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A facile way to generate compatibilized blends of immiscible polymers is through reactive blending
of end-functionalized homopolymers. The reaction may be reversible or irreversible depending on
the end-groups and is affected by the immiscibility and transport of the reactant homopolymers
and the compatibilizing copolymer product. Here we describe a phase-field framework to model
the combined dynamics of reaction kinetics, diffusion, and multi-component thermodynamics on the
evolution of the microstructure and reaction rate in reactive blending. A density functional with no
fitting parameters, which is obtained by adapting a framework of Uneyama and Doi and qualitatively
agrees with self-consistent field theory, is used in a diffusive dynamics model. For a symmetric
mixture of equal-length reactive polymers mixed in equal proportions, we find that depending on
the Flory χ parameter, the microstructure of an irreversibly reacting blend progresses through a rich
evolution of morphologies, including from two-phase coexistence to a homogeneous mixture, or a
two-phase to three-phase coexistence transitioning to a homogeneous blend or a lamellar copolymer.
The emergence of a three-phase region at high χ leads to a previously unreported reaction rate
scaling. For a reversible reaction, we find that the equilibrium composition is a function of both the
equilibrium constant for the reaction and the χ parameter. We demonstrate that phase-field models
are an effective way to understand the complex interplay of thermodynamic and kinetic effects in a
reacting polymer blend.

1 Introduction
Reactive blending is an industrially important process for com-
patibilizing blends of immiscible polymers, resulting in compos-
ites with enhanced properties1–3. In this process, two or more
polymers with reactive groups are typically mixed in an extruder
to generate in situ copolymer at their domain interfaces, creating
an emulsified alloy that often has superior properties to a physical
blend wherein a copolymer is separately added to a homopolymer
mixture4,5. The reaction may be one of end-coupling where end-
functional polymers link together to form a diblock copolymer6,
or one of homopolymers chemically attacking each other (as in
trans-esterification reactions) to generate a range of sequence-
scrambled linear or graft copolymers7. In any case, the copoly-
mer acts as a compatibilizer that improves adhesion and reduces
the interfacial tension between the homopolymer phases. This ef-
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fect may be further enhanced if the interfacial copolymer is entan-
gled with the bulk homopolymers8. In the presence of extruder
flows, the copolymer crowds the interfaces of droplets even at
small concentrations, suppressing coalescence and yielding finer
dispersions9–11. In extreme situations, the process can generate
so much copolymer that the interface starts to roughen sponta-
neously12,13. The combined effects of thermodynamics of multi-
component self-assembling systems, kinetics of the coupling reac-
tion, diffusion, and convection by flow create a complex problem
of deep fundamental and practical interest.

Even physical blends of two homopolymers (types A and B)
and a linear AB diblock copolymer show a rich diversity of
microstructures ranging from macrophases of homopolymers to
copolymer controlled microphases such as lamellae, hexago-
nally packed cylinders, or cubic arrangements of spheres, to co-
continuous morphologies depending on the diblock volume frac-
tion φD

3,14–19. Using the random phase approximation (RPA),
Broseta and Fredrickson 20 showed that the phase behavior of
this system undergoes a transition from the disordered phase
to macrophases or microphases depending on the relative pro-
portions of the three components and the incompatibility of the
two monomer species, quantified by a Flory interaction param-
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eter χ. Specifically, the isopleth plane (χ vs. φD) corresponding
to equal amounts of equal-length A and B homopolymers, mixed
with a compositionally symmetric AB diblock at volume fraction
φD, contains a mean-field Lifshitz point, where disordered (DIS),
lamellar microphase (LAM), and two macrophases rich in A and
B homopolymers (2ϕ) coexist. Janert and Schick 15 used self-
consistent field theory to show that for symmetric blends at large
χ, the phase diagram contains a three phase (3ϕ) region in which
two homopolymer-rich phases coexist with a LAM phase. This
phase behavior is altered slightly when the diblock is generated
by a reversible reaction and the location of the Lifshitz point de-
pends on the equilibrium constant of the reaction. The system
also exhibits re-entrant thermal transitions for the LAM and DIS
states21.

When the copolymer is generated by a reaction in an A-B
bilayer geometry without external flow, the temporal variation
of the microstructure and composition of the system are deter-
mined by the reaction kinetics, which are restricted to the in-
terfacial manifold. Kinetics measurements in polystyrene (PS)
and polymethyl-methacrylate (PMMA) blends with reactive end
groups suggested that the reaction rate is strongly controlled by
the diffusion of the polymers to and within the interfacial re-
gion22,23. O’Shaughnessy and Sawhney 11 determined that for
highly reactive chains, the diffusion-limited nature of the reaction
implies that the initial reaction rate depends on the chain length
Nr. For unentangled polymers, chain motion is governed by Rouse
dynamics and the rate constant scales as 1/ logNr. When the
chains are long enough to be entangled, the dynamics can be de-
scribed by the reptation model and the initial reaction rate scales
as 1/(Nr logNr). However, once the reaction has proceeded to the
point that the interface is crowded by copolymer, the copolymer
presents a significant potential barrier to bringing further reactive
groups together at the interface.

Fredrickson and Milner 6 extended the analysis of
O’Shaughnessy and Sawhney to look at the history of the
reaction rate. They found that the reaction progresses through
three stages: Initially the reaction rate is kinetically controlled
by diffusion of reactive units to the interface and the interfacial
coverage, defined as the number of copolymer molecules per
unit area, increases linearly with time t. Eventually the interface
is crowded by copolymer product, leading to the reaction rate
being controlled by the diffusive penetration of reactant chains
through the copolymer layer. Here the interfacial coverage grows
as t1/2. At late stages, a dense copolymer brush is formed at the
interface, presenting a strong potential barrier to the reactants
as discussed by O’Shaughnessy and Sawhney. Here, the reaction
rate drops dramatically and the interfacial coverage grows as
log1/2(t). Alongside the chain length dependence, the reaction
rate is also affected by temperature. FTIR measurements of
reaction rates in styrene-maleic anhydride (SMA) copolymer
with Nylon-11 and butadiene-acrylonitrile copolymer reveal
faster reactions when the chains are shorter and the temperature
is higher24. Jones et al. 25 found that the reaction rate also
depends on thermodynamic interactions as measured by the
Flory-Huggins interaction parameter. The study notes that the
rate of formation of copolymer decreases significantly with

increasing χ. This is qualitatively consistent with the observed
temperature dependence of the rate, since χ typically varies
inversely with T ; however, at the same temperature, a larger χ

would also imply sharper interfaces between the homopolymers
and thus a reduced manifold for the reaction.

The above theoretical work has been restricted to the simplest
geometry with the interface and associated reactively-formed
copolymer layer remaining planar. In practical reactive blending,
this restriction is not present, so interfaces can buckle and prolif-
erate, leading to spontaneous emulsification. Moreover, convec-
tive transport plays an important role in distributing reactants and
products during the complex mixing that takes place in reactive
extrusion. In this first paper in a series, we do not include con-
vection, but relax the restriction of planar geometries and build
a non-equilibrium phase field model that embeds the rich ther-
modynamics of a ternary A + B + AB polymer blend system. The
model includes both interfacial reaction and multi-component dif-
fusion. In a subsequent paper, we will extend the approach to
include externally imposed flows and internal capillary flows.

Phase-field type models have been widely employed for
the study of polymer physics26,27 and fluid dynamics28,29.
They are also compatible with non-equilibrium thermodynam-
ics frameworks such as Model-B and Model-H of Hohenberg and
Halperin 30 and the two-fluid model of Doi and Onuki 31, and
typically require a free energy functional to construct the ther-
modynamic forces in the system. For complex systems, such func-
tionals may be obtained using a number of techniques including
analytical approximations built on asymptotics,26 or systematic
force-matching from self-consistent field theory27. Such descrip-
tions have been used in recent years for a range of problems from
shear induced demixing in polymer solutions32–34 to membrane
formation by nonsolvent-induced phase separation35–37.

In the present work, we present a phase-field approach for de-
termining reaction rates and morphology evolution for a binary
A,B blend subject to an end-coupling reaction to form AB diblock
copolymer. We begin in Section 2 with a discussion of the equilib-
rium phase diagram for the ternary symmetric A + B + AB sys-
tem as deduced from self-consistent field theory (SCFT), a type
of mean-field theory38,39. To simplify the parameter space, we
restrict consideration to symmetric blends (equal ratios of equal-
length chains) with varying amounts of symmetric diblock copoly-
mer. In Section 3, a model is presented for the diffusive-reactive
dynamics of a ternary homopolymer-copolymer blend, including
reaction terms for reversibly or irreversibly generating AB diblock
copolymer from an end-coupling reaction between the homopoly-
mers. Thermodynamic forces are obtained from a free energy
functional that is built using the method of Uneyama and Doi 26

and validated against the SCFT results of Section 2. The com-
bined reaction-diffusion model is numerically solved by means of
a custom pseudo-spectral code described in a previous work35.
The results of model simulations are presented in Section 5, first
studying the effect of thermodynamic and kinetic parameters on
the generation rate of the copolymer in irreversible end-coupling.
Based on these results, we obtain scaling relations for reaction ki-
netics as various phases are traversed in the phase diagram. This
is followed by a look at the equilibrium properties of reversible
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end-coupling as captured by the present model. The scaling rela-
tions for reaction kinetics derived earlier are used here to obtain
a law of mass action in terms of an equilibrium constant and the
mean concentration of copolymer formed. Finally, we briefly com-
ment on the effect of asymmetry in blend composition and chain
architecture on the reaction kinetics.

2 Equilibrium phase behavior of a symmetric ho-
mopolymer/copolymer mixture

We begin by examining the equilibrium structure of a symmet-
ric homopolymer/copolymer blend using self consistent field the-
ory (SCFT) in the Gibbs ensemble40. We consider a blend of
two homopolymers A and B with chain lengths NAh and NBh,
respectively, and a symmetric ( f = 0.5) copolymer AB of length
ND, such that NAh = NBh = ND/2 ≡ Nr with Nr a reference chain
length. The volume fractions of the homopolymers are taken to
be equal, φAh = φBh, and the copolymer volume fraction φD is var-
ied. Segmental interactions between dissimilar monomers are de-
scribed by a Flory-Huggins interaction parameter χ and the melt
is assumed to be incompressible. The order-disorder boundary is
obtained analytically using the random phase approximation, as
discussed later in Section 3.1, and matches the result of Broseta
and Fredrickson.20 A more comprehensive SCFT phase diagram
is shown in Figure 1 in the χNr-φD plane, including disordered,
macrophase separated, and microphase separated regions. Along
the order-disorder envelope is a Lifshitz point, shown with a black
square, which delineates the tendency for macrophase vs. mi-
crophase separation.

Below the Flory critical incompatibility of χNr = 2, the system
is fully mixed and in the disordered state (DIS) at all composi-
tions. This is due to the entropy of mixing, which overwhelms the
enthalpy of mixing for such small χ values and prevents phase
separation.

Between the Flory critical incompatibility and the Lifshitz χ

value of χLNr = 3, the system exhibits two-phase liquid-liquid
macrophase separation (2ϕ) at low copolymer concentrations. In
this state an A-rich disordered phase coexists with a B-rich disor-
dered phase, with the copolymer partitioning equally between the
macrophases and to the interfaces between them. As the copoly-
mer concentration is increased, the blend is progressively com-
patibilized. Above a critical copolymer concentration, the system
mixes fully and forms a homogeneous DIS mixture.

Above the Lifshitz χ value, i.e. χ > χL, the blend continues
to exhibit the 2ϕ structure at very low copolymer concentra-
tions. However, above a critical concentration, the copolymer is
no longer soluble in the bulk homopolymers and instead forms
a third lamellar microphase (LAM) that separates the two homo-
geneous macrophases. In this state, the system exists in a three-
phase (3ϕ) coexistence with an A-rich disordered phase, a B-rich
disordered phase, and a lamellar microphase formed by copoly-
mer swollen with homopolymer. As more copolymer is added
to the mixture, the copolymer in the bulk disordered phases un-
dergoes microphase separation and the system transitions into
a single lamellar phase (LAM). It is interesting to note that the
concentration for this transition is only weakly dependent on the

Fig. 1 Phase behavior of a symmetric blend of homopolymers A and
B, and a symmetric A-B diblock copolymer obtained using self con-
sistent field theory in the χNr-φD plane. The system exhibits a dis-
ordered state (DIS), coexistence of two homogeneous phases (2ϕ), a
lamellar microphase (LAM), and a three-phase coexistence (3ϕ) among
two homopolymer-rich macrophases and a LAM microphase separating
them. The Lifshitz tricritical point delineating macro- and micro-phase
separated states along the order-disorder boundary20 is shown as a square
dot.

incompatibility between the polymers and remains nearly at the
Lifshitz concentration for the range of χ values considered. If
the χ value is lower than Leibler’s critical value of χNr ≈ 5.25,
the pure copolymer exists in a DIS state41. Below this value of χ

the addition of further copolymer into a homopolymer/copolymer
mixture ultimately causes the blend to dissolve into a DIS struc-
ture. In comparison if χNr > 5.25, the LAM phase persists all the
way to the pure copolymer limit.

3 Model derivation
The dynamics of the system is modeled using the so-called mod-
ified Model B equations30,35–37 based on a multi-fluid model35,
which is itself a generalization of the two-fluid formalism of Doi
and Onuki 31. The Model-B equations include diffusive transport
of the various species driven by multicomponent thermodynamics
and reaction dynamics. We consider a mixture of three compo-
nents: two homopolymers A and B, and a linear diblock copoly-
mer A-B with the volume fraction of the A block denoted by f .
The density fields associated with the A and B segments of the di-
block are resolved independently of the homopolymers to allow
capture of microphase separation and to distinguish homopoly-
mer and diblock contributions to a density pattern. We index the
four types of polymer segments by an index i = 1, . . . ,4, corre-
sponding respectively to segments of A homopolymer, segments
of the diblock A blocks, segments of the diblock B blocks, and B
homopolymer. The time evolution of the local volume fraction
distributions φi(r, t) of these four components may be written as,

∂φi

∂ t
= ∑

j
∇ · (Mi j∇µ j)+Ri (1)
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where t is time and we omit for brevity the local position depen-
dence of all terms. Mi j denotes the volume-fraction-dependent
relative mobilities of the species obtained from an appropriate
mobility model. The thermodynamic driving forces are captured
in the chemical potentials µi, which are defined as the variational
derivative of the free-energy functional F .

µi =
δF

δφi
(2)

The reaction-generated rates are denoted by Ri, which are
modeled using an appropriate model for reaction kinetics, as
described later. Finally, we assume incompressibility, which
amounts to the elimination of one of the volume-fraction fields
in favor of the other three. In general, for a mixture of n species,
the volume fraction of the nth component may be written implic-
itly in terms of the other components as

φn = 1−
n−1

∑
j=1

φ j (3)

Using this substitution in calculating µi for i = 1, . . . ,n− 1 yields
exchange chemical potentials with respect to component n. In the
present situation we have n = 4, and homopolymer B is chosen as
the implicit component.

The model can thus be completely described in terms of three
elements:

1. The free-energy functional F [{φi}] describes the thermody-
namics of mixing including chain conformational entropy of
the various species

2. The mobility model Mi j[{φi}] describes the dissipative cou-
plings among the species

3. The model for reaction kinetics based on the local volume
fractions Ri[{φi}] defines the kinetics of the diblock genera-
tion and decomposition processes.

The specification of each of these elements is described in the
following subsections.

The Model-B equations are numerically solved using a semi-
implicit time stepping scheme in a cell with spatially periodic
boundary conditions and pseudo-spectral plane wave collocation
as reported in a previous work.35

3.1 Free energy functional
We derive the free energy density functional using the proce-
dure outlined by Uneyama and Doi 26. This proceeds in three
steps. First the random phase approximation is invoked to gen-
erate a perturbation to the free energy as a function of fluctua-
tions in the volume fractions about a homogeneous state. The
Fourier-domain response functions thus obtained are generaliza-
tions of the Debye function41. Next the procedure of Ohta and
Kawasaki 42 is employed to convert the response functions to
asymptotic, algebraic forms that can be easily Fourier-inverted.
This yields a density functional for the free energy in the weak
segregation limit. Finally, Uneyama and Doi 26 describe a method
to generalize the functional to have improved predictive behavior

in the strong segregation case of χNr � 1. Using a generaliza-
tion of the random phase approximation of Leibler 41, we obtain
a free-energy functional in Fourier space for weak volume frac-
tion fluctuations ψi(k) about a homogeneous state with average
volume fractions φAh, φBh, φD, and for degrees of polymerization
NAh, NBh, ND and a Flory-Huggins interaction parameter χ be-
tween monomers of type A and B,

δF =
1
2 ∑

k

[
ψ1(k)ψ1(−k)

S11
+

ψ4(k)ψ4(−k)
S44

+S33
ψ2(k)ψ2(−k)
S22S33−S2

23

+S22
ψ3(k)ψ3(−k)
S22S33−S2

23
+S23

ψ2(k)ψ3(−k)+ψ2(−k)ψ3(k)
S22S33−S2

23

+ 2χ(ψ1(k)+ψ2(k))(ψ3(−k)+ψ4(−k))] (4)

Here the relevant response functions are given as,

S11 = φAhNAhg(k2R2
gAh,1) (5)

S22 = φDNDg(k2R2
gD, f ) (6)

S33 = φDNDg(k2R2
gD,1− f ) (7)

S23 =
1
2

φDND

(
g(k2R2

gD,1)−g(k2R2
gD, f )−g(k2R2

gD,1− f )
)

(8)

S44 = φBhNBhg(k2R2
gBh,1) (9)

which uses the modified Debye function

g(x, f ) =
2
x2 ( f x−1+ exp(− f x)) (10)

and RgAh, RgBh, and RgD are the unperturbed radii-of-gyration of
the A homopolymer, B homopolymer and AB diblock components,
respectively.

To obtain a phase-field type free energy functional, we invoke
the Ohta and Kawasaki 42 method and approximate the response
functions as a superposition of their leading asymptotic forms for
k→ 0 and k→ ∞. We then invert the Fourier transform to obtain
the weak segregation form of the free energy,

δF =
1
2

∫
dr

[
ψ1(r)2

φAhNAh
+

ψ4(r)2

φBhNBh
+

(
s( f )+

1
4

)
ψ2(r)2

f 2φDND

+

(
s(1− f )+

1
4

)
ψ3(r)2

(1− f )2φDND
− ψ2(r)ψ3(r)

2 f (1− f )φDND

+2χ(ψ1(r)+ψ2(r))(ψ3(r)+ψ4(r))

+
b2

12

(
|∇ψ1(r)|2

φAh
+
|∇ψ4(r)|2

φBh
+
|∇ψ2(r)|2

f φD
+
|∇ψ3(r)|2

(1− f )φD

)

+
∫

dr′
9

φDN2
Db2 G(r−r′)

{
ψ2(r)

f
− ψ3(r)

1− f

}{
ψ2(r′)

f
− ψ3(r′)

1− f

}]
(11)
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where b is the statistical segment length, which is assumed the
same for segments of all species. Following the procedure of Un-
eyama and Doi 26, the function s( f ) is determined by matching
the minima in the correlation functions in Equation 11 with the
corresponding functions in the full RPA expansion in Equation 4.
For symmetric copolymers, we obtain s(0.5) = 0.4015.

The final step is to extend the free energy functional to strong
segregation using the method described by Uneyama and Doi 26.
This yields a functional expressed in local volume fractions of
components φi(r) rather than local fluctuations in volume frac-
tion ψi(r),

F =
∫

dr

[
φ1(r) log(φ1(r))

NAh
+

φ4(r) log(φ4(r))
NBh

+ s( f )
φ2(r) log(φ2(r))

f ND
+ s(1− f )

φ3(r) log(φ3(r))
(1− f )ND

−
√

φ2(r)φ3(r)√
f (1− f )ND

+χ(φ1(r)+φ2(r))(φ3(r)+φ4(r))

+
b2

24

(
|∇φ1(r)|2

φ1
+
|∇φ4(r)|2

φ4
+
|∇φ2(r)|2

φ2
+
|∇φ3(r)|2

φ3

)

+
∫

dr′
9 G(r− r′)

2(φ2 +φ3)N2
Db2

{
φ2(r)

f
− φ3(r)

1− f

}{
φ2(r′)

f
− φ3(r′)

1− f

}]
(12)

Here, the overbars denote spatial averages. G(r− r′) is the Green
function of the Poisson equation obtained from the solution of
∇2G(r− r′) =−δ (r− r′).

The first four terms in the above free energy functional are of
the form φi log(φi) and represent the translational entropies of the
four components. However, the 2nd and 3rd components are
connected into diblocks, so the s( f ) and s(1− f ) factors in the
third and fourth terms and the fifth term proportional to

√
φ2φ3

correct the overcounting of diblock translational degrees of free-
dom. The sixth term is the enthalpic interaction among the vari-
ous components based on Flory-Huggins theory. This is followed
by a sum of terms that are proportional to |∇φi|2, which are called
“square gradient” terms. These terms penalize the creation of in-
terfaces and reflect a loss of chain conformational entropy at such
interfaces. The final term contains the Green function mentioned
earlier. This term is attributed to the covalent bonding between
the two parts of the diblock copolymer and represents long range
interactions between the two blocks. This prevents macrophase
separation of the pure diblock, leading instead to microphase sep-
aration at sufficiently large χ values. The length scale for mi-
crophase separation, typically of order the scale of RgD, is set by
the balance of the Green function term, which penalizes long mi-
crodomain periods and the square gradient terms, which penalize
short periods.

Numerical optimization of the free energy functional of equa-
tion 12 has been shown to semi-quantitatively capture the phase
behavior of a pure diblock copolymer melt, as well as the equi-
librium structure of an A and B homopolymer and A-B diblock

Fig. 2 Comparison between equilibrium distributions obtained using the
Model-B equations to optimize the energy functional F (phase field,
PF) and by self-consistent field theory (SCFT), showing the agreement
between the two models. The composition of the system being studied
is: < φ1 >=< φ4 >= 0.25, f = 0.5, NAh = NBh = ND = Nr, χNr = 6

ternary blend, both comparisons made against the “gold stan-
dard” of self-consistent field theory26. In the weak segrega-
tion limit, which is the regime of present investigation, free en-
ergy optimization also shows quantitative agreement with self-
consistent field theory as shown in Figure 2. In the subsequent
discussion, we restrict ourselves to symmetric diblocks for which
s(0.5) = 0.4015.

3.2 Rouse mobilities
The mobilities are obtained as functions of local volume fractions
using the Rouse model. Assuming incompressibility, the volume
fraction of one of the components is written in terms of the oth-
ers as shown in Equation 3. The Rouse mobilities are derived
based on exchange chemical potentials as presented in a previous
work35, giving

Mi j =
1
ζ0

φi(1−φi) i = j

=− 1
ζ0

φiφ j i 6= j (13)

where ζ0 is a segment friction coefficient.

3.3 Reaction model
Two simultaneous reactions are considered here: a diblock-
generating forward reaction and a diblock-consuming reverse re-
action, as illustrated in Figure 3a. The forward reaction is an
end-coupling reaction between one A and one B homopolymer to
generate one diblock molecule, while the reverse reaction is the
spontaneous decomposition of a diblock chain to generate one
chain of each homopolymer. The kinetics of the forward and re-
verse reactions are obtained separately by tracking the reactive
groups on the polymers as shown in Figure 3b.

For the diblock-generating forward reaction, the reaction rate
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between the reactive end-groups on the homopolymers, denoted
by R f , is given as a second-order reaction,

R f = k f φ1∗φ4∗ (14)

where the asterisk denotes a dilution effect because only the end
monomer of each homopolymer is reactive. In contrast, the re-
verse reaction that causes the diblock molecules to spontaneously
break up is modeled as a first-order reaction

Rb = kbφD∗ (15)

Assuming that the reactive groups are homogeneously dis-
tributed in space within the individual components, we can write

φ1∗ =
φ1

NAh

φ4∗ =
φ4

NBh

φD∗ =
φ2 +φ3

ND
(16)

where ND = NAh +NBh since the diblock is assembled from the
homopolymers. Every instance of the forward reaction changes
all monomers in one chain each of homopolymers A and B to
monomers of the diblock’s A and B blocks, respectively. Like-
wise, each instance of the backward reaction changes all the
monomers of the corresponding block of the diblock to the respec-
tive homopolymer. By conservation of mass, the total number of
monomers of each species A and B remain unchanged. This gives,

R1 =−R2 =−R f NAh +RbND
φ2

φ2 +φ3
=−k f

φ1φ4

NBh
+ kbφ2

R4 =−R3 =−R f NBh +RbND
φ3

φ2 +φ3
=−k f

φ1φ4

NAh
+ kbφ3 (17)

which are the reaction rates in the model equations. It is impor-
tant to note that the rates are dependent on the index of poly-
merization of the homopolymers. This is because at constant
monomer density, changing the lengths of the homopolymers af-
fects the relative concentration of reactive groups. Specifically,
the forward reaction requires a reactive end-group each of ho-
mopolymers A and B to come together. These groups are dis-
tributed in space with proportions of 1/NAh and 1/NBh of the
respective volume fractions, giving a net reaction probability of
1/(NAhNBh). With one instance of reaction, NAh monomers of ho-
mopolymer A, and NBh monomers of homopolymer B are con-
verted to diblock monomers respectively. Consequently, the vol-
ume fractions of homopolymers A and B decrease with a pro-
portionalities of 1/NBh and 1/NAh respectively, as is reflected in
the terms with k f in the rate equation (17). If the homopoly-
mers are of different lengths, this means that the longer polymer
is consumed more quickly in volumetric terms than the shorter
polymer, simply because each reaction converts a proportionally
larger number of monomers of the longer polymer.

Likewise, the reverse reaction occurs with a probability of 1/ND

in space, proportional to the volume fraction of the diblock, and

(a)

(b)

Fig. 3 Model of the reversible reaction between (a) the polymers and (b)
the reactive end groups used for determining the kinetics. The reaction
kinetics equations are developed in the text.

generates f ND and (1− f )ND monomers of homopolymers A and
B, respectively, which is also seen in the terms with kb in the rate
equation (17).

4 Nondimensional analysis
The above equations are solved in a nondimensional form. The
chain lengths of polymers NAh, NBh, ND are scaled with a ref-
erence chain length Nr. The choice of the characteristic length
scale is important since it also determines the time scale and
hence the nondimensionalization of the problem. A wide range of
length scales is available, such as the radii of gyration of the ho-
mopolymers and diblock, the thickness of the interface between
the homopolymers at equilibrium, the size of the homopolymer
domains, and the size of the simulation box, some of which de-
pend on the composition and properties of the system. To keep
the relevance of the study as broad as possible, we select the
characteristic length scale from the reference polymer length as
Rgr = b

√
Nr/6. The self diffusion coefficient in a melt of unentan-

gled Rouse reference chains is given by,

D =
kBT
Nrζ0

(18)

Here kB is the Boltzmann constant and T is temperature. This
gives the characteristic time scale as the Rouse time,

τ =
R2

gr

D
=

N2
r b2ζ0

6kBT
(19)

Two Damkohler numbers are obtained by non-
dimensionalizing the forward and backward rate constants
with the diffusive (Rouse) time scale. Their ratio is the reaction
equilibrium constant. For presenting the results, we select
the forward reaction Damkohler number and the equilibrium
constant, defined as,

Da f =
k f N2

r b2ζ0

6kBT
(20)

K =
k f

kb
(21)
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It is worth noting that the forward and reverse reaction rates
have different dependencies on chain lengths. For fully miscible
blends, this means that the equilibrium composition of the system
depends on both the equilibrium constant and the chain lengths
as,

K
(

1
NAh

+
1

NBh

)
=

φ2 +φ3

φ1φ4
(22)

The left hand side of this equation can be viewed as an effec-
tive equilibrium constant Keff(T,Nr) that is both temperature and
chain-length dependent.

5 Results
We start by looking at an irreversibly reacting symmetric ho-
mopolymer blend in a 1D configuration. This reaction is obtained
by setting the backward rate constant kb = 0 and corresponds to
the case where the equilibrium constant K = ∞. Two homopoly-
mers of identical lengths NAh = NBh = Nr and in equal proportions
are initialized in a macrophase separated profile with a diffuse
interface between them as shown in Figure 4a. The reaction and
transport are turned on at t = 0, allowing for the creation of di-
block at the interfaces and diffusive transport of all three species.

This is then followed by a study of reversible end-linking, where
the copolymer formed as a result of end-linking between the ho-
mopolymers can spontaneously dissociate back into the reactants.
Here we will focus on the time evolution to the steady state com-
position of the system as a function of the thermodynamic and
kinetic parameters.

5.1 Irreversible end-coupling

Figure 4 shows a time lapse of volume fraction distributions of
the various species for χNr = 3 and Da f = 0.3. The homopolymers
react at the interface and generate a diblock copolymer layer. At
this stage the reaction is kinetically limited. The copolymer gener-
ation is fast enough that the newly formed chains do not have suf-
ficient time to stretch at the interface, and the concentrations of
the two blocks are nearly identical. Over time, a dense copolymer
brush builds up at the interface and limits the reaction by reduc-
ing contact between the homopolymers. The copolymer also com-
patibilizes the homopolymers and creates a more diffuse inter-
face. Continuing the reaction further requires that the homopoly-
mer diffuse through the copolymer brush, while the copolymer
itself diffuses out into the bulk homopolymer domains. The re-
action is limited by this diffusion through barriers. This picture
is qualitatively consistent with that of Fredrickson and Milner 6.
Eventually the homopolymer gets depleted from the system and
the reaction is complete.

We study the kinetics in further depth in Figure 5a which shows
the relation between the diblock generation rate,

〈 .
φD

〉
, against

the mean diblock volume fraction, 〈φD〉, which is analogous to the
reaction rate against the extent of the reaction. Here the angular
brackets denote spatial averaging. In Figure 5b, the interfacial
excess z∗, defined as2

z∗ =
∫
(φD(x)−φD,∞)dx, (23)

is shown as a function of time, where φD,∞ is the volume fraction
of the diblock deep in the bulk-like regions of the homopolymer
domains. The progress of the reaction through the two regimes is
clearly seen in both plots.

During the initial regime, the diblock is generated only in the
diffuse interface of thickness ξ . Consequently, a thicker interface
proportionally produces more copolymer and the concentration
of the diblock in the bulk homopolymer domains remains low.
The volume-averaged reaction rate scales inversely with the sys-
tem size L as k f ξ/L. This is also reflected in the interfacial excess
which rises linearly with time at a rate of k f ξ , consistent with
O’Shaughnessy and Sawhney 11. If the system is initialized as a
homopolymer blend at equilibrium in the Helfand-Tagami limit
(χNr → ∞), the growth rate of the interfacial excess will then be
k f b/

√
6χ and the reaction rate will be k f b/(L

√
6χ).

As the interface becomes saturated with diblock, the copolymer
needs to diffuse out into the bulk homopolymer domains for the
reaction to continue and the reaction rate drops dramatically as
a result. The rate of change of mean copolymer concentration
scales as Dξ

H/(Lξ ). Here Dξ

H is the diffusivity of the homopoly-

mer in the diblock. Dξ

H decreases with increasing χNr due to
the stronger enthalpic repulsion between the homopolymer and
the opposite block of the copolymer. The inverse relation with
system size persists here since the copolymer is still generated
within the interfacial layer. Eventually, the copolymer diffuses
into the bulk homopolymer to achieve binodal composition. The
bulk copolymer concentration φD,∞ rises and the interfacial ex-
cess, by definition, decreases. The interfacial excess peaks at time
t∗ ∼ L2/D∞

D signifying that the copolymer has migrated into the
bulk homopolymer. Here D∞

D is the diffusivity of the copolymer
in the bulk homopolymer. This last stage is likely not accessible
in experiments, where the system size is very large, and the typi-
cal large χNr causes the diffusivity of the diblock to be very low,
resulting in a long time required for complete diffusion.

For incompatibilities larger than the Lifshitz value χ > χL, the
system can undergo microphase separation at higher copolymer
content. This is reflected in the transient states while the dy-
namics of the concentration evolution retains its interfacial-brush-
limited nature. Figure 6 shows a time lapse of concentration evo-
lution for the various species for χNr = 6. The starting distribu-
tion is the same as in the previous case. As before, a copolymer
brush forms at the interface of the two homopolymers and slows
the progress of the reaction. However as the amount of copoly-
mer increases, the system enters the three-phase (3ϕ) regime.
The copolymer at the interface separates into a third LAM phase,
entraining homopolymer in its lamellae. These pockets of ho-
mopolymer act as “micro-reactors”, with the homopolymers react-
ing across adjacent lamellae. The reaction rate at this stage is not
limited by diffusion of the homopolymer across the entire brush,
but rather kinetically over the sizes of the lamellae and scales as
k f LLAM(1− φD,LAM)2/L. Here LLAM and φD,LAM are the thickness
and the copolymer concentration of the LAM phase. The copoly-
mer thus formed further expands the interfacial brush, shrinking
the bulk homopolymer domains. Additional homopolymer is en-
trained into the copolymer as the reaction progresses. At very
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 Time evolution of volume fraction evolutions for a symmetric homopolymer blend undergoing an irreversible end-coupling reaction for Da f = 0.3,
and χNr = 3. The copolymer builds up at the interface between the two homopolymers and diffuses into the bulk phases. As the homopolymer is
slowly depleted, the system undergoes a phase transition into a DIS state.

long times, the relative copolymer concentration in the bulk do-
mains increases to the point that the bulk regions also undergo
microphase separation and the system enters the LAM phase and
fully transforms into pure copolymer.

Figure 7 shows the reaction rate and interfacial excess for
χNr = 6. The reaction rate exhibits the initial kinetic limited rate
as before. As the system enters the 3ϕ regime, the reaction rate
shows a slight increase when the homopolymer gets entrained
in the lamellae and changes slope in Figure 7a. Eventually as
the system enters the LAM phase, the reaction rate changes slope
again and continues to drop further as the homopolymer is de-
pleted.

The interfacial excess shown in Figure 7b exhibits three regimes
as predicted by Fredrickson and Milner 6. At short times, we see
a linear regime (I) representing the kinetically limited reaction.
This is followed by a slow increase corresponding to the diffusion
limited regime (II). The transition from 2ϕ to 3ϕ, indicated by the
first enhancement in the reaction rate, occurs here. As the copoly-
mer builds at the interface, the interfacial excess nearly plateaus
into the third regime (III) where the copolymer brush presents a
strong barrier to homopolymer diffusion. Finally, the interfacial

increases peaks slightly as the bulk homopolymer domains start
to disappear and the system gradually transitions into the LAM
phase. This increase corresponds to the second transition in the
reaction rate. The interfacial excess drops dramatically upon the
transition and can no longer be calculated once bulk macrophases
disappear.

The scaling relations for the rate of copolymer generation based
on the morphological state of the system are summarized in Fig-
ure 8. Four configurations are considered based on the phase
diagram in Figure 1 and the results we have encountered so far:
2ϕ, 3ϕ, LAM, and the homogeneous DIS phase. In the 2ϕ and 3ϕ

phases, contact between the homopolymers occurs only in the in-
terfacial region and the LAM phase, respectively, and the copoly-
mer generation is limited to those regions. Consequently the rate
of change of mean copolymer concentration varies proportion-
ally with the width of the interface (ξ ) and the thickness of the
LAM phase (LLAM), respectively, and inversely with the system
size L. While we have studied only one dimensional distributions
so far, this suggests that in higher dimensions, the reaction rate in
2ϕ and 3ϕ configurations should be proportional to the interfa-
cial area between the homopolymer phases and inversely propor-
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(a) reaction rate

(b) interfacial excess

Fig. 5 Reaction rate vs. volume average diblock concentration (top), and
interfacial excess vs. time (bottom) for homopolymer blend simulations
shown in Figure 4. The reaction transitions from an initial kinetically
limited rate into an eventual diffusion limited rate.

tional to the system volume. In other words, the relevant system
size L at higher dimensions is the ratio of volume to interfacial
area between the homopolymer macrophases.

The kinetic scaling relations for the LAM and DIS phase do not
depend on length scales. For the DIS phase, this is easy to see: the
concentrations of all phases are uniform and the reaction occurs
over the full system. In the case of the LAM phase, the homopoly-
mers are trapped in the lamellae of the diblock. The reaction
occurs over the size of the lamellae. Due to the diffuse nature
of the mass distribution over the lamellae, the reaction rate is
nearly homogeneous over the macroscopic system and the scal-
ing law does not depend on any length scale. It is important to
stress that while the scaling laws for the LAM and DIS phases may
look identical, the proportionality constants in front of them may
be different.

Figures 9 and 10 show the effect of changing the value of Da f

and χNr on the reaction rate and interfacial excess respectively.
In all of these plots, the initial state is the same. An intrinsically
faster reaction with a higher Da f has a more rapid buildup of the
copolymer at the interface during the kinetically limited regime.
Consequently the peak in the interfacial excess is also higher and
occurs earlier in time. The reaction rate also increases in both
the kinetic and diffusion-limited regimes, but the enhancement is
much higher during the kinetic limited regime where the reaction
rate is less affected by diffusion.

In comparison, raising the incompatibility between the poly-
mers slows down the reaction in both the kinetic and diffusion
limited regimes. The interface between the homopolymers gets
sharper as their segregation strength increases. In the kinetically
limited stage, this slows the reaction rate as the reaction occurs
over a smaller region. In the diffusion-limited regime, the ho-
mopolymer diffusion through the interfacial brush is hindered by
the strong enthalpic repulsion between the homopolymer and the
opposite block in the copolymer. This behavior is also consistent
with the results of Jones et al. 25. As χNr rises, the interfacial cov-
erage exhibits three regimes with progressively weakening time
dependence predicted by Fredrickson and Milner 6; namely, an
initial kinetically limited regime, an intermediate diffusion lim-
ited regime, and a final slow barrier-crossing regime.

5.2 Reversible end-coupling

When the end-coupling reaction is reversible with a finite equilib-
rium constant, the steady state composition depends on the value
of the equilibrium constant as well as χNr. χNr determines how
well the homopolymers and copolymer mix with each other which
affects the rate of the copolymer generation. The rate of copoly-
mer dissociation on the other hand depends only on the amount
of copolymer generated. As a result when dynamic equilibrium
is established, the mixture composition varies with χNr even at
constant K/Nr. As before, we focus on a symmetric blend only.

Figure 11a shows the equilibrium copolymer volume fraction
as a function of the equilibrium constant K/Nr and Da f = 1 for
various values of χNr. As the equilibrium constant increases for
fixed forward reaction Damkohler number, the mean copolymer
volume fraction also increases since the reverse reaction is weaker
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Time evolution of volume fraction evolution for a symmetric homopolymer blend undergoing an irreversible end-coupling reaction for Da f = 0.3,
and χNr = 6. As the composition changes, the system transitions from 2ϕ to 3ϕ to LAM.

for all χNr. However as χNr increases, this rise in copolymer con-
centration weakens since enthalpic repulsion prevents homopoly-
mer mixing.

The interfacial excess on the other hand has a non-monotonic
behavior with K/Nr as shown in Figure 11b. For χNr = 3 as
the equilibrium constant increases, the reversible reaction favors
the formation of the copolymer which builds up at the inter-
face. Above a critical amount of copolymer, the system enters
DIS phase. The copolymer concentration becomes homogeneous
and the interfacial excess goes to zero by definition. When inter-
facial excess is zero, the mean copolymer concentration in Fig-
ure 11a also follows the analytical result from the DIS phase in
Equation 26. At higher χNr, the interfacial excess increases more
slowly with K/Nr. This is also the result of weaker mixing be-
tween the homopolymers at higher χNr. The copolymer is also
localized at the interface due to its poor miscibility with the bulk
homopolymers, weakening the forward reaction. Consequently

the interfacial excess continues to increase until a much higher
K/Nr without a transition out of the 2ϕ region.

Here we also demonstrate the use of scaling relations devel-
oped in the previous section to obtain the equilibrium diblock
concentration. The relations shown in Figure 8 describe the rate
of diblock formation for different morphological configurations.
In comparison, the rate of diblock dissociation is easily obtained
as 〈 .

φD

〉
=−kb 〈φD〉 (24)

At equilibrium, the rates of diblock formation and dissociation are
equal. Due to the symmetric nature of the reaction being consid-
ered here, the law of mass action may be expressed in terms of
the equilibrium constant K and the mean diblock concentration.

For a 2ϕ system in the Helfand-Tagami limit, we obtain

K
Nr

=
〈φD〉b
L
√

6χ
(25)
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(a) reaction rate

(b) interfacial excess

Fig. 7 Reaction rate vs. extent of reaction (top) and interfacial excess vs.
time (bottom) for the homopolymer blend simulation shown in Figure 6.
The reaction rate changes slope at each phase transition. The interfacial
excess shows increasingly weakening growth rates as the copolymer brush
blocks homopolymer diffusion to the interface.

This is shown in Figure 11a in the blue dashed line for χNr = 8 and
in the inset for χNr = 6 in the green dashed line, and matches the
simulation results when the equilibrium constant and the amount
of copolymer formed are small.

The law of mass action for a fully mixed DIS system can be
obtained as,

K
Nr

=
2〈φD〉

(1−〈φD〉)2 (26)

This is shown in Figure 11a in the black solid line, and matches
the results for χNr = 3 when the equilibrium constant is large
enough to produce sufficient copolymer to stabilize the DIS phase.

When χNr is large, such as χNr = 6, the system enters the LAM
phase when the copolymer amount is high. As stated earlier, the
scaling relation of the forward reaction in the LAM phase is simi-
lar to that of the DIS phase but with a different numerical prefac-
tor. In the inset of Figure 11a, we show the relation,

K
Nr

=
8〈φD〉

(1−〈φD〉)2 (27)

in the green dotted line. This relation matches the simulation
results when K/Nr is high.

A similar law of mass action may also exist for the 3ϕ phase.
However, for the specific χNr and K/Nr parameters employed, we
were unable to locate conditions for which the system reached
dynamic equilibrium in the 3ϕ region as opposed to progressing
all the way to LAM.

5.3 Extension to 2D systems

We will briefly address the extension to 2D systems. Figure 12a
shows the reaction rate for three different 2D initial distributions
of homopolymer A: a single circle, four circles, and an ellipse
with ratio of major axis and minor axis lengths equal to 4. All
three distributions are in the 2ϕ regime and are chosen to have
the same overall composition, where homopolymer A is a minor-
ity component with an initial volume fraction of φAh = 0.41 and
χNr = 6. The box sizes in units of Rgr are (64,64), (64,64) and
(128,32) respectively. A 1D distribution with identical composi-
tion is also shown for reference. All distributions exhibit an ini-
tial kinetically-determined reaction rate, followed by an eventual
transport-limited rate. However the actual rates are different.
The four circles distribution has a much higher reaction rate on
account of its higher interfacial area between the two homopoly-
mer phases. This is followed by the ellipse, which has the next-
highest interfacial area. The circle and the 1D distribution have
similar reaction rates.

These differences can be scaled out, as shown in Figure 12b,
if the reaction rate is multiplied by a characteristic length l. This
length is given by the ratio of area to perimeter of each initial 2D
distribution. For the 1D distribution, this length corresponds to
the length of the homopolymer A phase divided by 2, the num-
ber of interfaces between the two homopolymers in the periodic
simulation cell. By extension, in 3D, l would be given by the ratio
of the volume to the surface area of the homopolymer A phase.
The form of this characteristic length scale is explained by the
fact that while the reaction occurs at the interface between the
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Fig. 8 Scaling relations for the rate of copolymer generation in an irreversibly reactive homopolymer blend based on phase structure

(a)

(b)

Fig. 9 Reaction kinetics and interfacial excess for a symmetric blend
undergoing irreversible reaction with χNr = 4 for various values of Da f .
The box size is 32Rgr. The reaction rate increases and the interfacial
excess rises faster for higher Da f .

(a)

(b)

Fig. 10 Reaction kinetics and interfacial excess for a symmetric blend
undergoing irreversible reaction with Da f = 1 for varying χNr with a box
size 32Rgr. At higher χNr, the diffusion of homopolymers to the interface
is weaker, resulting in a slower reaction rate.
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(a)

(b)

Fig. 11 Mean copolymer concentration (top) and interfacial excess (bot-
tom) at equilibrium for a symmetric reversibly reacting blend for varying
K/Nr and Da f = 1 with a box size 32Rgr. The solid black line is ob-
tained for a DIS system using Equation 26, while the blue dashed line
is obtained for a 2ϕ system using Equation 25 for χNr = 8. The inset
shows the mean copolymer concentration for χNr = 6 for a wider range
of K/Nr. The green dashed line is obtained for a 2ϕ system using Equa-
tion 25 while the green dotted line is obtained for a LAM system using
Equation 27.

(a)

(b)

Fig. 12 (a) Reaction kinetics for different initial A homopolymer distri-
butions in 2D. (b) The same data re-scaled by a characteristic interface
length, l. The reaction rate for different mass distributions collapses
when scaled in this way.

homopolymers, the reaction rate is measured in terms of the total
volume of each reactant. While the collapse seen in Figure 12b
is significant, it is not fully quantitative. This is because the cur-
vature of the interfacial manifold can also influence the reaction
rate, which is particularly evident in the four circles case.

Computations in 2D and 3D geometries are also required to
study more complex dynamical phenomena associated with reac-
tive blending processes, such as the effect of externally imposed
flows and spontaneous emulsification13. These, however, merit
dedicated analyses and will be addressed in a separate paper.

5.4 Asymmetric blends
Extending the problem to asymmetric blends expands the param-
eter space significantly and is beyond the scope of this work.
However, we will briefly comment on it here. The phase diagram
of asymmetric ternary homopolymer-copolymer blends, including
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unequal homopolymer chain length and composition, is complex
with a rich variety of mesophases and two and three-phase re-
gions15. We will address each of these asymmetries separately.

In blends of homopolymers with symmetric chain lengths but
unequal concentrations, the blend consists of one homopolymer
in excess. In irreversible reactions, the end product consists of
a copolymer blended with the excess homopolymer. The reac-
tion kinetics of such a case in 1D is shown in Figure 13a and the
corresponding interfacial excesses are shown in Figure 13b. For
weakly asymmetric compositions, the reaction kinetics and inter-
facial excess nearly track the symmetric compositions until the
very end when one of the reactants is nearly depleted. As the ini-
tial composition becomes more asymmetric, the deviation from
the symmetric composition trajectory occurs much earlier. In any
case, the initial kinetically-limited and eventual diffusion-limited
behavior of the reaction kinetics is retained.

Most polymer blends in practice are also made from homopoly-
mers with unequal chain lengths. In such a situation, a reactively
formed copolymer partitions preferentially at equilibrium into the
homopolymer with longer chains due to the smaller number of
unfavorable A-B contacts. Another important role is played by
mixing entropy of unequal length chains, which is demonstrated
in Figure 14a showing a non-reactive blend of a symmetric copoly-
mer with homopolymers of different lengths at equilibrium. The
symmetric diblock is seen to be partition into the shorter B ho-
mopolymer phase due to mixing entropy. The former type of
compatibility-based partitioning is illustrated for an asymmetric
diblock mixed with symmetric, non-reactive homopolymers, as
seen in Figure 14b.

Perhaps a more important consequence of chain length asym-
metry is that, on a volumetric basis, the two homopolymers are
consumed by the reaction at different rates. Since one chain of
each species reacts in a single instance, the longer polymer is con-
sumed faster than the shorter one. The resulting diblock is also
asymmetric. Consequently, both of the above partitioning effects
come into play. The confluence of these factors is demonstrated
in Figure 15, which shows the reaction rate for an irreversible re-
action of an equal volume fraction mixture when NAh = 2NBh. For
reference, the corresponding symmetric blend where NAh = NBh

with the same NAh is also provided, which is the result previously
shown in Figure 7a. In the asymmetric case, homopolymer A is
consumed volumetrically twice as fast as homopolymer B and the
end product comprises of an asymmetric diblock with fA = 2/3
blended with unreacted homopolymer B. Additionally, the shorter
B homopolymer has a larger concentration of reactive groups and
diffuses faster, increasing the reaction rate in both the kinetically
and diffusion limited regimes. The interfacial excess also rises
faster in the asymmetric blend for the same reason. It is notewor-
thy that the reaction still retains an initial kinetically limited and
an eventual diffusion limited nature.

6 Conclusion
We have developed and investigated a dynamic phase field model
for reactive end-linking of polymer blends. A density functional
type free energy was derived using the procedure of Uneyama and
Doi 26. This free energy functional provides a description of multi-

(a)

(b)

Fig. 13 Reaction kinetics (a) and interfacial excess (b) for an irreversible
reaction of homopolymers with symmetric lengths but asymmetric com-
positions. The labels indicate the initial mean volume fraction of ho-
mopolymer A. While the initial kinetically limited and the eventual diffu-
sion limited nature of the reaction is retained, a more asymmetric com-
position results in faster reactant depletion.
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(a)

(b)

Fig. 14 Equilibrium volume fraction distributions of non-reacting blends
of polymers with asymmetric chain lengths. (a) NAh = 2NBh = ND/2,
f = 0.5 (b) NAh = NBh = ND/2, f = 2/3. For blends with asymmetric
chain architecture, the copolymer partitions into one of the two bulk
homopolymer phases.

(a) reaction rate

(b) interfacial excess

Fig. 15 Reaction rate and interfacial excess for an irreversibly reacting
homopolymer blend with asymmetric chain lengths NAh = 2NBh but sym-
metric composition. A fully symmetric blend, NAh = NBh, with the same
NAh is shown for reference.
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component self-assembly and phase behavior that is shown to
yield semi-quantitative agreement with self-consistent field the-
ory (SCFT). For a symmetric blend, this amounts to a well-mixed
DIS structure below the Flory incompatibility and at high copoly-
mer content below the Leibler incompatibility, a 2ϕ coexistence
at low copolymer content above the Flory incompatibility, and 3ϕ

coexistance and a LAM phase at intermediate copolymer content
and above the Lifshitz incompatibility. The dynamic simulations
also show that the reaction progresses through an initial kineti-
cally limited regime and an eventual diffusion-limited regime as
previously known6. In the 3ϕ region, the homopolymer is en-
trained within the lamellae of the diblock-rich phase, extending
the reaction manifold and slightly increasing the reaction rate.
This enhanced reaction rate scales proportionally to the thickness
of the LAM phase relative to the total system size.

We have identified scaling laws for the rate of irreversible end-
coupling in each of the four different morphologies. We find that
the rate of copolymer formation for the 2ϕ and 3ϕ phases de-
pends on the interfacial width and system size. The result for the
2ϕ phase is in agreement with the literature11. In contrast, the
scaling laws for the DIS and LAM phases do not depend on the
system size, because the reactants are largely well-mixed in both
these phases. Furthermore, we find that these scaling laws can be
used to predict the equilibrium composition of a reversibly react-
ing blend when combined with an appropriate reaction model for
copolymer dissociation.

For irreversibly reacting systems in the kinetically limited
regime, the scaling law depends on the interfacial area to vol-
ume ratio and rates can be calculated if the microstructure of
the blend is known. By the same token, the reaction rate can be
enhanced by increasing the interfacial area, which is achieved in
practice by mixing the homopolymers using active or passive mix-
ers. Over time, the copolymer product builds up at the interface
and prevents contact between the homopolymers, slowing down
the reaction. The reaction rate is then controlled by the diffu-
sion of homopolymer chains through the interfacial brush. Mix-
ing flows are expected to improve the reaction rate in this regime
by stretching the interface and diluting or destroying the copoly-
mer brush, exposing fresh interface for reaction. An extension of
the present model to include convective transport is needed to
investigate this phenomenon in depth.

In summary, the present model and simulations provide a rich
description of the complex interplay between thermodynamics,
diffusive transport, and reaction kinetics in reactive blending of
polymers. The mathematical framework is flexible enough to al-
low for extensions to study more complex phenomena such as
spontaneous emulsification and the effect of externally imposed
flows. We look forward to reporting on future investigations of
these topics.
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