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Biological systems rely on chemical gradients to direct motion through both chemotaxis

and signalling, but synthetic approaches for doing the same are still relatively naive. Con-

sequently, we consider here a novel method for using chemical gradients to manipulate the

position and velocity of colloidal particles in a microfluidic device. Specifically, we show

that a set of spatially localized chemical reactions that are sufficiently controllable can be

used to steer colloidal particles via diffusiophoresis along an arbitrary trajectory. To do so,

we develop a control method for steering colloidal particles with chemical gradients using

nonlinear model predictive control with a model based on the unsteady Green’s function

solution of the diffusion equation. We illustrate the effectiveness of our approach using

Brownian dynamics simulations that steer single particles along paths that include a circle,

square, and figure-eight. We subsequently compare our results with published techniques

for steering colloids using electric fields, and we provide an analysis of the physical pa-

rameter space where our approach is useful. Based on the above, we conclude that it is

theoretically possible to explicitly steer particles via chemical gradients in a microfluidics

paradigm.
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I. INTRODUCTION

Positioning colloidal particles in precisely defined locations is necessary for micro- and nano-

system engineering. For example, microfluidic particle positioning has been used for nanophoton-

ics,1 tissue engineering,2,3 bio-hybrid technologies, and man-made systems that incorporate living

components.4 Such precise positioning can be achieved for a small number of particles using a

top-down approach by applying external forces or fields to the system. In particular, there has

been significant progress on using electric fields to move colloidal particles into a desired forma-

tion.1,5–13

Driving the motion and assembly of larger numbers of particles usually requires a bottom-

up approach that leverages the local interactions between particles. The reigning paradigm for

bottom-up assembly employs colloids with static, predetermined local interactions.14 Such static

local interactions mean that the explicit and dynamic positioning of top-down methods is lost.

Unlike these static bottom-up methods, microscale biological systems use internal feedback in

the form of chemical signals generated from networks of chemical reactions to drive motion and

assembly.15 Accordingly, researchers have suggested an alternative bottom-up assembly paradigm

based on particles that dynamically respond to their local environment to cooperatively form a

desired arrangement.16,17 Importantly, this approach is inherently non-equilibrium, and like bio-

logical signalling, it permits behavior that is unattainable at equilibrium. For example, one could

create dynamically programmable colloidal assemblies that are self-repairing, have dynamically

tunable properties, or that function as nanomachines that move and actuate.

Unfortunately, theories and simulations of non-equilibrium colloidal assembly are considerably

less developed than equilibrium methods.18 While much remains to be understood, a key mecha-

nism for biomimetic non-equilibrium assembly involves directing particle chemotactic motion into

desired states using chemical gradients that are generated by a distributed network of chemical re-

actions. This dynamic, many-body process is complex, and we postulate that the simpler problem

of chemical micro-actuation—feedback-controlled steering of individual colloidal particles using

externally applied chemical gradients—is an important step towards engineering nonequilibrium

colloidal assembly via biomimetic chemical signalling.

In this paper, we develop a method for steering particles using chemical gradients that is based

on a well-established approach to electrokinetic micro-actuation.1,5–10 The specifics of steering

colloidal particles with electrokinetic micro-actuation have been explained in detail by Chaudhary
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FIG. 1 An example microfluidic device for steering particles via diffusiophoresis. The trajectory (red

line) of a colloidal particle (red circle) is controlled using feedback from a vision system that is fed to

a computer algorithm that computes reaction rates for chemical actuators. The chemical gradient of

the control area is shown by the contour plot in the lower right, where bright yellow indicates a

high-concentration area and dark blue a low one.

and Shapiro5. The type of microfluidic device they describe contains three main components:

1. a vision system that measures the position of the particle in real time,

2. electrodes arranged around a control region to produce an electric field that exerts an elec-

troosmotic force on the particle, and

3. a controller that uses a minimum norm least-squares algorithm to calculate the voltages to

apply to the electrodes.

To steer colloids, position information from the vision system is fed to a controller that calculates

the voltages that will move the particles on pre-specified trajectories. This method has been used

to steer several particles at a time, both in simulations5–7 and experimentally.1,8–10

In this paper we develop an analogous method for chemical micro-actuation and compare and

contrast it with its electrokinetic counterpart. We make use of the phenomenon of diffusiophoresis,

where a gradient in the concentration of a chemical solute causes a colloidal particle to move.

Similar to the method of Chaudhary and Shapiro, we assume access to an experimental system

with the following components:

1. real-time measurement of the position of the particle,

2. highly controllable solute concentration inputs (sources) and a method of removing the so-

lute as it accumulates (sinks or flushing system), and
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3. a controller that uses model predictive control to calculate the concentration inputs to apply.

Consequently, in our control method we assume that (1) the position of the particle is always

known, (2) chemical species are created by point-sources that can be arbitrarily controlled, (3)

species are infinitely soluble, and (4) species can be readily removed at the boundaries of the

domain of interest.

In this paper, we focus on an example of such a system shown in Figure 1. In the example,

a computer vision algorithm is used to measure the position of a particle using a camera and ex-

tract its pixel location. The position information is then fed to a control algorithm containing a

simplified model of diffusion and particle motion. This algorithm calculates the required chemi-

cal source concentrations to propel the particle along a desired trajectory. We assume that these

chemical sources (which we refer to as “probes” by analogy to the electrokinetic case) are local-

ized, easily controlled, and far enough from particles to be considered point-sources. Consistent

with our ideas of synthetic biochemical signalling discussed above, we further assume that these

sources are chemical reactions whose rates are easily actuated (e.g., electrochemical,19 photo-

chemical,20, or temperature-controlled21 reactions), though our method is not limited by this latter

assumption. Finally, to limit solute build-up, we assume that solute is removed at the edges of the

microfluidic device via a thin semipermeable membrane with a pure solvent sweep on the exterior.

This membrane is placed far from the controllable area, so it does not affect the gradient felt by

the colloid.

The primary contribution of this paper is the development and simulation-based testing of con-

trol methods for steering a single colloidal particle in this example system. While it has been pre-

viously suggested that large concentration gradients can be used to direct the motion of particles

through diffusiophoresis,22–25 to the best of our knowledge, this is the first feedback-controlled

method for dynamically steering individual particles via chemical gradients.

To steer a particle using chemical gradients, one requires a controller to calculate the necessary

chemical gradients. Due to the inherently slow dynamics of chemical diffusion, a more sophis-

ticated controller is required for chemical micro-actuation than for its electrokinetic analogue.5

We use a controller that employs nonlinear model predictive control (NMPC), a method that opti-

mally chooses control inputs based on predicted future states of the underlying physical process.26

NMPC deals with nonlinear models, which is necessary for the non-equilibrium problem we are

considering. NMPC has many of the advantages of linear model predictive control, including the

ability to handle long delay times, multiple input and output variables, and constraints on the con-
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trol inputs. NMPC has previously been used in a microfluidic device to position microchips using

dielectrophoresis.27

We test our control method using two-dimensional (2D) Brownian dynamics (BD) simulations

in which the motion of the colloid is coupled with a solute reaction-diffusion system that exerts a

diffusiophoretic force on the colloid. To describe the diffusiophoretic motion, we assume that the

velocity of a colloidal particle is directly proportional to the concentration gradient of a non-ionic

solute,28 and we explicitly calculate the concentration field of the solute using a finite difference

method. Hydrodynamic effects other than diffusiophoresis and Brownian motion are neglected.

In addition to the above, we also provide an analysis of the viability of steering particles with

different system parameters. We include the distance from chemical signals, particle size, diffu-

siophoretic mobility, and solute diffusivity in this analysis.

With these objectives in mind, the paper proceeds as follows: We first detail our methods for

particle steering starting with a review of the methods for electrokinetic control, and then we detail

our approach for diffusiophoretic control, including the setup of NMPC. We then demonstrate

chemical gradient steering via NMPC using BD simulations, and we compare and contrast the

method with particle steering using an electric field. We also provide an analysis of the relevant

timescales involved in steering particles using a chemical gradient and produce design rules for

choosing viable system parameters. Finally, we provide future direction for this method and offer

some conclusions and perspective on future work.

II. METHODS

In this section, we describe our methods for steering particles using both electrokinetic and

diffusiophoretic controllers. We begin by describing our BD simulations, and then we describe the

control approaches for each method. Finally, we briefly discuss the physical parameters used in

the simulations.

A. Brownian dynamics simulations

The simulations are designed assuming a single colloidal particle will be controlled within a

2D region, as shown in Figure 2. Bordering the region are either electrodes or reactive chemical

“probes”. For the electric field simulations, four electrodes are used, one on each of the North,
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FIG. 2 Domain geometry for (a) electric field and (b) chemical gradient simulations. In (a), electrodes

(blue squares) are controlled by changing their voltages with time to move a colloidal particle (orange

dot) on a target path. In (b), the electrodes are replaced by chemical reactions (blue x’s). In each, the

dashed blue line is the area in which the particle is allowed to move (the control region) and the

dashed green box is the boundary of the simulated area (the simulation domain). The electrodes or

chemical probes are separated by a distance of L, and the simulation domain is a box of side length 3L.

South, East, and West sides of the control region (shown in Figure 2a). Similarly, for the chemical

gradient simulations, four chemical reaction “probes” are placed on each side of the control region

(shown in Figure 2b). The electrodes/probes are separated by a distance L, and the control region

(the region in which the particle are allowed to move) is the area between the electrodes/probes.

The simulation domain extends beyond the control region to a length of 3L. This makes the

boundary conditions of the simulation distant enough that it does not disturb the motion of the

particle.

We use Brownian dynamics (BD) to simulate the motion of a colloidal particle moving in an

externally applied field. We simulate a single particle (implying there are no interparticle inter-

actions) that feels either electrokinetic or diffusiophoretic forces, with other forces assumed to

be zero. With the assumption that the motion of the particle is overdamped, the velocity of the

particle is described by29–31

Ẋ =
1
γ
(Fdiff +Felec)+

√
2Dcξ, (1)

whereX = [xparticle,yparticle]
T is the 2D position of the colloidal particle, Fdiff and Felec are the dif-

fusiophoretic and electrokinetic forces respectively, and ξ is a Gaussian white noise term defined
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as

ξ ≡ lim
dt→0

N(0,dt−1) (2)

where N(0,dt−1) is a normal distribution with a mean of 0 and a variance of dt−1 and dt is the

time differential. Additionally, γ = 6πηRc is the Stokes friction coefficient, and Dc = kbT/γ is

the diffusion coefficient of the colloidal particle, which introduces Boltzmann’s constant kb, the

system temperature T , the viscosity of the surrounding fluid η , and the radius of the colloidal

particle Rc.

The electrokinetic force Felec is a combination of the electrophoretic force Fep on the particle

and the force imparted by electroosmotic flows Feo. In general, a particle can be electrokineti-

cally steered using electroosmotic flows if it is neutral or a combination of electrophoresis and

electroosmosis if it is charged.8 However, electroosmosis complicates the comparison between

electrokinetic steering and diffusiophoretic steering. Accordingly, since our primary purpose is

to examine particle steering via diffusiophoresis, we will limit our analysis to the case where

electroosmotic flows are suppressed (Feo = 0), and a charged particle is steered solely using elec-

trophoresis (Felec = Fep).

The electrophoretic force is given by32

Felec(X, t) = γµeE(X, t) =−γµe∇Φ(X, t), (3)

where µe is the electrophoretic mobility, E is the electric field, and Φ is the electric potential. As

emphasized in Eq. 3, the electric potential is a function of position and time, and is determined

by the voltages φi(t) of the i electrodes. We calculate the electric potential by solving Laplace’s

equation

∇
2
Φ(x,y, t) = 0 (4)

with boundary conditions Φ(Xprobe,i, t) = φi(t) at the electrode locations Xprobe,i and Φ = 0 at

the edge of the computational domain as indicated in Figure 2. We discretize the domain using

a 2D finite difference methood, and solve Laplace’s equation using numerical relaxation via the

Gauss-Seidel algorithm.

The diffusiophoretic force for a dilute, non-ionic solute is given by28

Fdiff(X, t) = γµd∇C(X, t). (5)
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where C is the concentration of the solute and µd is the diffusiophoretic mobility. The sign and

the magnitude of the mobility depend on interactions between the particle, the solute, and the

solvent,33–35 and the units for the mobility are m2/(M s), where M means moles per liter.

Analogous to the need to know the electric potential gradient in the case of electrophoresis,

one must determine the concentration gradient near the colloid to compute the diffusiophoretic

force. Assuming the diffusion coefficient of the solute is constant (which is appropriate for a

dilute solution) and that there is no coupling between hydrodynamics and diffusion (i.e. that there

are no Marangoni effects or density-induced flows and that the colloid velocity is slow relative to

diffusion), we determine the concentration field using a reaction-diffusion equation

∂C(x,y, t)
∂ t

= Ds∇
2C(x,y, t)+G(x,y, t), (6)

where Ds is the diffusion coefficient of the solute and G(x,y, t) is the reaction rate of a local time-

varying chemical reaction caused by reactive “probes” located at various points in the simulation

domain as shown in Figure 2. We used Dirichlet conditions C = 0 at the boundary of the compu-

tational domain. As previously discussed, the zero concentration boundary acts as a concentration

sink that keeps the average concentration from monotonically increasing with time. We calculate

the concentration field using a finite difference method by discretizing Equation (6) in two dimen-

sions using a Forward Time Centered Space (FTCS) scheme on a regular grid. We chose a time

step of ∆tsim ≤ 0.5(∆x)2/4Ds to satisfy the Neumann stability criterion for the FTCS method,36

where ∆x is the distance between grid nodes.

B. Electrokinetic micro-actuation control algorithm

Our electric field micro-actuation control loop includes the following four steps: (1) A vision

system measures the position of a particle relative to a set of electrodes arranged regularly around

the edge of the device. (2) Using the position information, a dynamic model is used to relate the

motion of the particle to the voltages of the electrodes. (3) A user-defined reference velocity is

chosen and then modified with a feedback term to correct for Brownian motion and other inac-

curacies in sensing, actuation, and modelling. (4) Electrode voltages are chosen by minimizing

the difference between the dynamic model velocity and the reference velocity. These steps are

explained in detail in the following paragraphs.

8



In step (1), we assume that a vision system is able to measure the position of a colloidal particle

in real time. The proposed vision system would include a camera attached to a microscope, along

with any image processing algorithms necessary to extract the x and y position of the particle

relative to the electrodes.

In step (2), we model the dynamics of a particle that moves with the drift velocity due to the

electrophoretic force only, neglecting any other forces or Brownian motion. Accordingly, the

velocity of a particle experiencing electrophoresis becomes

v̂elec =
Felec

γ
=−µe∇Φ(X, t) (7)

where we have substituted Equation 3 for Felec. What remains is to relate the electric potential

Φ to the voltages of the electrodes, with the voltage of electrode i given by φi. As mentioned in

previously, this can be done using a numerical solution to the Laplace equation. However, we

found it more convenient to instead use the Charge Simulation Method37–39 to relate the electrode

voltage φi to an effective charge qeff,i at the electrode location. There are two primary advantages

to this approach. (1) We can make use of an analytical relation between the effective charge and

the potential that simplifies the calculation of the electric field. (2) There is a useful analogy that

we wish to highlight between the effective charge qeff,i of an electrode in electrokinetic micro-

actuation and the reaction rate at a point in space in diffusiophoretic micro-actuation.

We now derive the dynamic model used in the control algorithm by using the Charge Simulation

Method to relate the velocity of the particle to the effective charge of each electrode. To represent

the electric potential in a 2D electric field, line charges perpendicular to the 2D plane may be

used.39 For an effective line charge located atXprobe,i, we define the vector from the charge to the

particle as ri =X−Xprobe,i with magnitude ri. The electric potential for such a line charge as a

function of distance is given by37,38

Φi =
qeff,i

2πε
ln
(

Rz,i

ri

)
, (8)

where qeff,i is the effective charge per unit length, ε is the electric permittivity of the medium, and

Rz,i is the distance between Xprobe,i and the nearest location of zero reference potential, which

occurs at the boundary. The voltage φi of an electrode is the electric potential a particle would

feel at a distance of one electrode radius Relectrode from the effective charge. Thus it is possible to
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convert between qeff,i and φi using the relationship

φi =
qeff,i

2πε
ln
(

Rz,i

Relectrode

)
. (9)

The motion of the particle depends on the gradient of the electric potential. Taking the gradient

of Equation 8 with respect toX gives

∇Φi =−
qeff,i

2πεr2
i
ri. (10)

The total field is a linear superposition of the fields produced by the i individual charges. After

summing up the contributions from Equation (10) of each of Nprobe electrodes and substituting the

result into Equation (7), the model velocity of the colloidal particle in an electric field is then

v̂elec(t) =
−µe

2πε

Nprobe

∑
i=0

qeff,i(t)
r2

i
ri. (11)

This is the dynamic model used for our control algorithm. Note that we have neglected to include

image charges to meet the boundary conditions that were present in the simulation. This was

done to reduce the computational complexity of the dynamic model. Neglecting to include image

charges introduces an error to the dynamic model due to boundary effects, but we found the error

to be small.

Now that we have developed a dynamic model, we can continue to step (3). In step (3), we

define a reference trajectory and modify it using a feedback term to correct for thermal noise

and sensing and modelling inaccuracies. First, we pre-define a reference trajectory xref(t) =

[xref(t),yref(t)]T for the colloidal particle to follow. We also take the derivative of the pre-defined

trajectory, ẋref(t), which is the open-loop velocity that our controller must produce. However, to

track the trajectory in the presence of noise, measurement errors, and process errors, we add a

feedback term kelec(X−xref), or the difference between the measured position and the reference

position, to ensure the particle actually follows the desired trajectory. Thus, we define

vdes ≡ ẋref− kelec(X−xref) (12)

as the desired velocity to produce using the optimization algorithm.
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In step (4), we minimize the difference between the predicted velocity v̂elec from Equation (11)

and the desired velocity vdes from Equation (12). To solve this optimization problem, we used a

nonlinear optimization algorithm to calculate the electrode voltages by minimizing the cost func-

tion

Jelec(uelec) = welec,1
||v̂elec−vdes||2

v2
0

+welec,2
||uelec||2

q2
scale

, (13)

where v0 is a velocity scale that will be presented in the Results section, qscale is a scale for the

electric charge derived in the Appendix, and uelec is the vector of control inputs defined as

uelec =
[
qeff,1,qeff,2, . . . ,qeff,Nprobe

]T
. (14)

The weights welec,1 and welec,2 are tuning parameters of the method. The optimization was imple-

mented using in Python using the least squares function from the scipy.optimize40 library,

which uses the “Trust Region Reflective” algorithm. The voltages were constrained to be positive

to make a better comparison with our chemical controller results. The simulations were performed

with a variety of initial positions, domain sizes, and paths. A subset of these simulations will be

presented in the Results section.

There are two major differences between our methods and the methods for electric field steering

used previously by Chaudhary and Shapiro.5 First, in step (2), they used a finite element solution

to the Laplace equation to create a dynamic model instead of using the Charge Simulation Method.

Our choice to use the Charge Simulation Method added a small amount of modeling error, but it

also made the dynamic model less expensive to compute and will provide a clearer analogy with

our chemical gradient controller. Second, in step (4), instead of using nonlinear optimization,

they used a minimum norm least-squares algorithm to calculate the voltages of the electrodes

in a linearized system of equations, and they dealt with ill-conditioning using a singular value

decomposition. While their minimum norm solution is simpler and faster to compute, we used

nonlinear optimization to be consistent with our chemical controller, which cannot be computed

using a minimum norm solution.

C. Diffusiophoretic micro-actuation control algorithm

Similar to the case of electrokinetic micro-actuation, we use optimal control with diffusio-

phoretic micro-actuation to minimize the difference between the diffusiophoretic velocity v̂diff
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FIG. 3 An illustration of how model predictive control steers a colloid on a circular trajectory. (a) The

colloid (orange dot) is steered on a reference trajectory (red dashed line) using predictions of its future

position (blue dots) with Npred=4. In this example, the particle has already been moving for t = 50
(arbitrary units), and the four future points are predicted at a fixed ∆tcontrol = 10. (b) Past (solid) and

predicted (dashed) optimal inputs (i.e., reaction rates) for the four probes located North, South, East

and West of the particle.

from a dynamic model developed in the following paragraphs and the desired velocity vdes from

Equation (12). However, unlike the near-instantaneous changes in electric potentials, changes in

concentration are due to diffusive transport processes, which take time to propagate through the

solution. This leads to a significant delay between the chemical signal from the source and the

motion of the particle, necessitating a more sophisticated control strategy.

To deal with this delay, we use nonlinear model predictive control (NMPC). In NMPC one spec-

ifies a cost function J that includes information about the current state and model predictions of the

future states of the particle.26,41,42 One then uses a nonlinear optimization algorithm to minimize

this cost function and derive control commands for the concentration sources. The model predic-

tion is necessarily limited to a finite future time, called the event or prediction horizon, resulting

in an optimization over a set number of future steps Npred. The choice of the size of the prediction

horizon results in a tradeoff between speed and accuracy: a larger prediction horizon may give

better performance, but it also increases the computational cost of the optimization problem.41
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Figure 3 shows an example of how NMPC can be used to steer a colloid. Panel (a) shows

the trajectory X(t) and dynamic model prediction x̂diff(t) of a colloid as it is steered along a

circular reference trajectory xref(t). Panel (b) shows the optimal inputs (i.e., reaction rates) for

four probes that surround the particle, obtained by using an optimization algorithm to minimize

the cost function J. The key aspect of NMPC demonstrated here is that the input reaction rates

in part (b) are determined such that the dynamic model prediction in part (a) lies along the target

trajectory.

Given this overview, we now describe the specifics of this method, starting with the cost func-

tion. We would like a cost function that, when minimized, drives the particle to the reference

trajectory while simultaneously minimizing the amount of source concentration needed to actuate

motion. A cost function based on the commonly used concept of a squared error26 that accom-

plishes this goal is given by

Jdiff ({uk}) =
Npred+1

∑
k=1

wdiff,1
||v̂diff,k−vdes,k||2

v2
0

+
Npred+1

∑
k=1

wdiff,2
||uk||2

g2
scale

, (15)

where v̂diff,k is the velocity predicted by the dynamic model for k time steps into the future, vdes,k

is the desired velocity for time step k, given in Equation (16), v0 is a velocity scale that will

be presented in the Results section, gscale is a reaction rate scale derived in the Appendix, and

uk =
[
u1k,u2k, . . . ,uNprobek

]T
is a vector of Nprobe reaction rates at time step k. The weights wdiff,1

and wdiff,2 are tuning parameters of the method.26 Generating these tuning parameters is a key

step in developing optimal control of the system and will be discussed below. As desired, the cost

function has two terms: the first drives the dynamic model to the desired trajectory and the second

minimizes the concentration needed to actuate the system.

For the desired velocity vdes,k, we modify Equation (12) to be a function of the time step k,

giving

vdes,k = ẋref(tk)− kdiff
(
x̂diff,k−xref(tk)

)
. (16)

The main modification we have made is that we now use x̂diff,k, the position predicted from the

dynamic model for time step k, instead of the measured position X . Since the initial prediction

is set equal to the measured position, or x̂diff,1 =X , this equation reduces to Equation (12) when

k = 1.

In addition to specifying a cost function, our NMPC method requires a dynamic model for
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the motion of the particle. Rather than use a computationally expensive numerical solution (e.g.,

with finite differences), we develop here a method based on the Green’s function for the diffusion

equation that is analogous to the Charge Simulation Method for the Laplace equation described

previously. As we will see, a primary advantage of this method is that the concentration gradient

∇C only needs to be evaluated at the colloid location, rather than finding the solution to the un-

steady diffusion problem in all space. However, the efficiency of this approach is attenuated by

the history dependence of the Green’s function, which causes the method to become increasingly

costly with time.

For the dynamic model, we assume that the only forces acting on the particle are diffusio-

phoretic forces

v̂diff =
Fdiff

γ
= µd∇C(X, t), (17)

neglecting thermal noise. The concentration C(X, t) is again given by the reaction-diffusion equa-

tion provided in Equation (6), where the reaction rate term G(x,y, t) is a function of both time and

space.

In an infinite domain, Equation (6) has an analytical Green’s function solution,43

C(X, t) =
∫ t

0

∫ 1

[4πDs(t− τ)]n/2 e
−||X−σ||2

4Ds(t−τ) G(σ,τ)dnσdτ

+
∫ 1

(4πDst)n/2 e
−||X−σ||2

4Dst C(X,0)dnσ, (18)

where n is the number of spatial dimensions, and σ and τ are dummy integration variables for

space and time respectively. As previously mentioned, boundary correction terms can be added

using the method of images, but we chose to neglect these corrections in favor of a simpler and

faster dynamic model and anticipate that feedback control will correct for this model simplifica-

tion.

We are interested in the case of a 2D domain, which allows us to specify that n = 2. We

also assume a solution initially devoid of solute, i.e., C(X, t) = 0, meaning the second integral in

Equation (18) disappears. We further assume that there are Nprobe solute sources (chemical control

probes) at discrete points in spaceXprobe,i, so that

G(σ,τ) =
Nprobe

∑
i=1

gi(τ)δ (σ−Xprobe,i), (19)
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where gi(τ) is the reaction rate of source i in units of moles per time per unit length and δ is the

Dirac delta function. Defining ri ≡X−Xprobe,i to be the vector between the particle and probe i

with magnitude ri, simplifies Equation (18) to

C(X, t) =
Nprobe

∑
i=1

∫ t

0

1
4πDs(t− τ)

e
−ri

2

4Ds(t−τ) gi(τ)dτ. (20)

Finally, taking the gradient with respect to X and multiplying by µd , gives the diffusiophoretic

force needed for the dynamic model in Equation (17), yielding

v̂diff = µd

Nprobe

∑
i=1

∫ t

0

−ri

8πD2
s (t− τ)2 e

−ri
2

4Ds(t−τ) gi(τ)dτ. (21)

Equation 21 is a valid model for NMPC, but the presence of the integral makes it slow for use

in real-time control settings. Accordingly, we make two additional simplifications that permit us

to evaluate the integral. First, we assume that the distance from the particle to the probe does not

change significantly within a single time step. That is, we replace the vector ri in Equation (21)

with the most recently measured probe-particle vector r∗i . Since r∗i is not a function of time, it can

be pulled out of the integral, giving

v̂diff =
Nprobe

∑
i=1

−µdr
∗
i

8πD2
s

∫ t

0

1
(t− τ)2 e

−ri
∗2

4Ds(t−τ) gi(τ)dτ, (22)

where r∗i is the magnitude of r∗i .

Second, we assume a form for g(t) that allows us to evaluate the integral analytically. The

functions gi(t) correspond to the control inputs, and we now assume they are composed of discrete

steps

gi(t) =
Nt+1

∑
j=1

ui j
[
H(t− t j)−H

(
t− t j+1

)]
, (23)

where ui j is a constant control input (controlled reaction rate at the probe location) for probe

i applied at time step j, with units of moles per time per unit length, and Nt is the number of

time steps elapsed since the beginning of the simulation. Additionally, Equation 23 includes the

Heaviside function

H(t ′) =

 1 t ′ > 0

0 t ′ ≤ 0
, (24)
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which depends on t j and t j+1 = t j +∆tcontrol so that the control impulse lasts for the length of a

single time step between control loops ∆tcontrol. Using Equation 23, we can evaluate the integral

in Equation (22) using Laplace transforms and the convolution theorem. This procedure, which is

detailed in the Supporting Information, yields,

v̂diff =
−µd

2πDs

Nprobe

∑
i=1

[
r∗i
r∗2i

Nt+1

∑
j=1

ui j∆h j(t)

]
(25)

with

∆h j(t)≡ h(t, t j)−h(t, t j+1) (26)

and

h(t,τ) = e
−r∗2i

4Ds(t−τ) H(t− τ). (27)

Equation (25) is a nonlinear time-series model that gives the predicted velocity of a particle as a

function of its position, time, and the history of control inputs ui j. Each input ui j in Equation (25)

is multiplied by the nonlinear coefficient function ∆h j(t). Since this function plays a key role in

the control algorithm, it is useful to examine it more closely. The variable ∆h j(t) is the time-

dependent dimensionless response of the particle velocity from a single impulse lasting for time

∆tcontrol from a single concentration probe. Thus, a reaction rate impulse applied to a probe at time

t = 0 and lasting for ∆tcontrol seconds will have an impact on the particle with a magnitude that is

spread over time according to this coefficient function.

This coefficient function is shown as a function of time in Figure 4 for two different values of

the probe distance r∗i and selected values of other parameters, for the purpose of illustrating two

important points. First, the relationship between an input and the resulting velocity is affected

by the distance between the probe and the particle. Consider a single input that lasts for ∆tcontrol

seconds and then turns off. If the particle and the probe are close together (blue line in Figure 4),

the particle will accelerate quickly, and then rapidly decelerate once the input is turned off. If the

particle is farther away from the probe (green dotted line in Figure 4), the velocity will increase

more slowly, reach a lower maximum speed, and decay less quickly to zero than the previous case.

The slower and weaker response of the second case is a consequence of both the additional time

it takes for the solute to diffuse to the colloid and the lower concentration of the solute due to

additional dispersion over space.

The second lesson of Figure 4 is that even though a control input affects the velocity of the par-
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FIG. 4 The nonlinear coefficient function ∆h j(t) as a function of time with parameters t j = 0,

∆tcontrol = 0.5 s, and Ds and L as given in Table I. Coefficient function ∆h j(t) is given for both an

average particle-probe distance r∗i = L/2 (blue line) and for a large particle-probe distance r∗i = L
(green dotted line). The vertical orange dashed line shows the impact of implementing a cutoff by

setting the coefficient function to zero after ncutoff time steps have passed. The portion of the

coefficient function captured by the dynamic model when the particle is at L/2 is shaded in blue, and

the portion neglected by the cutoff is shaded in orange.

ticle long after it has turned off, the effects decay to zero as t gets large. Consequently, introducing

a cutoff to ∆h j(t) could result in a significant savings of computational time while introducing

only small errors to the model. Indeed, the reduction in computational time can be quite large

because: (1) the sum in Equation (25) contains an increasing (and unbounded) number of terms as

t increases, and (2) ∆h j(t) is a nonlinear function of both space and time that must be re-evaluated

at each time step. As such, without a cutoff, the time it takes to compute the sum in Equation (25)

diverges as the simulation proceeds. We avoid this problem by evaluating a fixed number ncutoff of

terms in the relevant sum, giving

v̂diff =
−µd

2πDs

Nprobe

∑
i=1

[
r∗i
r∗2i

Nt+1

∑
j=Nt−ncutoff

ui j∆h j(t)

]
(28)

when ncutoff timesteps have passed. As expected, implementing this cutoff results in an optimiza-

tion problem that is solved in a consistent and much smaller amount of time. Further discussion

of the choice of ncutoff and its impact on particle control will be discussed below.

With Equation (28) as our dynamic model, we implemented NMPC using the nonlinear opti-

mization algorithm least squares, from the scipy.optimize40 library, to minimize the cost func-
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tion in Equation (15). This process minimizes the difference between the velocity predicted by

the dynamic model and the reference velocity from Equation (16). For this work, we use evenly

spaced prediction steps with a spacing equal to the time between control loops, ∆tcontrol. Once the

optimization algorithm has calculated the optimal inputs over the prediction horizon, the controller

executes the first of the calculated inputs only. At the next time step, the position of the particle

is measured again and the optimization is repeated. This iterative process allows the controller

to benefit from more frequent feedback, which can reduce the effects of noise and errors in the

dynamic model.

Since chemical reactions generally cannot be negative, we constrained the solver to only allow

non-negative inputs. Consequently, the x-direction can be fully controlled using the East and West

probes, even with the lower bound, because the probes act from different directions. The same is

true for the y-direction and the North and South probes. In addition to the lower bound, an upper

bound was set to avoid unrealistically high input values and to help the optimization algorithm

converge. Details relating to the performance of the control algorithm will be discussed in the

Results section.

D. Simulation parameters

Table I provides the parameters used for both simulations with a time-varying electric poten-

tial and those with a time-varying chemical gradient. In both simulations, we assume a room-

temperature water-like solvent which sets the values of the viscosity and relative permittivity, and

we assume the solute has a diffusion coefficient equivalent to the self-diffusion coefficient of wa-

ter. We consider a particle with a radius of 1 µm, which is on the smaller end of what can be

measured by optical microscopy. We use a value of the electrophoretic mobility that is typical of

a polystyrene bead,8,44 and set the diffusiophoretic mobility to a value predicted by Anderson28

for a typical non-ionic solute. Simulation specific parameters include: the spacing of the finite

difference grid with 150×150 nodes ∆x = 3L/150, and the radius of the electrode which was set

equal to ∆x.

We programmed both the simulation and control algorithm using Python. Not having attempted

extensive optimizations, simulations of 600 seconds (with ∆tsim = 0.0008 seconds chosen for nu-

merical stability) take approximately 25 minutes to complete on a standard desktop computer.
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TABLE I Simulation Parameters.

Symbol Explanation Value
L Length of control region 200 µm
Rc Particle size 1 µm
T Temperature 298 K
η Fluid viscosity 0.89 mPa s
ε Electric permittivity 6.94×10−10

µe Electrophoretic mobility 2.0×10−8m2/(Vs)
Ds Solute diffusion coefficient 2.3×10−9 m2/s
µd Diffusiophoretic mobility 2.0×10−10 m2/(Ms)

TABLE II Electric Controller Tuning Parameters.

Symbol Explanation Value/expression
kelec Feedback constant 0.1 s−1

welec,1 Velocity error cost function weight 400
welec,2 Electrode cost function weight 1
ubelec Upper bound on optimization 1.3qscale

E. Controller tuning

The tuning parameters for the electric field controller and the chemical gradient controller are

presented here. The tuning parameters for the electric field controller are the feedback constant

kelec, the cost function weights welec,1 and welec,2, and the upper bound on the optimization algo-

rithm ubelec. The values of these parameters are shown in Table II. The tuning parameters for the

chemical controller are the feedback constant kdiff, the cost function weights wdiff,1 and wdiff,2, the

upper bound on the optimization algorithm ubdiff, the number of terms ncutoff evaluated in the time

series model, and the prediction horizon Npred. The values, or expression for choosing the values

of these parameters, are shown in Table III. These parameters will be discussed in further detail in

the following paragraphs.

The feedback constants kelec and kdiff are chosen to avoid excessive control effort. When the

feedback constant is large, the controller uses more effort to correct errors in the position of the

particle. This can make the inputs hug the upper bounds ubdiff and ubelec respectively, which is

a sign of excessive control effort. We chose a value of kelec = kdiff = 0.1 as a balance between

correcting position errors and minimizing control effort.

Cost function weights welec,1, welec,2, wdiff,1 and wdiff,2 determine the relative cost of deviating
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TABLE III Chemical Controller Tuning Parameters.

Symbol Explanation Value/expression
kdiff Feedback constant 0.1 s−1

wdiff,1 Velocity error cost function weight 400
wdiff,2 Reaction rate cost function weight 1
ubdiff Upper bound on optimization 1.3gscale

ncutoff Number of terms in model 30% max decay time
Npred Prediction horizon Between 1 and 5

from the reference velocity compared to increasing the magnitude of the reaction rates that drive

control. For the following simulations, we use welec,1 = wdiff,1 = 400 and welec,2 = wdiff,2 = 1,

giving a relative cost of 400 : 1, meaning the controller greatly prioritizes creating the correct

velocity over minimizing the control effort.

The upper bounds ubelec and ubdiff of the optimization algorithm provide a maximum limit on

the electrode voltage and reaction rate the probes can use to drive control. We will show in the

Results section that a charge of qscale or a reaction rate of gscale gives a particle velocity on the

order of v0, where qscale and gscale are defined in the Appendix. Accordingly, we set the upper

bound of the controller to be slightly larger than qscale and gscale to allow it to correct for Brownian

motion. In the simulations shown below, we set ubelec = 1.3qscale and ubdiff = 1.3gscale.

As discussed previously, the performance of the chemical control algorithm is strongly depen-

dent on ncutoff, the number of terms retained in the time series model, Equation (28). Recall from

Figure 4 that the coefficient function ∆h j(t) depends on the probe distance r∗i and decays at long

times. The longest decay time occurs when the particle is farthest from the probe at a distance of

r∗i = L. Accordingly, we choose a cutoff time, tcutoff, when the coefficient function has decayed to

30% of its peak value by solving the following implicit equation

∆h0(tcutoff) = 0.3max [∆h0(tcutoff)] (29)

where t0 = 0, t1 = ∆tcontrol, and h is evaluated at r∗i = L. This maximum decay time is a function of

constant parameters, so it only needs to be calculated once at the beginning of a simulation. The

parameter ncutoff is then readily determined via the time step size using

ncutoff = ceil(tcutoff/∆tcontrol) (30)
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The choice of 30% was made based on trial and error as a balance between accuracy and speed.

Note that, while the cutoff time is determined as 30% of the longest time to decay to zero, on

average the error will be much smaller than 30% because the particle is on average much closer to

the probe.

Finally, we choose a prediction horizon Npred ∈ [1,5], which is large enough to ensure the

dynamic model can capture solute diffusion but small enough to avoid excessive computational

cost. Note that the choice of Npred is sensitive to model parameters, and criteria influencing this

decision are discussed in greater detail in the Results section.

III. RESULTS

In this section, we present simulation results showing our ability to steer colloidal particles.

These simulations demonstrate the use of concentration gradients to control colloidal particles

as described in the Methods section. They also highlight that a chemical gradient controller can

achieve a level of performance similar to that of an electric field controller.

We begin by showing an example of successfully steering a colloid on a circular trajectory,

first using electric fields and then using chemical gradients, and analyze the similarities and differ-

ences between these two methods. Then we demonstrate the capability of the chemical gradient

controller to create trajectories other than circles. Finally, we use dimensional analysis of the

relevant time scales to provide heuristics of when steering a colloid using chemical gradients is

effective.

A. Electric field and chemical gradient comparison

This subsection shows our controllers steering colloids to a circular trajectory and compares

the behavior of the electric and chemical controllers. We use the parameters from Table I, a time

step of ∆tcontrol = 1 second, and an end time of 600 seconds.

We use a circular reference trajectory in our analysis as a base case because a circular trajectory

is a simple path that demonstrates the need for continuous control. For this trajectory, we chose

a circular path of radius rd = 30µm and centered at (xt ,yt), with the particle speed a constant
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FIG. 5 The trajectory and control inputs for both the electric field controller and the chemical

gradient controller. (a) An electric field simulation, in which the particle (red dot) is steered to follow

a circular trajectory (dashed red line), where the actual path of the particle is shown as a solid red line

and the locations of the four electrodes are represented by blue x’s. (b) The voltages of each of the

four probes are shown as a function of time. (c) A chemical simulation, where the four chemical

probes are shown as blue x’s. (d) The chemical reaction rates are shown as a function of time.

v0 = 1µm/s. The equation for the circular reference trajectory is then

xref(t) = xt + rd cos(v0t/rd) (31)

yref(t) = yt + rd sin(v0t/rd) (32)

with derivatives

ẋref(t) =−v0 sin(v0t/rd) (33)

ẏref(t) = v0 cos(v0t/rd) (34)
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The simulated trajectories for both the electric field controller and the chemical gradient con-

troller are shown in Figure 5. Videos S1 and S2 are also provided in the Supporting Information

showing animations of the corresponding trajectories. Figure 5a shows results using the electric

field controller, with the particle being steered around a circular reference trajectory by four elec-

tric probes that change the electric potential with time. The simulated trajectory for the chemical

gradient controller is shown in Figure 5b, where the particle is steered around a circle by four local

chemical reactions that change the solute concentration with time. In both the electrokinetically

and diffusiophoretically steered cases, the particle closely follows the reference trajectory with

perturbations from the path due to Brownian motion.

Figure 5c gives the control values (electrode voltages) for the electric field controller as a func-

tion of time. The control values are approximately sinusoidal, which can be explained with a brief

analysis of a 1D controller. The x-direction reference velocity is

ẋref(t) =−v0 sin(v0t/rd). (35)

To produce this velocity using a single probe, we substitute this reference velocity into Equa-

tion (11), take the magnitude, and rearrange to get

qeff(t) =
2πεriv0

µe
sin(v0t/rd). (36)

qeff(t) is approximately sinusoidal as long as the distance ri between the probe and particle is

approximately constant. This occurs when the radius of the circular trajectory is small compared

to the distance between the trajectory and the probe, rd � L.

The control values in Figure 5c are truncated sine waves because we constrain the electrode

voltages to be positive. Consequently, for motion in the x-direction, a positive voltage on the West

electrode create positive velocities and a positive voltage on the East electrode creates negative

velocities. The same analysis can be applied to the y-direction and the North and South electrodes.

Moreover, if we assume the particle is never farther than a distance L from the electrode, then the

maximum charge input will be

qscale =
2πεLv0

µe
, (37)

where qscale is the scale for electric charge derived in the Appendix. The charge input qscale can be

transformed to a voltage through Equation (9). In Figure 5c, the transformed qscale gives a useful
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benchmark for the maximum electrode voltages needed, though it is not exact because of modeling

error and Brownian noise.

Figure 5d shows the control values, or reaction rate of each of the chemical probes, for the

chemical gradient controller as a function of time. If we assume the diffusion of the solute is much

faster than the motion of the particle, we find that the chemical controller becomes analogous to

the electric field controller when we replace qscale with gscale. For conciseness, this derivation has

been placed in the Appendix. From this analysis, the approximate maximum reaction rate is

gscale =
2πDsLv0

µd
. (38)

Similar to the electric field controller, the chemical reaction inputs behave like a truncated sine

wave with a peak of approximately gscale. This pleasing result provides additional support for

our intuition that control with electric fields or chemical gradients are analogous in appropriate

conditions.

The electric field controller shows similar performance to Chaudhary and Shapiro in its ability

to track the trajectory and deal with Brownian noise. Visual inspection of trajectories also suggests

that the chemical gradient controller, with the choice of parameters given in Table I, performs

similarly to the electric field controller. Interestingly, the chemical controller only requires Npred=1

for this simulation. A larger prediction horizon is needed when the diffusion coefficient is small or

when the distance between the probes and the particle is large. Acceptable values for the prediction

horizon under different choices of parameters are discussed in more detail below.

There are several important observations to be made comparing and contrasting the results of

the two controllers. First, note that in Figure 5a the particle moves toward lower electric potential,

but Figure 5b the particle moves towards higher solute concentration. This is due to the defini-

tion of the mobility in each case: the electrophoretic mobility from Equation (3) is defined as

the proportionality constant between the electrophoretic velocity and the electric field (negative

electric potential gradient), meaning that a positive electrophoretic mobility causes a particle to

move down the electric potential gradient. By constrast, the relationship for the diffusiophoretic

mobility in Equation (5) does not have the extra negative sign, meaning a positive diffusiophoretic

mobility causes the particle to move towards higher concentrations. The sign of the electrophoretic

mobility depends on the charge of the particle (with a positive mobility corresponding to a particle

with a positive surface charge), so changing the sign of the surface charge will change the sign
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of the mobility. In rare cases, the sign on the diffusiophoretic mobility can also change, and the

particle will move down the solute gradient instead.33

Second, in Figure 5c-d, note the similarities and differences in the electrode voltage and chem-

ical reaction rate inputs. As previously mentioned, both plots can be approximated as truncated

sine waves and look strikingly similar, with a couple of notable exceptions. Because of the dif-

fering directions of mobility mentioned in the previous paragraph, the North/South input values

for the electric field controller (Figure 5c) are reversed in the chemical gradient controller (Figure

5d), as are the East/West inputs. Additionally, the chemical reaction rate inputs are noisier than

those of the electric field controller. This latter effect is due to the need to correct for additional

Brownian motion when there is a time delay due to solute diffusion.

Third, note the magnitude of the scale bars for electric potential compared to those for con-

centration. The voltages required for the electric field controller are very small (around 0.02 V).

This is because the electrodes are placed close to the particle (0.1 mm compared to 7 mm used by

Armani et al.8), and because the particle is moving slowly (1 µm/s compared to the maximum of

5 µm/s in Ref. 8). By contrast, the concentrations in the chemical gradient simulations are very

large and reach over 3 molar. This violates our assumption of a dilute gradient and is large enough

that it could cause solubility issues.

The large concentration required is a significant issue, and we will now discuss ways to mit-

igate this issue based on our analysis of the chemical gradient controller given above. One way

to deal with large concentrations is to incorporate concentration sinks—for example by flushing

the solution at the device boundary. Bringing the boundary closer to the control region reduces

concentration build-up, but it also introduces modeling errors into our method, because boundary

effects are not included in the dynamic model. Another way to decrease the concentration is to

reduce the reaction rate that is necessary to induce particle motion. Equation (38) suggests that

there are four parameters that can be modified to do so:

1. Select a colloid-solute system with a larger diffusiophoretic mobility, µd .

2. Miniaturize the system by decreasing the spacing, L, between the probes and decreasing the

average distance between the particle and the probes.

3. Decrease the speed, v0.

4. Decrease the solute diffusion coefficient, Ds.
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FIG. 6 A particle (red dot) steered on a square-shaped path (red dashed line).

The above choices are not without potential negative consequences. For example, decreasing v0

too far can lead to problems due to excessive Brownian motion, and decreasing Ds increases the

time delay, making the control problem more difficult. A more thorough examination of these

trade-offs is discussed below.

B. Other trajectories

The control methods described here are not limited to simple circular trajectories. Accordingly,

we demonstrate the flexibility of our method by presenting simulated particle trajectories that

follow a square path and a figure-eight. Again, the method is valid for an arbitrary choice of paths

and is not limited to these specific choices.

Figure 6 shows a simulated particle moving on a square trajectory. An animation of the time-

progression of this trajectory is also available as Video S3 in the Supporting Information. The

square had a side length of rd = 30µm, with the particle starting in the center of the control region

and traveling counter-clockwise at a speed of v0 = 1µm/s. The controller is able to accurately

produce the desired path, based on visual inspection. However, the corners of the square are

slightly rounded off due to a combination of Brownian motion with a limit to the resolution of the

shape caused by the 1 second controller time step. As we discuss in the next section, sharp corners

require a smaller controller time step to produce accurately.

Figure 7 shows a simulated particle moving in a figure-eight trajectory described by the refer-
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FIG. 7 A particle (red dot) is steered on a figure-eight path (red dashed line).

ence trajectory

xref(t) = xt + rd sin(v0t/rd) (39)

yref(t) = yt + rd sin(v0t/rd)cos(v0t/rd), (40)

where the shape is centered at (xt ,yt) and the parameters have values rd = 30µm and v0 = 1µm/s.

As was the case for the other simulated particle trajectories, an animation of this one is available

as Video S4 in the Supporting Information. Like the square trajectory, visual inspection of particle

motion indicates that the controller is able to accurately produce the desired path.

Based on the simulations we have performed, paths of almost any shape can be achieved.

However, there are some limitations. A particle cannot be moved too close to the probes without

violating the assumptions inherent to the method. Also, sharp corners, frequent changes of direc-

tion, and small length-scale details of a trajectory are difficult to produce. These difficulties are

discussed more rigorously in the following section.

C. Characteristic time scales

Controlling particle trajectories via chemical gradients works well for the combination of the

Brownian dynamics model parameters described in Table I and the NMPC algorithm parameters

described in Table III. However, certain relationships exist between some of these parameters that

must be satisfied in order to accurately reproduce a desired trajectory. In this section, we analyze
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TABLE IV Timescales relevant for obtaining a desired trajectory and the value of the timescale using

the model and algorithm parameters described above.

Symbol Time Scale Value (s)
∆tcontrol Control interval duration 1.00
ts Diffusion time of solute 1.09
T Timescale of directed motion 30.0
tc Diffusion time of particle 917

these relationships in terms of the inherent timescales of the system and use these timescales to

postulate rational design rules for parameter selection. The relevant timescales of the system are

presented in Table IV. They include the characteristic diffusion time of the solute ts, the char-

acteristic diffusion time of the particle through Brownian motion tc, the timescale of the directed

motion following the reference trajectory T , and the control interval of the model predictive con-

troller ∆tcontrol.

In order to specify design rules, we first need to relate the timescales in Table IV to parameters

in the physical model and the control algorithm. The diffusion time of the solute and of the colloid

can both be quantified using the relation45

t =
x2

RMS
4D

, (41)

where D is a diffusion coefficient and x2
RMS is the mean-squared displacement of the solute or

colloidal particle. The solute diffusion time ts is a measure of the average delay between the

action of controlling the reaction rate at the chemical source and the effect of this input on the

particle motion. Accordingly, a useful length scale is the average distance between a probe and the

collodial particle, in this case L/2. Using this scale as the RMS distance for the solute to travel,

the solute diffusion time is

ts =
L2

16Ds
. (42)

The diffusion time of the colloid tc is a measure of how long it takes Brownian motion to

disrupt the desired trajectory. Assuming (without a loss of generality) that the reference trajectory

is a circle with a radius rd , we care about deviations from the desired trajectory with the length

scale αrd where α ≤ 1. So, for example, if we want to consider Brownian perturbations that are

10× smaller than the reference trajectory, then we set α = 0.1. Using this length scale gives a
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particle diffusion time,

tc =
α2r2

d
4Dc

, (43)

where Dc is the diffusion coefficient of the particle defined in the Methods section. For the fol-

lowing analysis, we will set α = 1, but we wish to highlight that the timescale tc has a squared

dependence on the desired precision α , meaning a 10× change in precision requires a change in

tc of 100×.

The timescale of directed particle motion T quantifies how long the particle moves before

changing direction significantly. The motion of a particle moving on a trajectory with a length

scale x and a velocity scale v has a timescale x/v. Again, without a loss of generality, we assume

a circular trajectory, giving the timescale

T =
rd

v0
. (44)

Note that for a trajectory that has tight turns, it is appropriate to substitute the minimum radius of

curvature for rd in the analysis.

The control interval duration ∆tcontrol is the time step over which the model predictive con-

troller operates. Every ∆tcontrol seconds, the position of the particle is measured, reaction rates are

calculated by the optimization algorithm, and new reaction rates are applied. Unlike the above

parameters, ∆tcontrol is not determined by the properties of the colloidal solution. Rather, the con-

trol interval is an algorithmic choice bounded by physical limitations. A small value of ∆tcontrol is

desirable as it gives more frequent feedback and a more responsive controller. However, the con-

trol interval must be long enough to encompass particle position measurement, device information

transmission, convergence of the optimization algorithm, and actuation of the reaction rates. Prac-

tically then, ∆tcontrol will be the minimum allowable value given computer vision specifications,

reaction chemistry, and the computational speed of the optimization algorithm.

There are four important relationships between these time scales—design rules—that must be

satisfied in order to control a particle using chemical gradients via NMPC. If these relationships

are not met, then either the inputs required to produce the trajectory get unreasonably large or the

controller is not able to accurately produce the trajectory at all. These design rules are described

in the following paragraphs and are summarized in Table V.

First, ∆tcontrol must be small enough that the resulting path is smooth. At each time step (assum-
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TABLE V Design rules for selecting physical parameters.

RuleTime scales Physical parameters
1 ∆tcontrol� T ∆tcontrol� rd

v0

2 ts < Npred∆tcontrol
L2

16Ds
< Npred∆tcontrol

3 ts < T L2

16Ds
< rd

v0

4 T � tc
rd
v0
� α2r2

d
4Dc

ing the particle is moving on the open loop trajectory), the particle travels a distance of v0∆tcontrol.

So to create a smooth path, v0∆tcontrol must be small compared to the length scale of the trajectory,

rd . In other words,

∆tcontrol�
rd

v0
(45)

or equivalently

∆tcontrol� T. (46)

When this rule is not met, the particle cannot follow the reference trajectory accurately, and the

path of the colloid looks rough in the sense that a polygon looks rough compared to a circle.

Second, the prediction horizon Npred∆tcontrol should be at least as large as the solute diffusion

time ts to enable the NMPC model to adequately capture the behavior of the system. Accordingly,

the design rule here is,

ts < Npred∆tcontrol. (47)

The delay between when solute is released from the probe and when its effects reach the particle is

on the order of ts. If the prediction horizon is too small, the predictive controller cannot anticipate

this delay. This is illustrated in Figure 8, where the coefficient function ∆h j(t) from Equation 26 is

shown along with ts and Npred∆tcontrol. When calculating a future input, the controller only sees the

portion of the coefficient function highlighted in blue.46 A prediction horizon that is too short will

lead to a “short-sighted” controller that sacrifices future performance for immediate performance.

This results in very large oscillations in the reaction rates that can cause the particle to move off

the trajectory or an ill-behaved optimization problem that the algorithm is not able to solve.

The third design rule is

ts < T, (48)

which allows controller inputs to act independently and not interfere with one another. Recall
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FIG. 8 The coefficient function ∆h j(t) from Equation 26 is shown in blue, along with ts (red dot) and

Npred∆tcontrol (orange dashed line). The portion of ∆h j(t) captured by the NMPC controller when

calculating a future input is shaded in blue, and the remainder is shaded in orange.

that the motion timescale T quantifies how long the particle moves before significantly changing

direction. If controller inputs are slow to decay, as characterized by ts, then they can act against

the desired motion. This can lead to unrealistically large control inputs as the controller tries to

compensate. For example, when we tested a case with ts=14.49 and T = 15.0, the controller inputs

reached 2gscale, over twice the value predicted by our earlier analysis. In a simulation with ts=29.0

and T = 15.0, the inputs reached 10gscale, over 10 times the value predicted. In some situations,

large reaction rates may be acceptable as long as the concentration of the solute does not get too

large, but such high reaction rates may be difficult to produce in practice.

The fourth and final design rule

T � tc (49)

ensures that the directed motion of the particle can overcome random Brownian forces. The parti-

cle moves a distance of rd by directed motion in time T , and Brownian motion induces a perturba-

tion of distance αrd from the desired path in time tc. Accordingly, directed motion will dominate

Brownian motion for a given value of α if Equation (49) is satisfied.

The design rules in Equations (46)–(49) share four common degrees of freedom that must be

selected to ensure the four rules are met. We select ∆tcontrol to be small enough to meet Rule

1 and Npred large enough to meet Rule 2, with the understanding that these parameters must be

tested to check that the device is able to make measurements and the controller is able to solve

the optimization problem in real time. Then, two of the following variables must be selected and
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FIG. 9 Plot of the parameter space in terms of speed v0 and length scale rd of a desired trajectory for

a fixed set of system parameters: L, Ds, and Dc (given in Table I). The region of the parameter space

that satisfies the design rules are shaded in blue, while other combinations result in either too much

Brownian motion or too slow of diffusion. The design rules are defined using tc = 20T and T = 5ts.
The parameters chosen for the simulations given in the Results section above are represented by a red

dot. The minimum length scale predicted by this theory is shown as a gray dot.

balanced to meet the other two rules: rd , v0, L, Ds, or Dc. The remaining variables may be chosen

freely.

Figure 9 shows an example of the acceptable range of parameters v0 (speed of the desired

trajectory) and rd (characteristic size of the desired trajectory) using Rules 3 and 4 when L, Ds,

and Dc are set according to Table I. Speeds that are too large or trajectories that are too small can

violate Rule 3, where diffusion is too slow for the controller to actuate. Alternatively, speeds or

trajectories that are too small can violate Rule 4, and Brownian motion will dominate the controlled

motion. The combination of these rules predicts a smallest possible trajectory, which occurs near

10 µm in Figure 9. Note, however, that these rules are “fuzzy” because they depend on inequalities

and asymptotic relationships. As such, these design rules should be seen as guiding principles

rather than strict limits.

Figure 10 shows an example of how changing the size of the particle Rc affects the allowable

trajectories. Since Rc is inversely proportional to Dc, a smaller size will increase the colloid diffu-

sivity and therefore increase the magnitude of Brownian motion. Figure 10 shows that decreasing
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FIG. 10 Plot of the parameter space in terms of speed v0 and length scale rd of a desired trajectory

for three values of the paramter Rc. The region of parameter space that satisfies the design rules is

located below the green line and above the blue line for a given value or Rc.

Rc shifts the T � tc curve up towards larger speeds and trajectory length scales, constricting the

allowable region. A smaller Rc leads to larger Brownian fluctuations, which means that a larger

v0 and/or rd must be chosen for the directed motion to overcome random motion. A similar shift

occurs when decreasing the viscosity of the fluid medium or increasing the temperature.

IV. CONCLUSION AND FUTURE WORK

We have successfully demonstrated a method for steering a colloidal particle along an arbitrary

user-defined trajectory using chemical gradients by applying model predictive control to external

concentration sources. To the best of our knowledge, this is the first demonstration of an algorithm

for top-down control of particle trajectories using chemical sources. We tested the method using

Brownian dynamics simulations that assume diffusiophoresis is the sole actuatable force, and the

controller is able to steer a colloid along micrometer scale trajectories even in the presence of

significant Brownian noise. In this respect, the method compares favorably with methods that

have used electrokinetic actuation mechanisms to manipulate particle trajectories.

Additionally, we have developed design rules for particle steering based on an analysis of the

characteristic time scales present in system. These rules are based on fundamental principles of
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control theory and colloidal physics: (1) controller parameters should ensure that the trajectory

is smooth; (2) the prediction horizon should capture most of the future behavior of the solute;

(3) solvent diffusion (chemical signalling) should be faster than directed motion; and (4) directed

motion should dominate Brownian fluctuations. These principles are expressed mathematically as

Equations (46)–(49), and provide a recipe for determining limits of e.g., the reference trajectory

size and speed once the physical parameters of the system have been determined.

Along with these successes, there are several avenues for future improvements. The most glar-

ing weakness of the method is the potential need for large solute concentrations. For example, the

trajectories in Figures 5, 6, 7 require maximum concentrations as large as 2M-3M, likely beyond

the solubility limits of many common solutes. Even if diffuisophoretic solutions are available with

such solubilities, the physical model we describe herein assumes dilute solutions and should be

modified to account for effects of large concentrations. Using the aforementioned design rules as

a guide, lowering the maximum concentration can be achieved in cases where the particle has a

large diffusiophoretic mobility or the solute has a small diffusion coefficient. Ionic solutes could

potentially satisfy both of these criteria,35 making them a promising candidate for investigation.

Notably, our models here are restricted to non-ionic solutes, and we leave the development of

similar methods for ionic solutes for future work.

The models and methods we develop here also neglect potentially significant hydrodynamic

effects. Large concentration gradients may induce density-driven convection, and diffuisoosmotic

flows at device walls may also be important at lower concentrations.47 An explicit hydrodynamics

model could potentially be a helpful addition to the controller. Alternatively, advanced control

methods such as moving horizon estimation could be used to account for unknown effects or

uncertain parameters.48 Noting that errors from hydrodynamic effects or others sources are already

at least partially compensated for by the feedback term in the controller, this latter approach may

prove especially fruitful.

Additionally, in order to implement our method in an experimental system, the optimization

problem must be solvable in real time. We consider this problem beyond the scope of the present

paper. However, despite the apparent complexity of the model and method, speedy numerical

implementations are realistic with low-level languages such as Fortran or C++.

Finally, an important future direction is using this method to steer multiple particles. Methods

for doing so will need to include interparticle interactions and hydrodynamic interactions. Also,

each additional particle will add Npred decision variables, potentially making it difficult to solve
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the optimization problem in real time.

With these potential improvements in mind, the chemical gradient controller we have devel-

oped provides a critical step towards developing microfluidic systems that can manipulate parti-

cles through chemical micro-actuation. Such a method can provide new and orthogonal degrees of

freedom beyond electrokinetic methods to steer particles, and provides a foundation for the future

study of biomimetic self-assembly using complex chemical gradients and signalling mechanisms.

APPENDIX: CHARACTERISTIC SCALES

In this appendix, we first perform a brief dimensional analysis of the equations of motion

for an electrophoretic particle to derive the characteristic scale for electric charge. We then use

dimensional analysis for a diffusiophoretic particle to derive a characteristic scale for reaction rate

and show that, under a pseudo-steady state assumption, there is a direct analogy between electric

fields and chemical gradients.

Non-dimensionalizaion of electric charge

We begin by restating the equations for the electrophoretic particle in an electric potential

modeled by the charge simulation method. This has the equations

∂X

∂ t
= µe∇Φ+

√
2Dcξ (50)

and

∇Φ =− qi(t)
2πεr2r (51)

for a particle at position r and a single charge located at the origin. We may simplify by substitut-

ing Equation 51 into Equation 50, giving

∂X

∂ t
=− µeq

2πεr2r+
√

2Dcξ. (52)

We assume that the characteristic length of electric potential gradients are on the order of L,

the distance between electrodes, and that the characteristic speed of the particle set by the con-

trol algorithm is v0. We seek to derive the characteristic electric charge q∗ through dimensional
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analysis.

Using the characteristic scales, we define dimensionless variables

t̃ =
tv0

L
, X̃ =

X

L
, q̃ =

q
q∗

,

ξ̃ =

√
L
v0
ξ, r̃ =

r
L

.

Substituting these equations into Equation 52 gives

∂X̃

∂ t̃
=
−µeq∗q̃(t̃)
2πv0εLr̃2 r̃+

√
2Dc

v0L
ξ̃. (53)

Setting the first dimensionless group to one gives us

q∗ =
εv0L

µe
. (54)

This leaves the equation of motion as

∂X̃

∂ t̃
=

q̃(t̃)
2π r̃2 r̃. (55)

Finally, it is convenient to eliminate the factor of 2π . Thus we define the charge scale

qscale = 2πq∗ =
2πεv0L

µe
. (56)

Non-dimensionalization of chemical reactions and pseudo-steady state

Now we will perform a dimensional analysis of the equations of motion for a diffusiophoretic

particle. To do so, we restate the model for a diffusiophoretic particle coupled to a reaction-

diffusion equation

∂X

∂ t
= µd∇C+

√
2Dcξ (57)

∂C
∂ t

= Ds∇
2C+g(t)δ (r−r0) (58)
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assuming in the diffusion equation that the chemical source term is a point source located at r0.

We assume that the characteristic length of concentration gradients are on the order of L, the dis-

tance between probes, and that the characteristic speed of the particle set by the control algorithm

is v0. We seek to use dimensional analysis to find the characteristic concentration c∗ and the

characteristic reaction rate g∗.

Using the characteristic scales, we define dimensionless variables

t̃ =
tv0

L
, X̃ =

X

L
, C̃ =

C
C∗

, g̃ =
g
g∗

,

∇̃ = L∇, ξ̃ =

√
L
v0
ξ, δ̃ = Ld

δ

where d is the number of spatial dimensions, which in our present case is 2. Substituting these

equations into Equations (57) and (58) gives

∂X̃

∂ t̃
=

µdc∗

Lv0
∇̃C̃+

√
2Dc

v0L
ξ̃ (59)

v0L
Ds

∂C̃
∂ t̃

= ∇̃
2C̃+

g∗

Dsc∗
g̃(t̃)δ̃ . (60)

Setting the first dimensionless group to one in Equation (59) allows us to identify the characteristic

concentration

c∗ =
v0L
µd

, (61)

and the second dimensionless group contains the colloid Péclet number

Pec =
v0L
Dc

. (62)

The first dimensionless group in Equation (60) is a type of solute Péclet number with respect to

colloid motion

Pes =
v0L
Ds

, (63)

and setting the second group to one identifies the characteristic reaction rate scale

g∗ = Dsc∗ =
Dsv0L

µd
. (64)

If colloid motion is fast relative to both solute diffusion and colloid diffusion, the solute con-
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centration is at a pseudo-steady state and one may solve for the particle velocity. In this case, the

solute Péclet number is small, reducing Equation (60) to the Poisson equation

∇̃
2C̃ =−g̃(t̃)δ̃ (65)

and the colloid Péclet number is small, reducing Equation (59) to the drift velocity

∂X̃

∂ t̃
= ∇̃C̃ (66)

If g̃ changes slowly, then the solution to Equation (65) in 2D is well known43

C̃ =
−g̃(t̃)

2π
ln(r̃) (67)

to within an arbitrary constant with r̃ = ||r̃||. Substituting this into Equation (66) gives the drift

velocity
∂X̃

∂ t̃
=− g̃(t̃)

2π r̃2 r̃. (68)

This equation is directly analogous to Equation 55, but with q̃(t̃) replaced with g̃(t̃). Thus, when

the pseudo-steady-state assumption is met, we expect the behavior of the chemical controller to

resemble the behavior of the electric controller.

Finally, it is again convenient to use a reaction rate scale that will eliminate the factor of 2π .

Thus we define

gscale = 2πg∗ =
2πDsv0L

µd
. (69)
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11J. J. Juárez and M. A. Bevan, “Feedback controlled colloidal self-assembly,” Adv. Funct. Mater.

22, 3833–3839 (2012).
12M. A. Grover, D. J. Griffin, X. Tang, Y. Kim, and R. W. Rousseau, “Optimal feedback control

of batch self-assembly processes using dynamic programming,” J. Process Control 88, 32–42

39



(2020).
13R. Xie and X. Y. Liu, “Electrically directed on-chip reversible patterning of two-dimensional

tunable colloidal structures,” Adv. Funct. Mater. 18, 802–809 (2008).
14M. R. Jones, N. C. Seeman, and C. A. Mirkin, “Programmable materials and the nature of the

DNA bond,” Science 347, 1260901 (2015).
15S. Kunche, H. Yan, A. L. Calof, J. S. Lowengrub, and A. D. Lander, “Feedback, Lineages and

Self-Organizing Morphogenesis,” PLoS Comput. Biol. 12, e1004814 (2016).
16J. A. Paulson, A. Mesbah, X. Zhu, M. C. Molaro, and R. D. Braatz, “Control of self-assembly

in micro- and nano-scale systems,” J. Process Control 27, 38–49 (2015).
17C. Kaspar, B. J. Ravoo, W. G. van der Wiel, S. V. Wegner, and W. H. Pernice, “The rise of

intelligent matter,” Nature 594, 345–355 (2021).
18B. G. Van Ravensteijn, I. K. Voets, W. K. Kegel, and R. Eelkema, “Out-of-Equilibrium Colloidal

Assembly Driven by Chemical Reaction Networks,” Langmuir 36, 10639–10656 (2020).
19S. Joshi and D. Marla, “Electrochemical Micromachining,” in Comprehensive Materials Pro-

cessing, Vol. 11 (Elsevier, 2014) pp. 373–403.
20R. Kosloff, S. Rice, P. Gaspard, S. Tersigni, and D. Tannor, “Wavepacket dancing: Achieving

chemical selectivity by shaping light pulses,” Chem. Phys. 139, 201–220 (1989).
21C. Y. Jin, Z. Li, R. S. Williams, K.-C. Lee, and I. Park, “Localized Temperature and Chemical

Reaction Control in Nanoscale Space by Nanowire Array,” Nano Lett. 11, 4818–4825 (2011).
22L. R. Lechlitner and O. Annunziata, “Macromolecule Diffusiophoresis Induced by Concentra-

tion Gradients of Aqueous Osmolytes,” Langmuir 34, 9525–9531 (2018).
23B. M. Alessio, S. Shim, E. Mintah, A. Gupta, and H. A. Stone, “Diffusiophoresis and diffusioos-

mosis in tandem: Two-dimensional particle motion in the presence of multiple electrolytes,”

Phys. Rev. Fluid 6, 054201 (2021).
24K. Lee, J. Lee, D. Ha, M. Kim, and T. Kim, “Low-electric-potential-assisted diffusiophoresis

for continuous separation of nanoparticles on a chip,” Lab Chip 20, 2735–2747 (2020).
25S. Shim, “Diffusiophoresis, Diffusioosmosis, and Microfluidics: Surface-Flow-Driven Phenom-

ena in the Presence of Flow,” Chem. Rev. 122, 6986–7009 (2022).
26E. Camacho, C. Bordons, and C. Alba, Model Predictive Control, Advanced Textbooks in Con-

trol and Signal Processing (Springer London, 2004).
27I. Matei, S. Nelaturi, E. M. Chow, J. P. Lu, J. A. Bert, and L. S. Crawford, “Micro-Scale Chiplets

Position Control,” J. Microelectromech. Syst. 28, 643–655 (2019).

40



28J. Anderson, “Colloid Transport By Interfacial Forces,” Annu. Rev. Fluid Mech. 21, 61–99

(1989).
29K. D. Dorfman, D. Gupta, A. Jain, A. Muralidhar, and D. R. Tree, “Hydrodynamics of DNA

confined in nanoslits and nanochannels,” Eur. Phys. J. Spec. Top. 223, 3179–3200 (2014).
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