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Semicrystalline polymers are ubiquitous, yet despite their fundamental and industrial importance, the theory
of homogeneous nucleation from a melt remains a subject of debate. A key component of the controversy
is that polymer crystallization is a non-equilibrium process, making it difficult to distinguish between effects
that are purely kinetic and those that arise from the underlying thermodynamics. Due to computational cost
constraints, simulations of polymer crystallization typically employ non-equilibrium molecular dynamics
techniques with large degrees of undercooling that further exacerbate the coupling between thermodynamics
and kinetics. In a departure from this approach, in this study we isolate the near-equilibrium nucleation be-
havior of a simple model of a melt of short, semiflexible oligomers. We employ several Monte Carlo methods
and compute a phase diagram in the temperature–density plane along with two-dimensional free energy land-
scapes (FELs) that characterize the nucleation behavior. The phase diagram shows the existence of ordered
nematic and crystalline phases in addition to the disordered melt phase. The minimum free energy path in
the FEL for the melt–crystal transition shows a cooperative transition, where nematic order and monomer
positional order move in tandem as the system crystallizes. This near-equilibrium phase transition mecha-
nism broadly agrees with recent evidence that polymer stiffness plays an important role in crystallization, but
differs in the specifics of the mechanism from several recent theories. We conclude that the computation of
multidimensional FELs for models that are larger and more fine-grained will be important for evaluating and
refining theories of homogeneous nucleation for polymer crystallization.
Keywords: Polymer Crystallization; Oligomer Crystallization; Energy Landscape Theory; Minimum Free
Energy Path; Semiflexible Polymers

I. INTRODUCTION

Developing a theory for polymer crystallization in a
melt is an important and long-unsolved problem in poly-
mer science. It has been known for decades that poly-
mers do not completely crystallize, leaving the material
out of equilibrium.1–3 Consequently, the properties of the
semicrystalline material are dependent on its processing
history,4 making a theory of crystallization both an inter-
esting fundamental problem and a fruitful endeavor for
the practical engineering of polymer materials.

It is not possible to provide a comprehensive summary
of all of the theoretical approaches to polymer crystal-
lization here, but several excellent references are avail-
able.1–3,5,6 To situate our work in the context of this large
literature, we wish to make two salient observations.
First, a complete understanding of polymer crystalliza-
tion must encompass both (i) the primary nucleation pro-
cess that initiates crystallization and (ii) the subsequent
crystal growth process.6–8 While it is widely understood
that both of these kinetic processes require different (but
possibly related) theories, the distinctions in the litera-
ture between models of (i) and (ii) are not always clear.
For example, the widely discussed Lauritzen–Hoffman
theory is a model of the crystal growth process that in-
cludes a “secondary nucleation” event that is distinct
from the primary nucleation process.9,10 To limit our

scope and because of its foundational importance, we
focus here on understanding (i) the primary nucleation
process.

Second, despite more than a half-century of research
on polymer crystallization, an attempt to ground the the-
ory of polymer crystallization in concepts of modern
polymer physics is a much more recent endeavor.11–17

For example, the classical theory of primary nucleation
treats crystallization in a solution and a melt as mecha-
nistically equivalent,1 and the role of polymer entangle-
ment has only recently become a topic of serious study.18

Our approach is inspired by this agenda, which we de-
scribe more specifically in the paragraphs that follow.

A. Theories of Homogeneous Nucleation from a Melt

The prevailing theory of (homogeneous) primary nu-
cleation of a crystal in a melt is based upon an extension
of classical nucleation theory, which we will label “clas-
sical nucleation theory for polymers” (CNTP).1,14,17 The
familiar idea, schematized in Figure 1a, is that a melt
cooled below its melting temperature Tm experiences a
driving force towards crystallization but is impeded by
a free energy barrier due to surface tension. From a
polymer physics perspective, one imagines that as a bun-
dle of chains crystallize, a local density fluctuation of n
monomers creates a cylindrical nucleus of radius r and
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length l.19 Presumably, these chains are folded because
the nucleation event happens locally before the rest of
the chain can relax, leading to the well-known lamellar
crystal structure.
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FIG. 1. (a) Classical nucleation theory for polymers (CNTP)
postulates that the local positional ordering of monomers is the
principal barrier to polymer crystallization. (b) By contrast,
several new theories by Strobl, Olmsted, Milner, and Muthuku-
mar (SOMM) propose that orientational alignment of the poly-
mer chains is possibly a more important barrier.

There are a number of assumptions that undergird this
relatively simple model of crystallization. First, the sys-
tem is assumed to be near-equilibrium such that a suit-
able free-energy surface (i.e. a bulk free energy and sur-
face tension) can be defined and related to bulk ther-
modynamic parameters. Additionally, one assumes that
the kinetics are dictated by the free energy at the transi-
tion state, via typical arguments from transition state the-
ory.17 Note that both of these two assumptions relegate
the role of entanglement and other well-known aspects
of polymer dynamics to secondary status in the theory.18

Additionally, CNTP assumes both a specific shape for
the nucleus (typically a cylinder) and a particular order
parameter (n, the number of monomers in the nucleus)
for the kinetic pathway. All together, these assumptions
constitute a very specific mechanism of crystallization: a

group of n monomers driven by local enthalpic and en-
tropic interactions arrange into a crystalline lattice de-
spite opposition from anisotropic cohesive interactions
in the liquid.

Unfortunately, CNTP does not agree with at least two
major qualitative experimental observations of melt crys-
tallization. First, many polymers exhibit some type of in-
termediate state between the melt and crystalline states.
n-alkane oligomers contain rotator phases between the
melt and the crystalline phase,20–26 and several authors
postulate their existence for polyethylene.13,26–30 Addi-
tionally, Keller and coworkers found an orthorhombic
polyethylene crystal at elevated pressures and argued that
it may exist as an intermediate state at normal condi-
tions.31,32 Kaji and coworkers observed SAXS peaks be-
fore the appearance of WAXS Bragg peaks during the
crystallization of poly(ethylene terephthalate), indicating
the formation of ordered domains at longer length scales
prior to crystallization.33,34 Similar observations have
been made in scattering measurements on other polymers
as well,35–38 although various interpretations have been
given.37 Second, many polymers exhibit “melt mem-
ory” (i.e. process history) effects which are not explain-
able by CNTP. Examples abound,39–41 but a prototypi-
cal case was observed in re-crystallization experiments
on polypropylene by Li et al.42,43 When re-crystallizing,
they observed process history effects on the semicrys-
talline morphology, nucleation rate, and crystal growth
rate that depended on the degree of superheating (T−Tm)
and holding time of the prior melting step.

With the above contradictory evidence, several re-
searchers have proposed alternate theories to CNTP.
Olmsted et al. theorized that a liquid-liquid phase gap
lies within the liquid-crystal phase gap, and that a liquid-
liquid spinodal decomposition coupled to the crystalliza-
tion process could explain some of the anomalous scat-
tering observations.16 Strobl proposed a multistep mech-
anism for crystallization, where the melt first transitions
to an aligned mesophase before crystallizing.44–46 Along
similar lines, Milner fleshed out a more specific quan-
titative theory of crystallization for polyethylene that in-
cludes an intermediate nematic rotator phase between the
melt and the crystal.13 Muthukumar also used the idea
of an intermediate state to construct a theory of polymer
crystallization that includes melt-memory effects.47

All of the above theories postulate a previously unrec-
ognized role for chain connectivity, chain stiffness, and
nematic ordering in the crystallization process. While
each theory differs in its details, all postulate a key mech-
anistic difference: chain alignment must occur before
monomers can order into a crystalline lattice. We re-
fer to this idea as the SOMM (Strobl, Olmsted, Milner,
Muthukumar) hypothesis for ease of reference. This con-
cept is illustrated in Figure 1b, which shows a free energy
surface as a function of some nematic order parameter,
rather than a crystalline order parameter. Unlike the sur-
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face energy explanation in CNTP, the free energy bar-
rier in this case is primarily due to the entropy lost when
chains align.

B. Simulation Studies of Homogeneous Nucleation

Simulations play an important complimentary role to
theories of homogeneous nucleation, and in principle,
detailed molecular simulations should be able to distin-
guish whether polymers crystallize with the mechanisms
described by CNTP or by the theories of SOMM. Un-
fortunately, homogeneous nucleation is a rare event,48

and brute force calculations can be exceptionally expen-
sive when combined with the large densities and long
polymer chains that typically accompany simulations of
a polymer melt. Consequently, simulations of polymer
crystallization typically employ non-equilibrium molec-
ular dynamics (NEMD) techniques with large degrees of
undercooling to accelerate nucleation.

As we describe below, the use of artificially acceler-
ated kinetics have complicated the simulation evidence
for and against various nucleation theories. In partic-
ular, large magnitudes of undercooling move the sys-
tem further from equilibrium and amplify purely ki-
netic effects such as entanglement. While kinetic ef-
fects are widely believed to be important in polymer
crystallization—though perhaps not to the degree seen in
NEMD simulations—many differences between CNTP
and SOMM rely on the presence of additional thermody-
namic regimes, such as nematic phases, that complicate
the interpretation of these simulations.

Thus, conventional NEMD methodologies have led
to a situation where competing explanations are possi-
ble. For example, Yi, Rutledge, and co-workers did pi-
oneering work using united-atom coarse-grained models
of n-alkanes and polyethylene and found results broadly
agreeing with CNTP, including observation of a cylindri-
cal shape for the critical nucleus.17,49,50 Luo and Sommer
describe a more nuanced story for melts of polyvinyl al-
cohol above the entanglement molecular weight. CNTP
generally describes the nucleation behavior in their simu-
lations, but entanglement gives rise to important thermal
history/melt-memory effects.18,51,52

By contrast, a number of other simulations have found
qualitative support for the SOMM hyopthesis. Wentzel
and Milner performed all-atom simulations of n-alkanes
and found two orientationally-ordered rotator phases in
addition to an atomistically-ordered crystalline phase.26

Using simulations of C50 and C1000 polyethylene and
self-consistent field theory, Zhang and Larson 53 found
a metastable nematic phase present for supercooled
polyethylene that accelerated the crystallization kinetics
with sufficient undercooling. Similarly, Hall et al. simu-
lated a polyethylene melt and found crystals residing in
nematic droplets, meaning the crystalline phase was pre-

ceded both temporally and spatially by nematic order-
ing.54–56 Additionally, Hall et al. found direct evidence
that the shape of the nucleus was not a simple cylinder or
sphere.54 Recently, Nicholson and Rutledge also found
direct evidence of the importance of nematic alignment
for crystallization in a study of flow-enhanced nucleation
of polyethylene.57,58

Our approach departs from the NEMD approach that
has led to the present controversy, and instead focuses on
characterizing the phase behavior and near-equilibrium
nucleation kinetics of a model polymer system. It may
appear counter-intuitive to focus on near-equilibrium be-
havior, given that kinetic effects are widely believed to be
important in polymer crystallization. However, a care-
ful characterization of the underlying thermodynamics is
an important fundamental step to resolving the questions
raised by SOMM and, based on our review of the litera-
ture, has been neglected. More importantly, both CNTP
and the theories by SOMM are near-equilibrium theo-
ries. In other words, they both rely on specific postulates
of a free energy landscape (FEL) and order parameters
that dictate the kinetic pathway. Accordingly, one way
to qualitatively and quantitatively test these theories is to
directly calculate the FEL for a model system.

Despite the numerous simulations cited above, rela-
tively few studies have calculated values of the free en-
ergy of nucleation,17,59 and none have done so using
both crystalline and nematic order parameters. Liu et
al.60 constructed a multidimensional polymer FEL using
NEMD, but their primary focus was the relative stability
of different solid phases and not the problem of poly-
mer crystal nucleation. The most rigorous studies of the
free energies of equilibrium crystal nucleation in a melt
to date have been performed by Shakirov and Paul us-
ing a very simple model of semiflexible oligomers.61,62

Because calculating the full density of states for even
this system proved too costly, Shakriov and Paul were
forced to stop short of calculating a full phase diagram—
resorting to a well-informed estimate—and they did not
compute free energy surfaces or consider nucleation.
However, they did provide meaningful insight into the
role of attractive interactions, showing that attractions
lead to only a small quantitative shift in the relevant
phase boundaries.

In this work, we pick up where Shakriov and Paul
left off in investigating the nucleation behavior of a melt
of semiflexible oligomers as a methodological proof-
of-principle and a pre-cursor to similar calculations for
more realistic models of polymer crystallization. Ac-
cordingly, we use multiple Monte Carlo simulation tech-
niques to compute (i) a phase diagram and (ii) relevant
FELs for a model system of semiflexible oligomers using
order parameters that characterize both crystalline and
nematic order. As stated previously, calculating both a
phase diagram and free energy surfaces allows us to di-
rectly examine several assumptions in CNTP and SOMM
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for the system of oligomers, including explicit consider-
ation of the nucleation mechanism.

With this in mind, the paper proceeds as follows. We
first describe the polymer model, our Monte Carlo sim-
ulation methods, and explain the relevant order parame-
ters. We then describe the phase behavior of the model in
terms of crystalline and nematic order parameters. The
key results of the paper are a calculation of the FEL of the
phase transitions with respect to these crystalline and ne-
matic order parameters. Interestingly, these calculations
show a cooperative phase transition that agrees with the
qualitative principles underlying the theories by SOMM,
but differs in the details of the phase transition mecha-
nism. We then speculate on the implications of this result
for crystallization in polymer systems more broadly.

II. METHODS

We use four different simulation methods to study the
crystalline transition: traditional Markov-chain Monte
Carlo (MCMC), Wang-Landau Monte Carlo (WLMC),
umbrella-sampling Monte Carlo (USMC) and expanded
ensemble density of states (EXEDOS) simulations. Fig-
ure 2 shows the connections between these different
methods and their relationship to the data and figures in
the paper. The first box in Figure 2 details the recipe
used to build phase diagrams. MCMC simulations con-
struct melting curves and locate phase transition temper-
atures as a function of density. WLMC simulations—
which directly sample the density of states and more
efficiently sample rare events such as crystallization—
provide an independent measure of the phase bound-
aries and compliment the MCMC results.63,64 In addi-
tion to their use for computing a phase diagram, MCMC,
WLMC and USMC also generate appropriate configu-
rations for analysis and as initial conditions for EXE-
DOS simulations. Likewise, the second box in Figure 2
details the recipe for free energy analysis employed in
this study. EXEDOS simulations build multidimensional
FELs at the transition temperature along order parame-
ters of interest.65–69 EXEDOS simulations are similar in
spirit to the WLMC method, but they take place in an
expanded ensemble that includes the order parameter of
interest. We use the “multidimensional lowest energy”
algorithm (MULE) recently developed by Fu et al. 70 to
compute the minimum free energy pathway (MFEP) be-
tween local minima on our 2D FELs. These methods are
described in more detail in II B and in the Supplemen-
tary Material.

In an effort to capture polymer behavior while also
minimizing computational requirements, we choose a
system of short, semiflexible oligomers that experience
only hard-core repulsion. Following Shakirov and Paul,
we do not include an attractive potential in our model,
despite their potential importance for polymers that crys-
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FIG. 2. Flowchart illustrating the connections between the
methods used and the presented data. Yellow rectangles repre-
sent methods and green ovals correspond to one or more figures
in the paper.

tallize.61,62 Shakriov and Paul found that attractive inter-
actions induced only a minor shift in the phase boundary
for the model in question,61,62 and their inclusion signif-
icantly increases the computational cost of our simula-
tions. We believe that attractive interactions may indeed
play a more important role for systems with softer poten-
tials, but we leave such investigations to future work.

Consequently, in the present model, crystallization is
driven by entropy not by energy.71 As shown below, the
transition from an disordered melt to a nematically or-
dered crystal can happen either via densification at a con-
stant temperature or via a temperature quench at a given
density. In addition to reduced computational cost, this
relatively simple system has additional advantages. It has
a known ground state and crystal structure and the ex-
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plicit inclusion of bending rigidity permits nematic align-
ment. The latter is important because it allows us to study
both polymer connectivity and stiffness, both of which
are important in more realistic models. More details of
the polymer model are given in Section II A.

Note also that our choice of a hard-sphere model
necessitates simulations in a constant volume (variable
pressure) ensemble. Because most experiments are per-
formed at constant pressure and variable density, the re-
sults presented here may be difficult to compare directly
to such experiments.

Finally, in a system with both nematic and crystalline
phases, there exists a 2D FEL with respect to changes in
nematic and crystalline order. Accordingly, we employ
two order parameters: P2 for quantifying nematic align-
ment and the Steinhardt order parameter Q6 for crys-
tallinity. Additional information about these order pa-
rameters is given in II B and the Supplementary Mate-
rial.

A. Polymer Model

The model consists of Nc chains containing Nb beads
connected by bonds of a fixed length (σ ) with a simple,
step-wise bending stiffness potential

Ubend(θ) =

{
−ε θ ≤ θs

0 θ > θs
(1)

where ε is the stiffness energy and θs is a cutoff angle.
The stiffness potential is computed for all sets of three
sequentially ordered beads forming a backbone angle of
θ .

Non-bonded spheres interact through a hard-sphere
potential

Unb(rij) =

{
∞ rij < σ

0 rij ≥ σ
(2)

where rij = |rj−ri| is the distance between two distally
located beads. For all simulations in this paper, Nc = 90,
Nb = 10, and cos(θs) = 0.9. These choices provide a
system that is small enough to compute well-equilibrated
FELs and enables a direct comparison to recent results
by Shakirov and Paul.61 As discussed, the combination
of the above two potentials gives the system a simply
computable ground state (T = 0) energy

Umin = Nc(Nb−2)ε (3)

when all Nc chains are aligned in a close-packed config-
uration.

The polymer volume fraction is an important determi-
nant of system behavior. It is given by the hard sphere

volume fraction of the total number of beads in a cubic
simulation box of size L,

φ =
NcNbπσ3/6

L3 (4)

Our simulations span volume fractions φ ∈
[0.379,0.471]. For comparison, the volume fractions
of random and maximum close-packed configurations
of hard spheres are 0.64 and π/(3

√
2) ≈ 0.7405,

respectively.72

This relatively simple model contains a single length-
scale parameter, the hard sphere diameter and bond
length σ , and a single-energy scale parameter, the stiff-
ness energy scale ε . Unless otherwise noted, all results
below are non-dimensionalized in terms of these two pa-
rameters. Additionally, dimensional analysis reveals that
there are only two dimensionless groups that govern the
phase behavior of the system: the volume fraction φ and
the reduced temperature Tr = kT/ε , where k is Boltz-
mann’s constant and T is the absolute temperature.

0.00 0.25 0.50 0.75 1.00
Tr

100

101
l p

/

FIG. 3. Dimensionless persistence length, lp/σ , versus reduced
temperature, Tr, for a Monte Carlo simulation of a melt of phan-
tom chains (magenta points) compared a theoretical estimate of
a freely jointed chain (blue line). Error bars show the standard
error of the mean.

Importantly, the combined group Tr implies that tem-
perature and stiffness are coupled. To quantify this ob-
servation, Figure 3 shows the dimensionless persistence
length lp/σ as a function of Tr for an ideal version of
the model, i.e. a version of the model with Unb = 0. The
persistence length, lp, is obtained from the bond correla-
tion function, 〈cosθ(s)〉, which is the average cosine of
the angle between any two segments in the same chain
separated by s bonds. The bond correlation function is
assumed to decay exponentially as a function of distance
s along the polymer backbone,

〈cosθ(s)〉= exp(−sσ/lp) (5)

and lp/σ is obtained from a fit to this functional form.
For comparison, the persistence length from simulation
is compared to the theoretical prediction of a freely ro-
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tating chain,

lp
σ

=
1
2

[
1+ 〈cosθ(0)〉
1−〈cosθ(0)〉

]
(6)

where 〈cosθ〉 is given by

〈cosθ(0)〉= 1
2

exp(1/Tr)sin2
θs + cos2 θs− cos2 θm

exp(1/Tr)(1− cosθs)+ cosθs− cosθm
(7)

and θm = 180◦ is the maximum angle in phantom chain
simulations61.

As shown in Figure 3, lp/σ starts at or below the bond
length lp/σ ≈ 1 at high Tr and monotonically increases
to lp/σ ≈ 20 = 2Nb as Tr → 0. Consequently, chains at
lower Tr are stiff and have a greater propensity to nemat-
ically align and to crystallize.

B. Simulations

To determine phase transition points for the phase dia-
gram, we computed so-called melting curves using NVT-
ensemble MCMC and constant-NV WLMC simulations.
Melting curves consist of order parameters P2(Tr) and
Q6(Tr) at fixed φ , and a phase transition (i.e. melting)
takes place at a step-change in value of the order pa-
rameter. Melting curves get their name from an MCMC
simulation that is initialized with either a nematic or
crystalline configuration and then subjected to increasing
temperatures until the system transitions to a disordered
melt. One uses this procedure because MCMC simu-
lations are inefficient at crossing barriers at first-order
phase transitions, making it costly to compute the loca-
tion of the transition. As an additional consequence of
the difficulty of barrier-crossing, MCMC melting curves
give an upper bound of the melting temperature. By con-
trast, WLCM has barrier-crossing properties that enable
more efficient and more accurate calculations of first-
order phase transitions. Our WLMC “melting curves”
start from both ordered and disordered initial states and
sample the entire temperature range simultaneously.

More specifically, MCMC melting curves were ex-
tracted from multiple simulations at equally-spaced val-
ues of temperature T ∈ [0.1,1]. To ensure good statis-
tics, each MCMC simulation was run for a length of ap-
proximately 1000 times the energy autocorrelation time
(∼ 106−107 MC steps) and each data point on the curve
was replicated eight times. WLMC melting curves were
extracted from the density of states obtained using multi-
windowed, multi-walker replica-exchange WLMC sim-
ulations. Each replica-exchange WLMC simulations uti-
lized between 8 and 18 walkers and yielded density of
states with O(10−9) error. In both simulations, we em-
ploy a variety of polymer-specific moves73–80 to ensure
efficient equilibration of the polymer chains including:

kink,81,82 end-kink,82 reptation,81,83 and configurational-
bias versions of the same.73,74,76,80 Additional details re-
garding these methods are provided in the Supplemen-
tary Material.

To compute FELs, we used EXEDOS. EXEDOS is a
modified WLMC approach that builds the FEL along a
certain order parameter or reaction coordinate at a spe-
cific temperature and volume fraction.84 EXEDOS has
been previously used to construct an FEL along a va-
riety of order parameters including distance,65,84,85 cut-
off radii,86 Steinhardt order parameters,66 and nematic
alignment.67,69 The free energy as a function of the order
parameter θ (the FEL) is given by

F(θ) =−kT lnZ(θ)+C (8)

where C is an arbitrary constant and Z is the EXEDOS
density of states. Recall that computing F(θ) permits a
direct comparison to CNTP and SOMM predictions, as
shown in Figure 1. In our calculations, we computed
two-dimensional (2D) FELs from Z(P2,Q6), using EXE-
DOS simulations that span two order parameters. High
values of Q6 indicate crystalline configurations whereas
low values are characteristic of the disordered melt. Sim-
ilarly, a value of P2 closer to one indicates nematic align-
ment, whereas a value close to zero signifies a random
distribution of chains. All EXEDOS simulations utilize
replica-exchange with 8 to 18 walkers that are each ini-
tialized with different initial configurations and converge
to a free energy with errors less than 10−7 in simulation
units. In addition, each EXEDOS simulation was repli-
cated three times and averaged to produce the final data.
More details on EXEDOS simulations and the order pa-
rameters are provided in the Supplementary Material.

Our interest in the FEL extends to an analysis of
its topological features with basins representing stable
or metastable states and peaks representing rare events.
Based on ideas from classical nucleation theory and tran-
sition state theory, we expect the MFEP between basins
to be indicative of the kinetics of the system.87 Similarly,
we expect the maximum of the MFEP (a saddle point on
the FEL surface) to characterize the primary barrier to
nucleation. To find the MFEP and the saddle point, we
used the MULE algorithm recently developed by Fu et
al.70 We use the resulting MFEP to calculate the barrier
height between the saddle point and basins.

III. RESULTS

A. Equilibrium Phase Behavior

In order to understand the nucleation behavior of
semiflexible oligomers, we must first understand their
phase behavior. Accordingly, we used a combination
of MCMC and WLMC simulations to study the melt–
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nematic and melt–crystal phase transitions in order to
construct a phase diagram.
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FIG. 4. Melting curves of the (a) internal energy, (b) nematic
order parameter, (c) crystalline order parameter versus reduced
temperature from MCMC (red points) and WLMC (blue line)
at φ = 0.438. The vertical dashed line is the best estimate of
the melting temperature (Tm = 0.291). Error bars for MCMC
data points depict the standard error of the mean.

Representative melting curves for the melt–crystalline
transition at φ = 0.438 for both methods are shown in
Figure 4. The figure shows the potential energy U , the
nematic order parameter P2, and the crystalline order pa-
rameter Q6 versus Tr. All three melting curves show
evidence of a first-order transition at the same temper-
ature, as indicated by a sharp change in the order param-
eter at the melting temperature Tr = Tm = 0.291. As Tr
increases, both P2 and Q6 decrease indicating that po-
sitional order and alignment both decrease upon melt-

ing. By contrast, U increases upon melting as the system
gains conformational entropy at the expense of increased
bending of chain backbones.

Importantly, the melting curves of U , P2 and Q6 in Fig-
ure 4 all change at the same temperature, revealing that
there is only one transition as a function of Tr. As shown
below, this is the case for all values of φ that we studied.
Accordingly, in our simple system, there are no equilib-
rium intermediate states or multistep phenomena in the
melt–crystal transition as theorized by Strobl,45 though
we must examine an FEL to rule out the possibility of
metastable states.

It is also interesting to note that the WLMC simula-
tions are generally more efficient and yield better statis-
tics than the MCMC simulations. The latter are espe-
cially difficult to equilibrate at low temperatures and near
the melting transition. Evidence of this loss in accuracy
can be seen by the large error bars and the positive tem-
perature shift in the MCMC data near Tm. This difficulty
is apparent for all volume fractions but is exacerbated at
higher values. Spontaneous crystallization from the melt
is also difficult in MCMC simulations at higher φ mak-
ing it harder to collect low Tr MCMC data. MCMC and
WLMC melting curves at other values of φ appear in the
Supplementary Material.

Focusing on the WLMC data, Figure 5 shows melting
curves for P2 and Q6, and the constant volume heat ca-
pacity CV for five different values of the volume fraction
φ ∈ {0.379,0.407,0.428,0.438,0.471}. All systems are
an isotropic melt state at high T characterized by low val-
ues of both Q6 and P2. At a specific Tr (Tm), a change in
P2 and Q6 and a corresponding peak in CV provide evi-
dence of a single first-order phase transition for all values
of φ . However, there are differences between the transi-
tions at high-φ and low-φ , an indication that there are
two different types of phase transitions.

At the larger volume fractions (φ = 0.438 and φ =
0.471), the phase transition is clearly between a melt and
a crystalline phase. At Tm, there is a large and sharp
increase in Q6, manifesting a significant change in po-
sitional ordering. Additionally, P2 approaches its maxi-
mum value, which it must for a crystalline system, and
CV shows a sharp and pronounced peak.

By contrast, at the smaller volume fractions (φ =
0.379 and φ = 0.407) the transition is between a melt and
a nematic phase. The most direct evidence is the small
change in positional ordering indicated by Q6 in Fig-
ure 5b. Indeed, the nematic ordering parameter P2 still
shows a pronounced change at the Tm, though the change
is more gradual and approaches a smaller value. Inter-
estingly, even the heat capacity curves in Figure 5c show
a difference between the two transitions, with the melt–
nematic transition giving a broader, less pronounced
peak.

The remaining volume fraction φ = φc = 0.428 is at or
near the melt–nematic–crystal triple point. We located
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FIG. 5. WLMC simulation profiles of the (a) nematic order
parameter, (b) crystallization order parameter and (c) heat ca-
pacity at φ ∈ {0.379,0.407,0.428,0.438,0.471}.

φc by a trial-and-error process, creating melting curves
at numerous values of φ with φc being the lowest volume
fraction exhibiting a crystallization transition.

Additional information about the nature of the phases
can be obtained by examining molecular configurations
and structure factors, as shown in Figure 6. The melt
phase, with a molecular configuration shown in Fig-
ure 6a-i, is made up of isotropically-oriented chains with
no long-range positional ordering. The melt’s structure
factors, given in Figure 6a-ii, a-iii and a-iv, provide fur-
ther evidence for these visual observations showing a cir-
cularly symmetric structure factor in all three dimensions
characteristic of disordered systems. Additionally, there
is a peak at the hard sphere radius (q = 2π/σ ) character-
istic of liquid structure.

TABLE I. Estimates of Tm from WLMC melting curves and
EXEDOS simulations for five values of φ .

Transition Type φ T WLMC
m T EXEDOS

m
Melt–Crystal 0.471 0.374 0.374
Melt–Crystal 0.438 0.291 0.291
Triple Point 0.428 0.263 0.267
Melt–Nematic 0.407 0.248 0.248
Melt–Nematic 0.379 0.226 0.226

As shown in a representative molecular configuration
in Figure 6b-i, chains in the nematic phase are anisotrop-
ically oriented along a nematic director, but bead posi-
tions are not ordered in a crystal lattice. Again, structure
factors provide supporting evidence for these visual ob-
servations. The structure factors in Figure 6b-ii and b-
iii show anisotropy along qx, characteristic of an aligned
configuration with a director in the x-direction. The sym-
metric structure factor in the qy–qz plane is consistent
with this interpretation. Additionally, the structure fac-
tors do not show evidence of long range positional order.
There is a broad peak at qx =±2π/σ , along the nematic
director, from positional ordering along the length of the
chain. The peak in the qy–qz plane is at ≈ 2π/(1.1σ),
indicating that the alignment in the x-direction has in-
creased chain-chain spacing perpendicular to the direc-
tor.

Finally, a characteristic molecular configuration of the
crystalline phase is shown in Figure 6c-i, with chains
showing both orientational and positional ordering. The
structure factors in Figure 6c-ii, c-iii, and c-iv provide
details about the nature of the crystal. Figure 6c-ii and
c-iii indicate that, like the nematic phase, the chain axis
of this crystal lies parallel to the x-axis and the peak at
qx = 2π/σ indicates that (as expected) beads are reg-
ularly spaced at a distance of σ along the chain back-
bone. However, unlike the nematic phase, the chains are
hexagonally ordered in the y–z plane, as indicated by the
hexagonal scattering pattern looking down the nematic
director in Figure 6c-iv. The hexagonal positional order-
ing in y and z is imperfect however, as indicated by peak
smearing in Figures 6c-ii and c-iii. We believe this lat-
ter effect is due to an incommensurability between the
crystal lattice and the (relatively small) box size. Fur-
ther evidence that the simulation box is small comes from
the appreciable cross pattern at low q due to Fraunhofer
diffraction.88

Using the melting and heat capacity curves above, we
constructed a phase diagram in the φ–Tr plane in Fig-
ure 7. The melting temperatures for five densities of in-
terest are also given in Table I. Isochores contain a sin-
gle phase transition from a high-temperature disordered
melt to either a low-temperature nematic phase or a low-
temperature crystalline phase. Isotherms are more varied
and include (i) a melt–nematic–crystal transition at low
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FIG. 6. (i) Representative MCMC snapshots of configurations and (ii-iv) averaged 2D structure factors for a (a) disordered melt
phase at φ = 0.471 and Tr = 2.0, (b) nematic phase at φ = 0.407 and Tr = 0.001, and (c) crystal phase at φ = 0.471 and Tr = 0.001.
All qi are in units of σ−1 and qx,qy,qz ∈ [−4.2π,4.2π].

Tr and (ii) a melt–crystal transition at high Tr. Note that
the existence of only a single phase transition along iso-
chores implies that the the nematic–crystal transition line
is isochoric. Indeed, WLMC simulations that bracket
the triple-point volume fraction (data not shown) exhibit
only a single phase transition, and additional EXEDOS
simulations around the triple point (also not shown) nar-
row the range of the value of the triple point volume frac-
tion to within ±O(10−2).

Shakirov and Paul predicted a phase diagram for the
same model that differs in a few respects from Figure 7.61

Their theoretical prediction for the boundary between
isotropic and aligned (nematic and crystalline) phases is
shown in Figure 7 and is in fair agreement with our data.
The slope of the prediction at low-φ appears similar, but
the transition temperature is shifted to higher Tr rela-
tive to our observations of the melt–nematic transitions.
More noticeably, their prediction fails to capture signif-
icant curvature that we observe at high-φ in the melt–
crystal transition. In addition, our calculation of the triple
point (φ = 0.428) lies considerably outside the range of
their estimate, φ ∈ [0.468,0.478]. One source of possi-
ble error in their predictions may be the reliance on a
non-chain hard sphere equation-of-state that neglects the
impact of connectivity.89 As is always the case in sim-

ulations, our data may also suffer from sampling errors,
though we have scrupulously tested for such errors.

B. Free Energy Landscape

Having constructed a phase diagram, we then exam-
ined the nucleation behavior of the system of semiflex-
ible oligomers. We did so through the construction of
FELs as a function of the order parameters P2 and Q6 in
multidimensional EXEDOS simulations. Figure 8 shows
FELs as a function of P2 and Q6 for the same five densi-
ties in Table I. FELs are temperature-dependent, and we
show the FELs at their respective coexistence tempera-
tures as given in Table I.

In an FEL, each local minimum (dark blue basins in
Figure 8) represents a stable or metastable phase, with
the global minimum giving the thermodynamically pre-
ferred phase. At the coexistence temperature, the two
local minima (representing the two coexisting phases)
should have equal values of the free energy. To find
this value using EXEDOS, we swept temperature at con-
stant φ around the value of Tm obtained from the melting
curves above, until we found basins with equal free ener-
gies. As is apparent in Table I, Tm estimates from melting
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FIG. 7. Phase diagram for semiflexible oligomers in the φ–
Tr plane. The high-temperature phase is a disordered melt
(off white), the low-temperature, low-density phase is a ne-
matic (yellow), and the low-temperature, high-density phase is
a crystal (light blue). Red points are from melting curves and
heat capacities, and the green line is a cubic best-fit curve es-
timate of the order-disorder transition (ODT). The dashed dark
blue line of demarcation between the nematic and crystalline
phases intersects the ODT at the triple point at φ = 0.428 and
Tr = 0.263. The dashed magenta line is a prediction of the ODT
by Shakirov and Paul.61

curves and EXEDOS simulations agree very well, with a
slight deviation (∆Tr = 0.004) at the triple point only. We
speculate that the latter is due to a small error in our es-
timate of φc, the volume fraction of the triple point.

As expected from the phase behavior, there are three
qualitatively different FELs in Figure 8, corresponding
to the three different types of transitions. The FELs at
the lowest densities (φ = 0.379 and φ = 0.407), shown
in Figure 8d-e, are characteristic of a melt–nematic tran-
sition. Here the two local minima that represent the co-
existing melt and nematic phases are at equal values of
the crystalline order parameter Q6 but at different values
of the nematic order parameter P2. The transition from
the low-P2 melt to the high-P2 nematic has a small bar-
rier and involves essentially no change in Q6. Note also
the consistency between the order parameters at the min-
ima in the FELs and the range that the order parameters
span in the melting curves at Tm in Figure 5.

The highest two densities (φ = 0.438 and φ = 0.471)
shown in Figure 8a-b, correspond to the melt–crystal
transition. The basins corresponding to the melt are at
low Q6 and low P2, and those representing the crystal
phase are at high Q6 and high P2. Again, the values
of the order parameters of the minima match those in

Figure 5 at Tm. The scale of the barrier is considerably
larger (note the scale bars for the FELs), and the transi-
tion between minima involves a change in both Q6 and
P2. The latter is important mechanistically. The melt–
crystal transition in this system is smooth and coopera-
tive, with nematic alignment and positional ordering oc-
curring simultaneously. There are, for example, no inter-
mediate metastable minima that might lead the system to
first align and then crystallize (or vice versa).

The FEL at the triple point (φ = 0.428) given in Fig-
ure 8c shows the existence of three minima: melt at
the lowest value of P2, nematic at a larger value of P2,
and the crystal at a yet larger value of P2 as well as a
larger Q6. Interestingly, the melt–nematic barrier appears
smaller than the nematic–crystal barrier, consistent with
the scales of the melt–nematic and melt–crystal transi-
tions at other values of φ .

Greater insight into the nucleation behavior can be
obtained by extracting the MFEP from the FEL. Fig-
ure 9a shows the MFEP connecting the melt and crys-
talline basins for the FEL at φ = 0.438 obtained using
the MULE algorithm described in Section II B. In Fig-
ure 9b the MFEP is plotted along a coordinate, ξ , tracing
the arc-length of the path in Q6–P2 space. The MFEPs
for the other FELs are qualitatively similar and can be
found in the Supplementary Material.

The MFEP traces a smooth path that minimizes the
free energy through the saddle point connecting the
basins of the melt and crystal phases. The MFEP shows
no other local minima, confirming our earlier observa-
tion that the phase transition involves cooperative ne-
matic alignment and positional ordering. From a molec-
ular level perspective, these results indicate that molecu-
lar ordering into a close-packed lattice occurs simultane-
ously with chain alignment.

In addition to providing insight into the phase tran-
sition mechanism, the MFEPs also provide quantitative
estimates of the transition barriers. The barrier, ∆F†, is
the difference in free energy between the maximum of
the MFEP (the transition state) and the minima (the two
coexistent phases). Figure 10 shows both the forward
and reverse values of ∆F† as a function of φ . These bar-
rier heights were obtained from MFEPs derived from the
FELs in Figure 8 similar to Figure 9 and are provided in
the Supplementary Material. The forward (freezing) and
reverse (melting) value of ∆F† should be equal at the
phase coexistence temperature, but the free energies are
quite sensitive to even slight deviations from the melt-
ing temperature, sometimes leading to small differences
(i.e. at φ = 0.471). In addition to minor deviations from
the coexistence temperature, the discrete size of the bins
in the EXEDOS algorithm (i.e. in this case in the Q6
dimension) can introduce errors into the FELs that prop-
agate into the MFEPs the values of ∆F†.

The nucleation barrier drastically increases as φ in-
creases. For the lowest two values of φ (i.e. the systems
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FIG. 8. FELs as a function of P2 and Q6 at φ ∈ {0.471,0.438,0.428,0.407,0.379} in (a)-(e), respectively. Free energy colormaps
are in units of ε . Black x’s denote locations of local minima. All FELs are obtained at their coexistence temperature as given in
Table I.

with melt–nematic transitions) the barrier is small, and
we can expect fast nucleation even at the melting tem-
perature, Tm. At the largest values of φ (i.e. the sys-
tems with melt–crystal transitions) the barrier is large,
and spontaneous nucleation at Tm is unlikely. This result
qualitatively agrees with experimental observations that
large induction times are required for polymer crystal nu-
cleation experiments, even at large degrees of supercool-
ing.33,34,37,38

Interestingly, the triple point occurs when the barrier
height is O(ε), where ε is the characteristic scale of the
bending energy. We speculate that the triple point occurs
when the density is large enough that the free energy cost
to bending is similar to that for positional re-ordering.
Thus, nematic ordering occurs at low φ when bending is
cheap relative to positional ordering, and crystallization
happens at high φ when bending is relatively costly.

IV. DISCUSSION AND CONCLUSION

We have studied the thermodynamic and crystal nu-
cleation behavior of a model of semiflexible oligomers.
Using a combination of MCMC and WLMC simulations,
we have constructed a phase diagram in the φ–Tr plane
that shows three phases: a melt, a nematic, and a crys-
talline phase. The melt–nematic phase transition is well-
characterized by a classical nematic order parameter P2.
By contrast, the melt–crystal phase transition is better
characterized in a two-order parameter phase space of
P2 and Q6, the latter parameter characterizing positional
order of monomers in a crystalline lattice. Accordingly,
we built 2D P2–Q6 FELs for various volume fractions,
φ , at their transition temperatures to better understand
nucleation pathways. To our knowledge, this is the first
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FIG. 9. (a) 2D Q6–P2 FEL at φ = 0.438 (identical to Figure 8b)
with MULE-extracted MFEP in yellow. Discrete jumps in the
MFEP are related to the discrete size of the bins along Q6. (b)
MFEP values from the 2D Q6–P2 FEL at φ = 0.438 projected
along the reaction coordinate of its arc-length in Q6–P2 space.
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FIG. 10. Forward and reverse barrier heights, ∆F†/ε , extracted
from MFEPs as a function of φ .

2D FEL produced for a model of crystallizing polymers
at equilibrium. The FELs reaffirmed the importance of
both P2 and Q6 in the melt–crystal transition, and im-
portantly, they showed that the MFEP of a melt–crystal
transition involves a smooth and cooperative change in
nematic alignment and positional ordering.

Our results are broadly consistent with principles un-
derlying the SOMM hypothesis of polymer crystalliza-
tion, but the details of the mechanism are unique. Recall
that CNTP postulates that nucleation proceeds along a
single, crystalline order parameter, as outlined in Fig-
ure 1. The SOMM hypothesis suggests that nematic
order drives the transition, with some authors invoking
an explicit intermediate stable or metastable phase. The
MFEP in Figure 9 is a function of both order parameters,
but depends much more strongly on the nematic order
parameter. However, unlike specific theories by SOMM,
the MFEP we calculate indicates a cooperative transition,
rather than one that relies on intermediate phases or two-
step process during nucleation.

Recent research on crystal nucleation outside of the
field of polymers lends further support to our approach.
Classical nucleation theory for simple molecules like Ar-
gon postulates a one-step process involving a single order
parameter. Unfortunately, this simple model predicts nu-
cleation rates that disagree with experimental values by
26 orders of magnitude!90 The assumption of a simple
reaction coordinate also fails to describe the transition
path, and there is ample evidence for alternative nucle-
ation pathways.91–95 More complex molecules like wa-
ter are also (unsurprisingly) poorly predicted by classical
nucleation theory.96–98 Additional studies on the crystal-
lization of multi-atomic molecules further suggests that
transition pathways consisting of multiple order parame-
ters are likely the norm rather than the exception.99–102

Based on our observation of cooperativity between ne-
matic and positional order, we speculate that the temper-
ature dependence of chain stiffness plays an important
and underappreciated role in polymer crystallization. In-
deed, this claim is bolstered by a recent simulation by
Zhang and Larson showing that supercooled polyethy-
lene possesses a metastable nematic phase.53 Accord-
ingly, we believe that chain semiflexibility is an impor-
tant factor for a polymer-physics based theory of primary
nucleation.

Despite the suggestive nature of our results, more
work remains to be done to see if the cooperative mech-
anism is a general phenomenon. The present model is
small, consists of short chains with only a few Kuhn
lengths, and has an overly-simplistic potential compared
to atomic systems. Calculations with a larger system will
provide insight into the question of the nucleus shape,
and longer chains will be necessary to observe folded
lamellar crystals. A more realistic interatomic potential
will allow quantitative predictions that can be compared
with experimental systems.
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Nevertheless, there are reasons to believe that the
present conclusions are more broadly applicable than
may first appear. Using a similar system, Shakirov and
Paul recently claimed that molecular weight produces
relatively small changes to the phase diagram.61 They
also provided evidence that attractive interactions pro-
duce no additional phases, only introducing a shift to the
transition temperatures.61,62 There is also simulation evi-
dence in the literature on polyethylene and rotator phases
that suggests that molecular weight is relatively unim-
portant to the process of nucleation beyond a certain
threshold.17,49,50,103–107 Specifically, it was observed that
the size of the critical nucleus is independent of chain
lengths surpassing two Kuhn lengths of the model poly-
mer.

Going forward, it will be fruitful to compare both
molecular dynamics simulations and experiments to ki-
netic predictions based on MFEPs and barrier heights
from this and related models. Barriers based on MFEPs
are entirely due to thermodynamics, and induction times

τ ∼ exp(−∆F†/kT ) (9)

can be estimated using transition state theory. By con-
trast, both experiments and molecular dynamics may
contain additional kinetic effects due to diffusion and
chain entanglement. Therefore, comparisons may enable
one to distinguish between near-equilibrium and dissipa-
tive phenomena.

Ultimately, we anticipate increased insight will come
from extending these methods to larger systems with
longer chains and more complex potentials. Based on
their work with WLMC, Shakirov and Paul61 have sug-
gested that reaching large system sizes and attraction en-
ergies might be exceedingly costly. However, EXEDOS
does not experience the same cost scaling problems as
WLMC, and can be used to generate similar informa-
tion. Therefore, future comparisons between the results
of EXEDOS simulations as well as experimental work
and molecular dynamics simulations should allow for a
more comprehensive look into theories of polymer crys-
tallization.

LIST OF SYMBOLS AND ACRONYMS

• FEL: free energy landscape

• CNTP: classical nucleation theory for polymers

• Tm: melting/coexistence temperature

• SAXS: small angle X-ray scattering

• WAXS: wide angle X-ray scattering

• SOMM: Strobl-Olmsted-Milner-Muthukumar
theories

• NEMD: non-equilibrium molecular dynamics

• MCMC: Markov-chain Monte Carlo

• WLMC: Wang-Landau Monte Carlo

• EXEDOS: expanded ensemble density of states

• MFEP: minimum free energy pathway

• MULE: multidimensional lowest energy algo-
rithm

• P2: nematic order parameter

• Q6: crystalline Steinhardt order parameter

• Nc: number of chains

• Nb: chain length (number of hard sphere beads in
chain)

• σ : hard sphere bead diameter and bond length and
simulation length scale unit

• ε: stiffness energy scale and simulation energy
scale unit

• φ : hard sphere volume fraction

• L: cubic simulation box size

• Tr: reduced temperature = kT/ε

• lp: persistence length

• U : potential energy

• CV : constant volume heat capacity

• ∆F†: free energy barrier

SUPPLEMENTARY MATERIAL

The Supplementary Material contains a more detailed
description of the methods and for additional figures on
the MCMC, WLMC and EXEDOS results for all volume
fractions studied.
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1 Extended Methods

1.1 Markov-Chain Monte Carlo Simulations

We calculate melting curves using NVT-ensemble MCMC simulations. In MCMC simula-

tions, a configuration of coarse-grained bead positions evolves as a series of “moves” are

proposed and either accepted or rejected.1 MCMC accepts moves using the Metropolis cri-

terion to follow the Boltzmann distribution

Pacc = min [1, exp(−∆U/Tr)] (1)

where ∆U = Unew −Uold is the change in total potential energy resulting from the proposed

move.

We employ a variety of polymer-specific moves2–9 to ensure efficient equilibration of

the polymer chains including: kink,10,11 end-kink,11 reptation,10,12 and configurational-bias

versions of the same.2,3,5,9 MCMC simulations use 50% kink, 25% configurational bias end-

kink, and 25% configurational-bias reptation moves, unless otherwise noted. Configurational

bias move versions use 25 trial moves. A similar set of moves are used for all of the other

MC algorithms (e.g. WLMC, EXEDOS) described in this section.

Melting curves consist of order parameters P2(Tr) and Q6(Tr) at fixed φ, and melting was

determined to take place at the step-change in value. Melting curves are calculated using

MCMC according to the following procedure. MCMC simulations are initialized with a per-

fect crystalline (close packed and nematically aligned) initial configuration. The simulation

proceeds at a fixed temperature and simulation box size until the system equilibrates. We

determine equilibration in an MCMC simulations using an energy autocorrelation function.

Simulations are considered well-equilibrated after they surpass ten times the autocorrelation

time before stopping. Melting curves were obtained by sweeping temperature over the range

T ∈ [0.1, 1.0] at a fixed volume fraction, with melting curves calculated for volume fractions

φ ∈ [0.379, 0.471]. Eight independent replicates were performed at each value of Tr and φ to

obtain error estimates. These error estimates are depicted on melting curves as error bars

using standard error of the mean. Note that configurations from MCMC simulations were

used as a source for initial configurations for WLMC and EXEDOS runs.
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1.2 Wang Landau Simulations

WLMC simulations are a special type of MC method that directly calculate the system’s

density of states, Ω13–18. As a “flat-histogram” method, WLMC simulations are excellent at

sampling rare events such as crystallization. In principle, a single (but very long) WLMC

simulation can calculate the entire density of states. As such, WLMC simulations run at

fixed φ, but give results that span temperature. Consequently, Ω can be used to construct the

heat capacity, which can be used to determine phase transitions. Through canonical analysis,

one can also determine the temperature-dependent behavior of other order parameters (i.e.

melting curves).

Similar to MCMC, WLMC proceeds via a trial move and a choice of acceptance or

rejection. We use the same moveset in WLMC as discussed above. However, the WLMC

acceptance probability promotes equal visits to all states of a system and is of the form

Pacc = min

[
1,

Ω(Uold)

Ω(Unew)

]
(2)

where Ω(Ui) is the value of the density of states for a configuration with potential energy

Ui. The density of states used in the acceptance criteria is also the principal product of

the WLMC simulation. Ω(Ui) is initially assumed to be unity for all Ui and when the

simulation visits Unew, Ω(Unew) is increased by multiplying it with a modification factor,

f . The WLMC algorithm proceeds until it has uniformly visited all accessible states of the

system. We determine the latter using a histogram of Ui, and terminate the simulation when

all states have been visited, and the deviation of the minimum and average number of visits

is less than 20%.

Execution of the above procedure generates only a rough estimate of Ω, whose accuracy

is limited by the value of f . Subsequent iterations of the above process are necessary to

obtain an accurate value of Ω. By convention, f1 = e and fn =
√
fn−1 where the subscript

n denotes the WLMC iteration number.13 We use 27 WLMC iterations in our calculations,

giving a modification factor (and error estimate) of f = 1 + 10−8 on the final iteration.

While a single long WLMC simulation can in principle determine Ω, such a method is too

costly for a system larger than a few beads. To speed convergence, the simulation space is

divided into overlapping windows and each window is given multiple “walkers”, i.e. replicate
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WLMC simulations that run in parallel in the same window. In WLMC, Ω is only determined

to within an additive constant, so linear regression is used to “stitch” overlapping windows

together to obtain a master curve. In our calculations, we divide the internal energy space

U/ε ∈ [−720, 0] into 15-18 windows with 8-16 walkers in each window, for a total of 120-288

total processors committed to the simulation depending on the difficulty of the simulation.

Note that each of the walkers must be seeded with an independent initial configuration that

obeys the energy constraints of the window. These initial configurations were generated

using MCMC simulations as described above.

Landau and coworkers proposed yet further improvements to the WLMC method using

replica-exchange principles.19–22 Consider two walkers, α and β, with respective configura-

tions A and B that reside in neighboring windows. If the energies of these configurations

UA = U(A) and UB = U(B) are within the overlap region between the two windows, they

may swap configurations according the acceptance criteria22

Pacc = min

[
1,

Ωα(UA)Ωβ(UB)

Ωα(UB)Ωβ(UA)

]
(3)

In such simulations, each walker maintains a separate, local estimate of Ω and a separate

histogram. These are averaged, and when the global histogram is flat, the global Ω is re-

distributed among all walkers and a new WLMC iteration starts.

We implemented multiple walker replica-exchange Wang Landau (REWL) simulations,

and in our experience they speed convergence via parallelization and through improved

sampling efficiency. A well-known problem in the WLMC algorithm is that single walkers get

“stuck” due to hidden barriers and can oversample certain regions of phase space. Multiple

independent walkers partially solve this problem, because each independent replica begins

in a different initial state and is unlikely to be trapped by the same hidden barriers. The

configuration exchange in REWL simulations samples a wider range of phase space creating

walkers that are even more efficient at overcoming these hidden barriers. Exchange between

windows also improves the ergodicity of the simulation, allowing walkers to explore an energy

range that is larger than a single window.

As mentioned, classical formulas from statistical mechanics can be used to convert the

information embedded in Ω to other metrics. We use the formula for the fixed-volume heat
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capacity,

CV (T ) =
〈U2〉 − 〈U〉2

kT 2
(4)

The moments of U are calculated via

〈Un〉(T ) =

∑
i

Ui
n exp(ln Ωi − Ui/kT )∑

i

exp(ln Ωi − Ui/kT )
(5)

where i indexes discrete states of U ∈ [Umin, 0] and Ωi = Ω(Ui). We also calculate melting

curves using WLMC via the formula

〈M〉(T ) =

∑
i

〈Mi〉 exp(ln Ωi − Ui/kT )∑
i

exp(ln Ωi − Ui/kT )
(6)

where M(T ) is an order parameter such as P2 or Q6 and Mi = M(Ui).
23 Discontinuities in

U , Q6 and P2 melting curves happen at the first order melting/crystallization transition and

can be used to identify Tm.

1.3 Expanded Ensemble Density of States Simulations

EXEDOS is a modified WLMC approach that builds the FEL along a certain order parameter

or reaction coordinate.24 Unlike WLMC where Ω is a function of internal energy, the density

of states in EXEDOS is a function of an order parameter. EXEDOS has been previously

used to construct an FEL along a variety of order parameters including distance,24–26 cutoff

radii,17 Steinhardt order parameters,27 and nematic alignment.28,29 EXEDOS simulations

mirror the WLMC method, except the acceptance rate is given by

Pacc = min

[
1,
Z(θold)

Z(θnew)
exp(−∆U/kT )

]
(7)

where Z is the “expanded ensemble” density of states, θ is a generic order parameter and

∆U = Unew − Uold. Note that unlike WLMC simulations, EXEDOS simulations are in the

NVT ensemble and therefore have a defined temperature. The free energy as a function of

the order parameter θ (the FEL) is given by

F (θ) = −kT lnZ(θ) + C (8)
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where C is an arbitrary constant.

In our calculations, we computed two-dimensional (2D) FELs from Z(P2, Q6), using

EXEDOS simulations that span two order parameters. These calculations employed an

identical moveset to those described in Section 1.1 and a similar multiple window/multiple

walker scheme to the one described in Section 1.2. We also used replica-exchange techniques

in our EXEDOS simulations. The acceptance probability in such simulations are even simpler

than WLMC with Pacc = 1 for walkers in overlapping windows.26

In addition to our simulations spanning several autocorrelation times, all other metrics

demonstrate that our results are valid and reproducible. For instance, small variations

in chosen bin sizes and overall ranges of order parameters do not affect our free energy

results significantly. Additionally, differently set up simulations such as differently windowed

or replicated ones yield similar FELs. Select WLMC experiments featuring spontaneous

crystallization from a disordered melt yield similar melting curves as simulations seeded

from crystals like the protocols used in this study (O(0.001)). This grants us confidence in

our estimates of Tm used in EXEDOS simulations. These factors and the well-replicated

replica-exchange techniques we use assure us of the validity of our results despite difficulties

in simulating this dense hard sphere system.

Our interest in the FEL extends to an analysis of its topological features with basins

representing stable or metastable states and peaks representing rare events. Based on ideas

from classical nucleation theory and transition state theory, we expect the minimum free

energy path (MFEP) between basins to be indicative of the kinetics of the system.30 Similarly,

we expect the maximum of the MFEP (a saddle point on the FEL surface) to characterize

the primary barrier to nucleation. To find the MFEP and the saddle point, we used the

“multidimensional lowest energy” (MULE) algorithm recently developed by Fu et al.31 We

use the resulting MFEP to calculate the barrier height between the saddle point and basins.

1.4 Order Parameters and Structure Factor

We characterize the phase behavior of the simulated system using the order parameters

Q6 and P2. Q6 is a Steinhardt order parameter that measures the local positional order

of a bead with its neighbors based on spherical harmonics and we use it to characterize
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crystallinity. P2 is the second Legendre polynomial and measures nematic alignment with

the surrounding environment. We also investigated other order parameters not discussed here

(e.g. the Steinhard parameter Q4), but our calculations show that Q6 and P2 are sufficient

to capture the phase behavior of this system.

To compute Q6,
32 one first calculates a local order parameter q6 for bead i,

q6m(i) =
1

Nfb(i)

Nfb(i)∑
j=1

Y6m(rij) (9)

q6(i) =

[
4π

13

6∑
m=−6

|q6m(i)|2
]1/2

(10)

where Nfb(i) is the number of nearest neighbors of bead i (in our implementation, Nfb(i) = 6

for all cases here). Y6m is the spherical harmonic function of degree six and order m with

respect to the jth neighboring bead with displacement vector rij = rj − ri. If a bead does

not have six neighbors within a radial distance of 1.3 σ, it is considered non-crystalline, and

its q6 is set to zero. The global parameter Q6 is the average of the value of q6 for all beads,

Q6 =
1

Ntot

Ntot∑
i=1

q6(i) (11)

where Ntot = NbNc is the total number of beads in the system. The values of Q6 that indicate

crystalline or melt behavior depends on density but a larger value generally indicates higher

crystalline order.

The nematic order parameter P2 is more easily calculated. Again, we define a local order

parameter,

p2(i) =
3

2
〈cos2 θij〉i −

1

2
(12)

where θij is the angle made between bond vectors bi and bj, and the average 〈〉i is over all

j neighbors within a distance of 1.3 σ from bead i. The bond vector of bead i is defined as

bi = ri − ri−1. The global value of P2 is also calculated as an average over all beads,

P2 =
1

Ntot

Ntot∑
i=1

p2(i) (13)

A value of P2 closer to one indicates nematic alignment, whereas a value close to zero signifies

a random distribution of chains.
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Note that both of these order parameters are “global”, in that they characterize the

crystalline and nematic order of the entire system. It has been shown for large systems

that local order parameters are more appropriate for characterizing nucleation behavior and

comparing to classical nucleation theory.33 However, the system in question here is too small

for the difference to be meaningful. The critical nucleus is large relative to the simulation

box, and crystallization proceeds in the entire box simultaneously.

The structure factor is a useful measure of orientational and positional order of a mate-

rial, and gives information equivalent to SAXS and WAXS experiments. We compute the

structure factor of a single configuration using

S(q) =
1

NcNb

NcNb∑
j=1

∣∣exp(iq · rj)
∣∣2 (14)

In the main text, 2D structure factors are given by averaging over the third dimension. In

addition, these structure factors are ensemble-averaged structure factors and are averaged

over many configurations.

1.5 Windowing Scheme in 2D EXEDOS Simulations

In EXEDOS windowing, we divide the entire P2 range into overlapping windows that all

span the entire range of Q6. This choice was made through a trial-and-error process of what

achieves the most efficient convergence. We found that the free energy change (−kT ln(Ω))

along P2 is far larger at constant Q6 than vice versa. This is due to the large energy change

when aligning chains versus when fitting them into a crystalline lattice. Accordingly, P2 bins

are smaller in size relative to the total range and are used to window the simulation.

The windowing procedure for the P2 range was also based on a trial-and-error process

and depended on difficulty. In other words, higher φ simulations required more windows.

Accordingly, the P2 range (≈∈ [0.0, 0.928]) was divided up into 21–29 equally-sized windows.

The P2 bin size was set equal to 0.00032 making the overall P2 range fit into 2900 bins. For

each φ, this discretization is shown in Table S1.

As mentioned, every window spanned the entire relevant range of Q6 at any single φ. As

can be seen from Table S1, the Q6 range changes for each φ which is a deliberate choice
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made based on the melting curves in the main text. The bin size was chosen to provide 5

Q6 bins in total at each φ.

Table S1: Range of P2 and Q6 spanned in EXEDOS simulations at the studied φ.

φ T
Q6 P2 Num. of Num. of

Low High Bin Low High Bin Windows Replicates

0.379 0.226 0.332 0.342 0.002 0.128 0.74432

0.00032

19
2

0.407 0.248 0.396 0.411 0.003 0.16 0.8 20

0.428 0.267
0.43

0.46 0.006 0.19776 0.968 26

30.438 0.291 0.48 0.01
0.0

0.99424 32

0.471 0.374 0.46 0.52 0.012 0.99008 33

2 Markov Chain and Wang Landau Monte Carlo results

Like Figure 4 for φ = 0.438, Figures S1, S2, S3 and S4 show the MCMC and WLMC U/ε,

P2 and Q6 melting curves for φ = [0.471, 0.428, 0.407, 0.379], respectively. As discussed, each

figure shows a single first order phase transition at the respective Tm (shown in the legend).

Clearly, there is a difference between the melt-crystal transition in Figures 4, S1, S2 and

the melt-nematic transition in Figures S3 and S4. The initial has a large P2 change resulting

in near unity values at low Tr and is well-described by changes in Q6. In contrast, the latter

approaches lower P2 values at low Tr and has small changes in Q6 at the transition.
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Figure S1: Melting curves of the (a) internal energy, (b) nematic order parameter, (c) crys-

talline order parameter versus reduced temperature from MCMC (red points) and WLMC

(blue line) at φ = 0.471. The vertical dashed line is the best estimate of the melting tem-

perature (Tm = 0.374).
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Figure S2: Melting curves of the (a) internal energy, (b) nematic order parameter, (c) crys-

talline order parameter versus reduced temperature from MCMC (red points) and WLMC

(blue line) at φ = 0.428. The vertical dashed line is the best estimate of the melting tem-

perature (Tm = 0.263).
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Figure S3: Melting curves of the (a) internal energy, (b) nematic order parameter, (c) crys-

talline order parameter versus reduced temperature from MCMC (red points) and WLMC

(blue line) at φ = 0.407. The vertical dashed line is the best estimate of the melting tem-

perature (Tm = 0.248).
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Figure S4: Melting curves of the (a) internal energy, (b) nematic order parameter, (c) crys-

talline order parameter versus reduced temperature from MCMC (red points) and WLMC

(blue line) at φ = 0.379. The vertical dashed line is the best estimate of the melting tem-

perature (Tm = 0.226).
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3 Minimum Free Energy Paths

As in Figure 9a for φ = 0.438, Figures S5a, S6a, S7a and S8a show the MULE-extracted

MFEP in yellow over FELs for φ = [0.471, 0.428, 0.407, 0.379], respectively. As discussed

in the main text, crystallization transitions for φ = [0.471, 0.438, 0.428] require smooth and

cooperative changes in P2 and Q6 whereas the latter transitions only require P2 changes to

transition at near-constant Q6. MFEP values projected along the arc-length in Q6–P2 space

are shown in Figures S5b, S6b, S7b and S8b for φ = [0.471, 0.428, 0.407, 0.379], respectively.

These figures allow for the extraction of barrier heights ∆F †/ε from 2D EXEDOS simulations

(compiled in Figure 10.

To help the reader visualize FEL differences between differing values of φ, and more

importantly, between crystallization and nematic transitions, Figure 8 is reproduced here in

two different presentation styles in Figures S9 and S10. Figure S9 shows the same P2 domain

for all figures while retaining the color bars used for each figure in the main text. Since data

was not collected for the entire P2 range in all φ FELs, regions with no collected data are

displayed in white. This figure reveals the relative P2 values of the basins in the FEL at

different volume fractions. As φ increases, the low temperature basin (upper), decreases

in P2, relative to the melt basin. This effect is exacerbated for the nematic transition, as

discussed in the main text. Figure S10 keeps the same P2 domain in all FELs as in Figure S9

but also no longer restrains the color bar to the main text and retains the same color bar

among all φ FELs. The inclusion of the φ = 0.471 FEL’s data points at high P2 (originally

cut off for better visualization) increase its color bar maximum by 4. This has the effect of

obscuring the shading in all FELs. As discussed in the main text and this figure shows, the

free energy changes encountered in the FEL decrease as φ decreases. This manifests in the

lower four φ FELs by a complete disappearance of the profile as the changes encountered in

these figures O(10) – O(10−2) are minuscule relative to the φ = 0.471 FEL (O(102).
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Figure S5: (a) 2D Q6–P2 FEL at φ = 0.471 with MULE-extracted MFEP in yellow. Discrete

jumps in the MFEP are related to the discrete size of the bins along Q6. (b) MFEP values

from the 2D Q6–P2 FEL at φ = 0.471 projected along the reaction coordinate of its arc-length

in Q6–P2 space.
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Figure S6: (a) 2D Q6–P2 FEL at φ = 0.428 with MULE-extracted MFEP in yellow. Discrete

jumps in the MFEP are related to the discrete size of the bins along Q6. (b) MFEP values

from the 2D Q6–P2 FEL at φ = 0.428 projected along the reaction coordinate of its arc-length

in Q6–P2 space.
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Figure S7: (a) 2D Q6–P2 FEL at φ = 0.407 with MULE-extracted MFEP in yellow. Discrete

jumps in the MFEP are related to the discrete size of the bins along Q6. (b) MFEP values

from the 2D Q6–P2 FEL at φ = 0.407 projected along the reaction coordinate of its arc-length

in Q6–P2 space.
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Figure S8: (a) 2D Q6–P2 FEL at φ = 0.379 with MULE-extracted MFEP in yellow. Discrete

jumps in the MFEP are related to the discrete size of the bins along Q6. (b) MFEP values

from the 2D Q6–P2 FEL at φ = 0.379 projected along the reaction coordinate of its arc-length

in Q6–P2 space.
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Figure S9: Same as FEL Figure in main text but with same P2 domain for all FELs.

Regions without collected data are white and red colors free energies above color bar

maximum. 19
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Figure S10: FEL figure with the same color bar range (0–80) and P2 domain for all

FELs.
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21. G. Shi, T. Vogel, T. Wüst, Y. W. Li, and D. P. Landau, Phys. Rev. E 90, 033307
(2014).

21
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