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Melt memory is indicative of unusual crystallization behavior

160

150 A

140 -

Annealing
130 - at T

110 A

Temperature

100 - Complete Recrystallization
Crystallization at T,

90 .
time



Melt memory is indicative of unusual crystallization behavior

160

150 A

140 -

Annealing
130 1 at T,

Temperature

Tm=119°C

~

Piv

110 -

100 - Complete Recrystallization
Crystallization at T,

90 -
time

Hdifele et al. Eur Phys J E (2005) 3



Melt memory is indicative of unusual crystallization behavior
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Other Observations:

Initial larger scale ordering in SAXS
and WAXS

Deviant Crystallization and
Recrystallization

Intermediate Phase Observations

No Copolymer Effect on
Crystallization




Are the previous observations caused by slow kinetics or
thermodynamics in the nucleation process?
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There are 2 major obstacles to overcome to better
understand crystallization

Polymer simulations are expensive
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There are 2 major obstacles to overcome to better
understand crystallization

Polymer simulations are expensive

Relative stability of different phases

isotropic I

Time
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What simulation technigues can build an FES?

Molecular Dynamics (MD)

» Access to dynamic properties
» Readily available (e.g. LAMMPS)
» Limited by entanglement

dynamics

» Very slow equilibration

< 4
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Molecular Dynamics (MD)

» Access to dynamic properties
» Readily available (e.g. LAMMPS)
» Limited by entanglement

dynamics

» Very slow equilibration

< 4

Monte Carlo (MC)

» Bond-breaking moves
» No dynamic
considerations

» Faster and simpler

<
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We can use advanced move set and domain
decomposition to speed equilibration
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Parallel simulations are 2 orders of magnitude faster
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A Wang Landau-generated FES can characterize
crystallization
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A Wang Landau-generated FES can characterize
crystallization
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A Wang Landau-generated FES can characterize
crystallization

Density Of States = Q(Energy)
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Simulating Wang-Landau for polymer melts (2000
chains, 100 beads) is more difficult than anticipated
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Simulating Wang-Landau for polymer melts (2000
chains, 100 beads) is more difficult than anticipated

20 26 iterations — e Shakirov and Paul Phys Rev E
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