

GPU-accelerated Wang-Landau Simulation of Polymer Crystallization

<u>Pierre Kawak</u>, Andrew S. Gibson, Logan S. Brown, Beverly Delgado, Dakota S. Banks, Douglas R. Tree

19th March 2021

APS March Meeting

Melt memory is indicative of unusual crystallization behavior

Häfele et al. Eur Phys J E (2005)

Are the previous observations caused by slow kinetics or thermodynamics in the nucleation process?

3

Monte Carlo methods can build a free energy profile!

Ω(Energy)

II

Density Of States

Wang Landau Monte Carlo (WLMC)

- > Bond-breaking moves
- > No dynamic considerations
- Faster and simpler
- Can be massively parallel
- Direct access to free energy

A Wang Landau generated Density of States can characterize crystallization for a single polymer chain

For a melt, we needed to have a faster, more efficient simulation to overcome slow equilibration

Although slow equilibration was overcome, the system spanned too many OoM to be solved in reasonable time

Conclusion and Future Work

Current Work

- Built GPU-accelerated WLMC
- Domain decomposition
- Advanced polymer moveset

Lessons learnt

- Problem: Too many OoM
- Specific process versus entire DOS

Future Work

- Obtain free energy directly using
 - **Order Parameter Wang Landau**
- Investigate Q6 and P2
- Investigate small nuclei

Acknowledgements

ACS Petroleum Research Fund

(PRF# 59244-DN16)

- BYU Board of Trustees
- BYU Office of Research

Computing

ACS

PRF

Parallel simulations are 2 orders of magnitude faster

There are 2 major obstacles to overcome to better understand crystallization

Polymer simulations are expensive

Relative stability of different phases

We can use advanced move set and domain decomposition to speed equilibration

Anderson et al. J. Comp. Phys. (2013)

Future work will involve Order Parameter Wang Landau

Kawak et al. Unpublished

Crystallinity is an important polymer property

https://www.indiamart.com/proddetail/plastic-grocery-bag-13175987991.html https://www.dsm.com/products/dyneema/en_GB/industries/maritime/whitepaper-safety-factors-innovation-in-ropes-andcables.html

Conventional models poorly describe primary nucleation

CNT explains some features of primary nucleation

17

Small- and Wide- Angle X-ray Scattering reveals initial ordering prior to crystallization

Review B, vol. 52, no. 17, pp. 12 696–12 704, 11 1995

Intermediate phase observations before crystal transition

S. Rastogi, M. Hikosaka, H. Kawabata, and A. Keller, Macromolecules vol. 24, no. 24, pp. 6384–6391, 1991.

Amorphous

Melt

E. Sirota and A. Herhold, Polymer, vol. 41, no. 25, pp. 8781–8789, 2000.

19

WL-MC simulation can calculate an FES

Potential models simulate bead-bead interaction

Deviant crytallization and recrystallization lines

Legend:

- Agreement with convention
- Disagreement with convention
- Melting line = Gibbs-Thomson
- T_m^{∞} = Equilibrium Melting T
- B = Melting at constant thickness
- T_c^{∞} = Another Equilibrium T
- A = No crystals observed
- C = Crystal thickening during melting

