate spinodal decomposition into multi-domain films
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A finite-sized film can exhibit delayed phase-separation

φp φn

φs

polymer 
film

nonsolvent
bath

Depending on parameters and
initial conditions, a delayed phase
separation produces either

I single domain films (shown)

I multiple domain films
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Finite-film data collapse with a similarity variable
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Conclusions (1D)

1. Inherent anisotropy?

− SDSD-like wave

2. Film thickness?

− Short v. long-time
− Scales with xt−1/2

3. Initial conditions?

− No PS, single/multiple domains
− Instantaneous v. delayed PS

Saedi et al. Can. J. Chem. Eng. (2014)

Future: microstructure (2D)

I Pore gradients
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I Macrovoids

Sternling and Scriven. AICHE J. (1959)
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