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Abstract

Motivated by the much discussed, yet unexplained, presence of macrovoids in polymer
membranes, we explore the impact of Marangoni flows in the process of nonsolvent induced
phase separation. Such flows have been hypothesized to be important to the formation of
macrovoids, but little quantitative evidence has been produced to date. Using a recently
developed multi-fluid phase field model, we find that roll cells indicative of a solutal Marangoni
instability are manifest during solvent/nonsolvent exchange across a stable interface. However,
these flows are weak and subsequently do not produce morphological features that might lead
to macrovoid formation. By contrast, initial conditions that lead to an immediate precipitation
of the polymer film coincide with large Marangoni flows that disturb the interface. The
presence of such flows suggests a new experimental and theoretical direction in the search for
a macrovoid formation mechanism.

Non-solvent induced phase separation (NIPS)
is a widely used process to create a porous mi-
crostructure in a variety of polymer materials
including membranes1 and colloidal particles2.
As shown in Figure 1, the NIPS process for
membranes consists of either immersing or co-
flowing a polymer/good solvent mixture along-
side a nonsolvent, inducing the phase separa-
tion of a polymer-rich phase from a polymer-
lean phase. As good solvent and nonsol-
vent are continuously exchanged, the polymer-
rich phase eventually solidifies freezing the mi-
crostructure. The resulting characteristic size,
distribution and defectivity of the pore network
are the primary determinant of the commercial
uses and value of the material.

One common nuisance in the NIPS process is
the appearance of relatively large “macrovoids”
that introduce mechanical defects. Since at
least the early 1970s, researchers have worked
to understand how macrovoids form in an at-
tempt to find ways to eliminate them3,4. How-
ever, because of the complexity of the pro-
cess, most of our knowledge of macrovoid
formation remains qualitative. Macrovoids
are much larger than the rest of the pore
network and are roughly periodically spaced.
They are observed when demixing occurs very
quickly—often accompanied by hydrodynamic
flows—and their formation is sensitive to sol-
vent/nonsolvent miscibility1,5,6. Researchers
continue to debate multiple mechanisms con-
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Figure 1: A schematic showing a continuous
process for producing flat membranes (left) or
hollow-fiber membranes (right). Membranes
consist of a porous microstructure (inset)
that occasionally includes unwanted, finger-like
voids.

sistent with these observations; some have ar-
gued that macrovoid formation is primarily a
result of the mass-transfer driven phase sepa-
ration process, while others believe mechanical
stresses at the film/bath interface are the pri-
mary cause1,5–8.

We argue that a more quantitative approach
is necessary to reconcile these disparate mech-
anisms. To this end, we recently developed
a multi-fluid phase-field model capable of de-
scribing the phase-separation and hydrodynam-
ics of an incompressible ternary polymer solu-
tion with nearly arbitrary viscosity contrast9.
The model is given by a set of coupled diffu-
sion, momentum and continuity equations,

∂φi

∂t
+ v · ∇φi = ∇ ·

[
p,n∑
j

Mij∇µj

]
(1)

0 = −∇p+∇ ·
[
η(∇v +∇vT )

]
−∇ ·Π (2)

∇ · v = 0 (3)

where φp and φn are, respectively, the vol-
ume fractions of the polymer and nonsolvent
components, v is the velocity and p is the
pressure. Additionally, the diffusive flux in
Eq. 1 contains chemical potential terms, µi, and
concentration-dependent mobility coefficients,
Mij.

The chemical potential is derived from a free
energy functional consisting of a local Flory-

Huggins expression and square gradient terms
with parameters describing species molecular
weight, Ni, enthalpic interactions between com-
ponents, χij, and square-gradient coefficients,
κi. For this work, we make the simplifying
assumptions that Np = N , Nn = Ns = 1,
χpn = χ, χps = χns = 0 and κp = κn = κ. The
momentum equation, Eq. 2, contains a solution
viscosity, η, which can depend on local concen-
tration, and an osmotic stress tensor, Π, that
is directly related to chemical potential gradi-
ents. We solve the model numerically using a
custom CUDA/C++ program on a GPU with
a semi-implicit, pseudo-spectral method. Many
more details of the model and methods can be
found in the Supporting Information and in our
previous work9.

Equations 1–3 represent a non-trivial descrip-
tion of phase separation, diffusion and con-
vection in a ternary polymer solution. How-
ever, our current model does not include elas-
tic forces, and therefore cannot be used to in-
vestigate macrovoid formation via mechanical
rupture10. Despite this deficiency, our model
does allow us to quantitatively evaluate poten-
tial mechanisms for macrovoid formation driven
by thermodynamic and transport processes. It
should also be noted that there are alternative
methods capable of simulating the hydrody-
namics of phase-separating polymeric fluids in-
cluding Lattice Boltzmann11,12, dissipative par-
ticle dynamics13, kinetic Monte Carlo14 and
multi-particle collision dynamics15.

In this Letter we investigate the possibility
that Marangoni flows, i.e. flows driven by a
concentration-dependent surface tension gradi-
ent, play a key role in initiating macrovoid for-
mation during the NIPS process. Matz, From-
mer and Messalem (MFM) originally proposed
that a Marangoni instability was responsible
for macrovoid formation in the early 1970s3,4,
but like most theories, it remains controver-
sial1,5,6,16. Indeed, to our knowledge, it has
never been conclusively shown that a soluto-
capillary hydrodynamic instability exists in the
NIPS process, nor have details of this instabil-
ity been quantified sufficiently to connect them
to macrovoid formation.

The requirements for a solutal Marangoni in-
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Figure 2: (a) Nonsolvent volume fraction and
(b) bulk velocity at t = 100 for a 2D simula-
tion of NIPS with thermodynamic parameters
N = 20, χ = 1.048, κ = 2, an initial bath
composition of φbath

p = 0.01, φbath
n = 0.98, and

an initial film composition of φfilm
p = 0.367 and

φfilm
n = 0.238. The right half of panel (a) shows

the deviation of the nonsolvent volume fraction
from the x-spatial average, 〈φn〉x for half of the
simulation domain. The simulation time is in
units of the Rouse time and lengths are in units
of the polymer end-to-end distance R0, which
are approximately 0.1 µs and 4.5 nm respec-
tively for a polymer at room temperature with
a 1 nm statistical segment length and a solvent
viscosity similar to water9.

stability were described in a seminal paper by
Sternling and Scriven17, and include (i) an in-
terface between two liquid phases, (ii) transport
of a surfactant between the phases and (iii) an
asymmetry of either diffusion or viscosity be-
tween the phases18. All three conditions are
satisfied in a NIPS process preceding delayed
precipitation, and are rigorously justified in the
Supporting Information with both a theory and
numerical calculations of the surface tension in
our model.

Given that the basic criteria for the MFM hy-
pothesis are satisfied, we looked for direct evi-
dence of a Marangoni instability by simulating
the NIPS process. To do so, we initialized a 2D
simulation with two out-of-equilibrium phases
— a nonsolvent bath and a film comprised of a
mixture of polymer, solvent and nonsolvent —

and observed the resulting diffusion and con-
vection. A few comments about the details of
this calculation are in order:

• The industrial NIPS process can be very
complex and may include pre-treatment
steps or a lengthy mass-transfer process
resulting in an inhomogeneous film19. In
lieu of imposing an ad hoc concentration
profile, we chose homogeneous initial con-
ditions with a polymer film concentration
near the two-phase region that resulted
in a delayed precipitation event. The
choice of homogeneous conditions also en-
sures clarity when examining the effects of
Marangoni flow.

• The initial concentrations were seeded
with uniform random noise of magnitude
|δφ| = 0.005 about the average compo-
sition to provide an initial perturbation
and to break symmetry. Such a perturba-
tion is necessary because our model does
not include thermal fluctuations, which
also precludes the observation of barrier-
crossing phenomena such as nucleation.

• The boundaries of the simulation box are
periodic in the x-direction, and symmetry
in the y-direction creates no-flux condi-
tions (the mirror-image lower half of the
simulation domain is not shown). The
simulation box also has a large aspect ra-
tio, so that the bath and film are effec-
tively infinite over the observed simula-
tion time.

• It is challenging to accurately model
transport of a polymer solution over con-
centrations spanning the dilute to con-
centrated regimes. In these simulations,
we use previously derived mutual diffu-
sion coefficients that smoothly cross over
between well-known limits, but are almost
certainly inaccurate at intermediate con-
centrations9.

• For clarity in examining the relevant phe-
nomena, results were obtained with a con-
stant viscosity η = ηs, appropriate for a
very dilute polymer solution.
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Figure 2 shows the results of a characteristic
simulation soon after the initiation of diffusive
exchange. The left half of Figure 2(a) shows
a non-solvent concentration profile exhibiting
the beginning of solvent/nonsolvent diffusion
across an interface separating the two phases.
The right half of Figure 2(a) shows the de-
viation of the non-solvent concentration from
the horizontally-averaged (x-direction) value,
revealing the existence of nonsolvent-rich and
nonsolvent-lean regions along the interface.
The bulk velocity field in Figure 2(b) shows roll
cells consistent with those of a Marangoni insta-
bility (though perhaps limited by finite size ef-
fects), with a flow field that corresponds to the
concentration inhomogeneities (and by implica-
tion surface tension inhomogeneities) shown in
panel (a).

Despite the existence of roll cells, we find
little evidence that a classical Marangoni in-
stability leads to macrovoid formation. For
a Marangoni instability to induce macrovoids,
the roll cells must be of sufficient magnitude
and duration to influence the delayed precip-
itation event that the polymer film undergoes
as solvent/nonsolvent exchange proceeds. How-
ever, as exhibited in Figure 2, the magnitude
of the concentration inhomogeneities (|∆φ| ≈
5 × 10−4) and velocity of the roll cells (|v| ≈
10−4R0/τ) are small. Furthermore, we observe
that the magnitude of these perturbations de-
creases with time as the solvent/nonsolvent flux
decreases. By t = 1000 (data not shown)
the magnitude of the concentration inhomo-
geneities have decreased nearly two orders of
magnitude (|∆φ| ≈ 3 × 10−6) and the roll cell
velocities have shown a similar decline (|v| ≈
6× 10−7R0/τ). Additional results given in the
Supporting Information show that increasing
the viscosity of the polymer film further de-
creases the magnitude of these flows. Thus,
for a delayed precipitation event the Marangoni
flows are inconsequential by the time the poly-
mer film phase separates, and the resulting mi-
crostructure is unaffected by their presence.

Although our simulations do not support the
hypothesis that a classical Marangoni instabil-
ity drives the formation of macrovoids, we do
find conditions where solutocapillary flows sig-

φp φn

φs binodal

spinodal

critical pt.

Figure 3: Initial volume fraction profiles and
phase diagram for N = 20, χ = 1.048 and
κ = 2. A colored dot signifies the initial
composition of the polymer film in four differ-
ent simulations, {φ(film)

p , φ
(film)
n }: {0.265, 0.450}

(purple), {0.214, 0.477} (green), {0.163, 0.512}
(blue), {0.112, 0.559} (red). The correspond-
ing colored curves give composition profiles of
the four simulations (film, interface and bath)
shortly after initiation (t = 0.1). The gray
curve shows the initial composition profile of
data in Figure 2.

nificantly perturb the surface of the polymer
film. Using the same model as above (includ-
ing constant viscosity), we vary the initial poly-
mer film composition so that the delay time be-
fore film precipitation is eliminated. Figure 3
shows the ternary phase diagram for the rele-
vant parameters, and the initial conditions of
four new simulations alongside the initial con-
dition of the simulation in Figure 2. The initial
concentration of the polymer film in the new
simulations are very close to (but just outside
of) the binodal line, ensuring that the polymer
film begins to immediately demix when solvent
and nonsolvent are exchanged. Note also that
the initial compositions span the polymer-rich
and polymer-lean sides of the critical point and
include a nearly critical film.

Figures 4(a)-(d) shows the polymer volume
fraction of the demixing film in the four new
simulations as a function of time. Panel

4



polymer velocity

0 128 256

x/R0

512

640

768

896

y
/
R

0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

p
o
ly
m
er

ve
lo
ci
ty

t
=

1
0
0

t
=

2
0
0

t
=

3
0
0

(a) (b) (c) (d)

Figure 4: Polymer volume fraction at t = {100, 200, 300} corresponding to the different initial film
compositions from the phase diagram in Fig 3.

(a) shows a polymer-rich film, which resolves
into droplets of nonsolvent in a polymer ma-
trix with a stable interface and relatively lit-
tle Marangoni flow. Panel (b) shows another
polymer-rich film with a higher nonsolvent con-
centration, which initially shows lamellar bands
characteristic of surface-directed spinodal de-
composition20,21. As time progresses these
bands become unstable, and the elongated
nonsolvent domains produce strong Marangoni
flows, perturbing the interface and the under-
lying film. The contrast between the simula-
tions in (a) and (b) is reminiscent of the pro-
cess of coarsening in bulk spinodal decomposi-
tion, where the coarsening of nearly bicontin-
uous morphologies is accelerated by hydrody-
namics, but discrete droplet morphologies are
not9.

The initial film concentration in Figure 4(c)
is very close to the critical point, and this film
also initially has lamellar bands. With increas-
ing time, very strong Marangoni convection co-
alesces these sheets into large polymer droplets
near the top of the film, but the underlying
layer still retains a lamellar structure. Interest-

ingly, the polymer domains remain connected
to the underlying film, hinting that large pores
may be able to form. Finally, panel (d) shows
the inverse morphology of panel (a), where
a polymer-lean film decomposes into polymer
droplets, with velocity magnitudes comparable
to the simulations in (a).

It is interesting to note the congruence be-
tween the qualitative markers of macrovoid for-
mation listed above and the present simula-
tions: namely the role of hydrodynamics, the
sensitivity to the initial film composition and
the association with an instantaneous precipita-
tion event. Additionally, there may be interest-
ing connections between the Marangoni flows
we observe and pattern-forming solutocapil-
lary instabilities in air-dried, spun-cast polymer
films22–24. However, despite the circumstantial
evidence, none of our simulations clearly show
the formation of very large, periodically spaced
features that we would classify as macrovoids.
Additionally, the omission of physical effects
such as thermal fluctuations or vitrification
from our model could play an important role
in altering the morphologies observed in Fig-
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ure 4. Finally, we note that our results are con-
sistent with previous simulation work on both
multiphase capillary flow with phase-field25 and
Lattice Boltzmann26 models and with simula-
tions of phase-separating films in liquid-liquid
systems27 and liquid-air systems11.

In summary, we have shown that roll cells in-
dicative of a classical Marangoni instability oc-
cur in a model of the NIPS process, but are
likely too weak to lead to macrovoid formation
in a subsequent delayed precipitation process.
By contrast, initial bath and film compositions
which lead to instantaneous precipitation are
coupled to much stronger Marangoni flows that
can significantly perturb the surface of the film,
especially when the composition is nearly criti-
cal. This latter process warrants further inves-
tigation as a key mechanism for microstructure
formation in NIPS membranes. Additionally,
we anticipate that simulations in three dimen-
sions with more sophisticated viscous and vis-
coelastic models and a more thorough investi-
gation of the role of the initial conditions in the
mass transfer process will yield further insight.

Supporting Information Avail-

able

• Detailed description of multi-fluid model
and methods

• Conditions necessary for a Marangoni
instability and justification that NIPS
meets these conditions

• Details of the surface tension calculations
needed for the prior justification

• A near-critical, pseudo-binary theory of
the surface tension

• Variable-viscosity calculations showing
roll cells
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Description of Multi-fluid Model and Methods

The ternary multi-fluid model was derived using Doi and Onuki’s formalismS1 in a previous publication,S2

and the final transport equations can be summarized as,

∂φi
∂t

+ v · ∇φi = ∇ ·

 p,n∑
j

Mij∇µj

 (1)

0 = −∇p+∇ ·
[
η(∇v +∇vT )

]
−∇ ·Π (2)

∇ · v = 0 (3)

where φi are the volume fractions of the polymer (p), nonsolvent (n) and solvent (s), v is the velocity, Mij

are the mobility coefficients, µi is the exchange chemical potential of species i, p is the pressure, η is the

viscosity, and Π is the osmotic stress. Due to incompressibility, the solvent volume fraction, φs, is not an

independent component and is given by,

φs = 1− φp − φn. (4)

The chemical potential, µi, is given by

µi =
kBT

b3

(∂f0

∂φi
− κi∇2φi

)
(5)

where f0 is the homogeneous free energy, b is the monomer size, kB is Boltzmann’s constant, T is the

absolute temperature and κi are gradient coefficients. The homogeneous free energy is given by a ternary

Flory–Huggins model,

f0 =

p,n,s∑
i

φi
Ni

lnφi +

p,n,s∑
i 6=j

χijφiφj (6)

where Ni parameterize the molecular weight of the components, and χij quantify the strength of interaction

between species. As mentioned in the main text, in the present study we assume that Np = N , Nn = Ns = 1,

and χpn = χ, χps = χns = 0, giving

f0 =
φp
N

lnφp + φn lnφn + φs lnφs + χφpφn. (7)

The osmotic stress tensor in Eq. 2 is completely determined by the chemical potential, and its divergence

is given by

∇ ·Π = φn∇µn + φp∇µp. (8)
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The mobility coefficients appearing in Eq. 1 are defined as,

Mpp =
b3

ζ0
φp(1− φp) (9a)

Mpn = Mnp = −b
3

ζ0
φpφn (9b)

Mnn =
b3

ζ0
φn(1− φn) (9c)

where ζ0 = ηsb is the monomer friction coefficient. The viscosity in Eq. 2 is assumed to be consistent with

a Rouse model of polymer solutions,

η = ηs(1 + cφpNp) (10)

where c is a constant that is set to unity. Simulations are conducted with a constant viscosity η = ηs unless

otherwise noted.

Space is discretized in equations 1–3 using pseudo-spectral methods and periodic boundary conditions

with ∆x = ∆y = 0.5R0. A symmetric initial condition was used to obtain the effective no-flux boundary

conditions at y = 512 and y = 1024 in Figure 3. The diffusion equation (Eq. 1) was solved using a linearly-

implicit method, which stabilizes the high-order gradients in the model for large time steps. The momentum

and continuity equations (Eq. 2 and Eq. 3) were solved simultaneously using a transverse projection operator,

which is explicit in Fourier space. An iterative method is needed to solve the momentum equation when the

viscosity depends on concentration. A simple fixed-point method combined with a continuation method and

Anderson mixing, gives an efficient solution. All methods were custom-coded using C++ and CUDA for use

on a GPGPU. Many more details regarding the model and method can be found in a prior publication.S2

Conditions for Marangoni Instability

The Marangoni instability at a liquid-liquid interface was described in a seminal paper by Sternling and

ScrivenS3 and exists when (i) a surfactant is diffusing between two liquid phases, and (ii) when the transport

of the surfactant is asymmetric between the phases (e.g. there is a diffusivity or viscosity contrast between

the two phasesS4). When this is so, a perturbation gives rise to local surfactant-rich and surfactant-lean

inhomogeneities, resulting in a surface-tension gradient and subsequent Marangoni stresses along the inter-

face. These stresses lead to the development of convective roll cells, which are a classical manifestation of

the instability.

Without the explicit inclusion of a surfactant, one may dismiss the existence of a Marangoni instability

during NIPS, since surface tension gradients are a necessary condition. However this conclusion would
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Figure S1: (a) Dimensionless surface tension between a polymer-rich phase and a nonsolvent-rich phase versus
average solvent volume fraction for a series of 1D simulations where N = 20 and the average polymer and
nonsolvent volume fractions {φp, φn} are randomly chosen inside the two-phase region of the phase diagram.
(b) Nonsolvent-nonsolvent diffusivity for the y-direction (averaged over x) of the NIPS simulation in Figure 2
of the main text. This 2D concentration profile was obtained at t = 100 (Rouse time) with thermodynamic
parameters N = 20, χ = 1.048, κ = 2, an initial bath composition of φbath

p = 0.01, φbath
n = 0.98, and an

initial film composition of φfilm
p = 0.367 and φfilm

n = 0.238.

be erroneous, because solutal surface tension gradients are possible based solely on the difference between

polymer/solvent and polymer/nonsolvent interactions.

To demonstrate that surface tension is a strong function of concentration in our model, we have calculated

the surface tension γ between two equilibrated phases using a series of 1D simulations at a variety of N ,

χ, κ and average concentrations (see below for details of the calculation). Figure S1(a) shows a plot of

a dimensionless surface tension, γbR0/(kBT ) where R0 is the polymer end-to-end distance, versus solvent

concentration for three different values of thermodynamic parameters κ and χ. Two trends are evident

from the calculation. First, the surface tension increases when either the polymer-nonsolvent interaction

parameter χ increases or the square gradient parameter κ increases. This straightforward result reflects the

intuition that an increased enthalpy of interaction or an increased penalty for interfacial contact will result

in a higher surface tension.

Second, the surface tension decreases as the average solvent concentration increases. This latter effect

can be rationalized by thinking of the solvent as an inert diluent, reducing the high-energy contacts between

polymer and nonsolvent. Because χ and κ are constants in a given simulation but solvent concentration is not,

we conclude that local variations in solvent concentration are responsible for surface tension inhomogeneities

and therefore Marangoni stresses.

In addition to surface tension gradients, Sternling and Scriven’s mechanism relies on asymmetric trans-

port between the two phases.S3,S4 This can be satisfied by either a viscosity contrast or a diffusivity contrast.
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In our model, diffusivity is a function of concentration, and asymmetric transport is therefore guaranteed

even with constant viscosities. As an example of this, Figure S1(b) shows a plot of the horizontally-averaged

nonsolvent component of the mutual diffusion coefficient as a function of y/R0, the distance normal to the

interface between phases. The diffusivity tracks the local concentration,S2 and is smaller in the film relative

to the bath.

Surface Tension Calculations

The surface tension for the multi-fluid model is defined as,S2,S5,S6

γ =
kBT

b3

∫
dz

[
∆f0 +

1

2

p,n∑
i

κi

(
dφi
dz

)2
]

(11)

where ∆f0 is the difference between the local Flory–Huggins free energy and the equilibrium value. This

difference is defined as

∆f0 = f0 − f (e)
0 − [φp − φ(e)

p ]µ(e)
p − [φn − φ(e)

n ]µ(e)
n (12)

where the superscript “e” denotes an evaluation of the relevant quantity at the equilibrium volume fraction.

The data points in Figure 2 in the main text are obtained by numerically integrating Eq. 11 using a

one-dimensional concentration profile obtained from simulation. Equilibrated concentration profiles were

obtained by the following procedure:

1. An initial concentration profile was set to an average concentration plus random noise inside the

spinodal, and a simulation was run until phase separated domains appeared.

2. This simulation was then terminated (to avoid long coarsening times inherent to 1D simulations), and

the values in the α and β phases were used to provide values for an initial profile.

3. A second simulation was then run, using the result of the first as an initial guess, until the profile

contained only two interfaces (for the periodic system) and remained stable.

4. The equilibrated profile was then fed to a Numpy/Python script where Eq. 11 was numerically inte-

grated using Simpson’s rule. Because the profiles contain two interfaces, the resulting surface tension

was divided by two.

An example profile is shown in Figure S2(a), and the corresponding integrand (the surface energy density)

is shown in Figure S2(b).

S5



0 64 128 192 256
x/R0

0.0

0.2

0.4

0.6

0.8

1.0
vo

lu
m
e 
fra

ct
io
n

ϕp
ϕn
ϕs

(a)

0 64 128 192 256
x/R0

0.0

0.1

0.2

0.3

0.4

0.5

su
rfa

ce
 e
ne

rg
y 
de

ns
ity

(b)

Figure S2: (a) 1D concentration profile for N = 100, χ = 0.968, κ = 30, 〈φp〉 = 0.1498, 〈φn〉 = 0.5627. (b)
Surface energy density for the concentration profile.

Table S1: Parameters used to obtain the data in Figure 2 in the main text. χbc = 1
2

(
1√
N

+ 1
)2

, the critical

point for a binary solution of polymer and non-solvent.

N κ χ/χbc
1 1 1.2, 1.4, 1.6
2 2 1.4
5 2, 4 1.4
10 1, 2, 4 1.4
20 1, 4, 8 1.2, 1.4, 1.6
50 10, 12, 15, 20, 30 1.4, 1.6
80 15, 20, 30, 40 1.2, 1.4, 1.6
100 20, 30, 40 1.2, 1.4, 1.6

The profile in Figure S2 is just one of many different profiles obtained for different values of N , χ, κ

and average concentrations. A table summarizing all of the parameters used to obtain the data in Figure

2 are found in Table S1. Note that this table also appears in a previous publication,S2 where the same

concentration profiles were used to obtain interfacial widths.

A Near-Critical, Pseudo-Binary Theory of the Surface Tension

We show that the surface tension is a function of solvent concentration, providing evidence that Marangoni

flows are possible. However, we can go further and show how the surface tension depends on all of the model

parameters using a pseudo-binary approximation and scaling theory.

First, it is useful to obtain an approximation to the surface tension for a pseudo-binary solution near

the critical point. To do so, we simplify Equations 7, 11 and 12 assuming that the solvent concentration is

everywhere constant and equal to its average, φs = 〈φs〉. We label this the pseudo-binary assumption.
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Using this assumption to simplify Eq. 11 leads to

γ =
kBT

b3

∫
dz

[
∆f0 + κi

(
dφ

dz

)2
]

(13)

where

∆f0 = f0 − f (e)
0 − [φ− φ(e)]µ(e) (14)

and

f0 =
φ

N
lnφ+ (1− φ− 〈φs〉) ln(1− φ− 〈φs〉) + 〈φs〉 ln〈φs〉+ χφ(1− φ− 〈φs〉) (15)

with φ = φp.

The logarithms in Eq. 15 make an analytical solution difficult. Furthermore, we showed in a prior work

that a near-critical theory did an excellent job describing the interfacial width.S2 As such, we expand ∆f0

about the critical point,

φc =
1− 〈φs〉√
N + 1

(16)

χc =
1

2(1− 〈φs〉)

(
1√
N

+ 1

)2

. (17)

to fourth order giving,

∆f0 = λ
[
(∆φ)2 − (∆φ(e))2

]2
(18)

where

∆φ = φ− φc (19)

∆φ(e) = φ(e) − φc (20)

λ =
1

12(1− 〈φs〉)
(1 +

√
N)4

N3/2
(21)

and

(∆φ(e))2 =
χ− χc

2λ
. (22)

Equation 13 has a Lagrangian form,S6 which implies that

(
d∆φ

dz

)2

=
λ

κ

[
(∆φ)2 − (∆φ(e))2

]2
(23)
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This can be used to solve for the equilibrium profile, which is a familiar hyperbolic tangent,

∆φ = ∆φ(e) tanh (−z/l) (24)

where

l =
√

2κ(χ− χc)−1/2 (25)

is the interfacial width.S2

To find the surface tension, we substitute Eq. 23 into Eq. 13,

γ =
kBT

b3

∫ −∆φ(e)

∆φ(e)

dφ
[
2
√
κ(∆f0)1/2

]
(26)

=
kBT

b3
2
√
κγ

∫ −∆φ(e)

∆φ(e)

dφ
[
(∆φ)2 − (∆φ(e))2

]
(27)

and integrate. This gives,

γ = 8
√

2
kBT

b3
(1− 〈φs〉)3κ1/2(χ− χc)3/2 N3/2

(1 +N1/2)4
(28)

which is the prediction we seek. In the limit that N � 1, Eq. 28 reduces to

γ = 8
√

2
kBT

b3
(1− 〈φs〉)3κ1/2(χ− χc)3/2N−1/2 (29)

which gives a scaling of γ ∼ N−1/2(χ − χc)3/2, which was previously reported by Widom for a mean-field

model near a critical point.S5,S7

Figure S3 shows that our data is in excellent agreement with the pseudo-binary theory. Panel (a) shows

a representative spinodal, critical line for N = 20 alongside part of the data in Table S1. (The data shown

in Figure S3(a), correspond to those in Figure 2 of the main text.) Panel (b) is a plot of the normalized

surface tension, γ/γref versus the quench depth, χ− χc, where the reference surface tension

γref = 8
√

2
kBT

b3
N3/2κ1/2(1− 〈φs〉)3

(1 +
√
N)4

(30)

contains all of the terms in Eq. 28, except the dependence on the χ-parameter. For completeness, panel

(c) also shows a plot of the interfacial width versus χ − χc, similar to a plot produced in a previous paper

characterizing our model.S2 The collapse and quantitative agreement of the data Eq. 28 and Eq. 25 strongly

supports the conclusion that the near-critical, pseudo-binary theory provides a satisfactory explanation of
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Figure S3: (a) Plot of the spinodal surface and critical line for N = 20. Data points at different average
concentrations for N = 20 and {χ, κ} = {1.05, 4}[red], {1.20, 4}[green], {1.20, 8}[blue] are shown, providing
an example of the scope of the data contained in the other panels. (b) Normalized surface tension versus
quench depth for equilibrated 1D simulations with N = 1 (filled red squares), 5 (filled blue circles), 10 (filled
green triangles), 20 (filled purple diamonds), 50 (open orange squares), 80 (open blue circles) and 100 (open
brown triangles), and a variety of values of κ, χ and average concentrations (see Table S1). The line is
(χ− χc)3/2. Note that no fitting parameters have been used. (c) Plot of the interfacial width for the same
simulations as panel (b). The line is (χ− χc)−1/2, and again, no fitting parameters have been used.

the 1D data.

Variable-Viscosity Roll Cells

Figure S4 shows the nonsolvent volume fraction, bulk velocity and volume fraction deviation as a function of

space for two different 2D simulations of NIPS. The top figure in panel (a), shows a simulation with η = ηs,

the lower figure in panel (b) gives a simulation with a viscosity that obeys Eq. 10. Both show qualitatively

similar behavior, exhibiting the beginning of diffusive exchange of solvent and nonsolvent in the left-most

frame, showing roll cells in the center frame, and displaying local inhomogeneities along the interface in the

frame on the right.

Despite the similarities, the roll-cell velocity is approximately an order of magnitude smaller in the

variable-viscosity simulation (vmax = 1.1 × 10−5) compared to the constant-viscosity simulation (vmax =

7.3 × 10−5). This decrease in velocity is due to the viscosity difference, not a difference in the magnitude

of the concentration inhomogeneity. In fact, while similar in magnitude, the concentration inhomogeneity

in the variable-viscosity simulation, max(∆φn) = 2.8 × 10−4, is slightly larger than the constant-viscosity

simulation, max(∆φn) = 1.7× 10−4.

Our observation of a smaller magnitude velocity in the variable-viscosity simulation may seem counter-

intuitive, since Sternling and Scriven originally reported that a viscosity contrast would increase the magni-
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Figure S4: (a) Nonsolvent volume fraction, bulk velocity and volume fraction deviation (∆φn = φn−〈φn〉x)
at t = 100 for a 2D simulation of NIPS with thermodynamic parameters N = 20, χ = 1.048, κ = 2, an
initial bath composition of φbath

p = 0.01, φbath
n = 0.98, and an initial film composition of φfilm

p = 0.495 and

φfilm
n = 0.204. The viscosity is everywhere equal to ηs. (b) The same quantities and parameters as the above

panel except η = ηs(1 + φpN).

tude of the roll-cell velocity.S3 However, unlike ours, Sternling and Scriven’s model includes inertial terms,

and their analysis assumes an exogenous velocity perturbation of equal magnitude in both phases. By as-

suming a velocity perturbation, their model implicitly assumes that the concentration inhomogeneity will be

greater for a higher viscosity fluid.

By contrast, in our inertia-less model, velocities are slaved to concentrations,S2 and no such velocity

perturbation is possible. Instead, we use a concentration perturbation which has the same magnitude in

both simulations. The resulting velocity fields are then inversely scaled by the viscosity, with the large

viscosity fluid giving the smaller magnitude velocity field.
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