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The development of top-down active control over bottom-up colloidal assembly processes has the
potential to produce materials, surfaces, and objects with applications in a wide range of fields span-
ning from computing to materials science to biomedical engineering. In this review, we summarize
recent progress in the field using a taxonomy based on how active control is used to guide assembly.
We find there are three distinct scenarios: (1) overcoming path-dependence to reach a desirable equi-
librium state, (2) the creation of a desirable metastable, kinetically trapped, or kinetically arrested
state, and (3) the creation of a desirable far-from-equilibrium state through continuous energy input.
We review seminal works within this framework, provide a summary of important application areas,
and present a brief introduction to the fundamental concepts of control theory that are necessary
for the soft materials community to understand this literature. In addition, we outline current and
potential future applications of actively-controlled colloidal systems, and we highlight important open
questions and future directions.

1 Introduction
We define active control as the application of one or more time-
varying, top-down fields or forces—including electric forces,1,2

magnetic forces,1–3 acoustic forces,4–6 fluid flow,7,8 light,9,10

chemotactic forces,11 thermal forces,12 or combinations of
these13,14—that influence bottom-up colloidal assembly and orga-
nization processes. The potential to actively control colloidal as-
sembly processes has tremendous promise to create microscale
structures, coatings, and bulk materials that are dynamic, re-
sponsive, and programmable, as well as provide useful solutions
to difficult challenges with traditional equilibrium assembly pro-
cesses. There is already a wide range of practical applications
for actively controlled colloidal assembly, including metamate-
rial synthesis,15–20 semiconductor fabrication,21,22 and biologi-
cal and medical innovations.23–30 Indeed, actively controlled col-
loidal assemblies are a potentially paradigm-breaking technology
that could enable assemblies to mimic biological systems with the
ability to grow, heal, compute, move, and respond to stimuli.

Traditional approaches to colloidal self-assembly focus on
bottom-up processes that approach thermodynamic equilibrium.
These techniques exploit static interactions between (passive)
particles to give rise to emergent structural order. There are
many advantages of this approach, including inherent scalabil-
ity to large numbers of colloids and an intellectual framework
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that allows one to “program” assembly by using thermodynam-
ics to design particles that can assemble into desirable structures.
Despite these benefits, there are drawbacks to the equilibrium ap-
proach, such as assemblies that become kinetically trapped in un-
desirable states, lengthy equilibration times, and inherently static
structures.

Recently, bottom-up far-from-equilibrium self-organization
processes have received significant attention. These processes ex-
ploit continuous energy inputs (e.g., with “active” particles31–36)
to create organized structures that cannot be completely de-
scribed using equilibrium thermodynamics.37–39 There is signif-
icant enthusiasm about such systems, as it is believed that bio-
logical materials grow and differentiate via far-from-equilibrium
processes,40 suggesting that they have a vast and under-exploited
potential. An additional advantage over equilibrium assembly
processes is their ability to exhibit dynamic behavior. However,
non-equilibrium processes complicate the design and practical ex-
ecution of creating colloidal structures compared to equilibrium
methods. In particular, non-equilibrium systems experience de-
generacy and path-dependence, where a single initial state can
reach different final configurations via a time-dependent process.
This latter property makes non-equilibrium systems more difficult
to “program” and control.

Active control of colloidal assembly is an alternative paradigm
that proposes the use of top-down methods to control bottom-up
equilibrium self-assembly and non-equilibrium self-organization
processes.2,10,41,42 Active control has the potential to both im-
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prove self-assembly and self-organization processes and to pro-
vide assemblies with novel properties that are not possible with-
out external control. For example, active control may be used to
optimize equilibrium assembly processes that are slow to equili-
brate or become kinetically trapped. One recent demonstration
of this principle used time-varying (active) inputs of electric and
magnetic fields to drive time-dependent particle interactions and
form defect-free crystals.43–45

There are perhaps yet greater possibilities for controlling non-
equilibrium self-organization processes. These processes contain
degeneracy and path-dependence that complicate the dynamics,
but in turn these properties provide degrees of freedom that can
be readily manipulated using top-down control. Recent examples
exploiting these properties have led to rotating microgears,9 re-
configurable microrobot swarms,46 and “living crystals" that con-
tinuously break apart and reform.47 Accordingly, the marriage
of time-varying top-down manipulation with bottom-up assembly
processes is a powerful combination that potentially leads to scal-
able, real-time control of self-assembly and self-organization pro-
cesses.

Despite the promising progress, much work remains to realize
the full potential of adaptable, time-varying, or intelligent struc-
tures, surfaces, and materials. To aid in further progress, we
provide a critical review of the field with a focus on creating a
taxonomy that identifies the way in which active control is being
used to direct self-assembly or self-organization processes. In par-
ticular, we focus on three conceptually distinct situations where
active control is being used:

(I) System manipulation to achieve a desirable equilibrium re-
sult by either changing the location of the energy minimum
or escaping unwanted metastable states;

(II) Creation of a desirable metastable, kinetically trapped, or
kinetically arrested result by manipulating the shape of the
energy landscape;

(III) Creation of a desirable far-from-equilibrium result through
continuous energy input.

As shown in Figure 1, these situations are neatly summarized
by their relationship to the near-equilibrium concept of a kinetic
path on a free energy landscape.48,49 In situation (I) active con-
trol is used to change the position of the global minimum of
the free energy landscape to consistently reach a specific final
state (Figure 1a), or help the system more efficiently and con-
sistently reach the global minimum of the free energy landscape
(Figure 1b). The situation shown in Figure 1b is applicable when
slow kinetics prevent the system from reaching a desired equilib-
rium state within an experimentally accessible timescale.

In situation (II), shown in Figure 1c, control methods are used
to alter the kinetic path to trap the system at a desirable local
minimum in the free energy landscape. This is often seen in path-
dependent processes where multiple metastable states exist. The
desired states can be achieved either through a specific kinetic
path, such as different thermal processing times, or—if unde-
sirable metastable states are long-lived compared to the desired
one—by supplying extra energy to escape the arrested states.

Move Energy Minimum

Escape Kinetic Traps

Arrive at Arrested/Metastable State

Form Far-from-equilibrium Structures

Fr
ee

 E
n
er

g
y

Fr
ee

 E
n
er

g
y

Fr
ee

 E
n
er

g
y

Active control

Active 
control

Active 
control

(a)

(b)

(c)

(d)

Ac
tiv

e 
co

nt
ro

l

D
issip

a
tio

n
 o

f en
erg

y

A
d
d
it
io

n
 o

f 
en

er
g
y

D
issip

a
tio

n
 o

f en
erg

yA
d
d
it
io

n
 o

f 
en

er
g
y

Fig. 1 Distinct scenarios where active control is used to direct self-
assembly and self-organization processes categorized by their relationship
to a hypothetical free energy landscape. (a) Active control that moves
the energy minimum. (b) Active control changes the energy landscape to
arrive at equilibrium more quickly or with fewer defects. (c) Active control
that changes the energy landscape to create a useful near-equilibrium
structure. (d) Active control that selects one of several possible far-
from-equilibrium results.
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Situation (III) is far-from-equilibrium, and the free energy land-
scape no longer drives the system dynamics. Instead, as pictured
in Figure 1d, external energy inputs permit dissipative processes
to reach one of several possible steady states that are not nec-
essarily an energy minimum. Active control techniques can be
used to (1) bias the system towards a certain configuration, or
(2) guide the transition between different configurations.

In this review, we do not attempt to comprehensively survey
every paper that uses active control to assemble colloids. Instead,
we have selected examples using many top-down fields and forces
that will most clearly demonstrate to the soft matter community
the advantages of using active control. In addition to the review
we present here, there are several recent, excellent reviews that
discuss active control of colloidal assembly and organization pro-
cesses with different emphases. Tang and Grover50 focus on the
sensors, actuators, and control methods used for guiding colloidal
self-assembly. Harraq et al.1 and Liljestrom et al.2 focus on the
use of electric and magnetic fields to control assembly, and Van
Ravensteijn et al.11 review the use of chemical reactions to make
non-equilibrium states.

Finally, it is important to note that as an emerging field, nomen-
clature is sometimes a source of confusion, and at the outset
we seek to clarify a few concepts and terms. The time-varying
and (frequently) non-equilibrium nature of “active control” dis-
tinguishes it from the more limited paradigm of “directed self-
assembly”,42 which employs an unchanging template, field, or
force to alter the equilibrium state of assembly. Additionally, in
contrast to some others,1 we include externally-controlled fields
in our definition of the thermodynamic system, meaning a system
with a non-zero applied field can reach equilibrium. That is to say,
when the field is changed, the system must come to a new equi-
librium that is different from the no-field equilibrium. We prefer
the term “far-from-equilibrium assembly” to the term “dynamic
self-assembly” for self-organization processes that require contin-
uous energy input.2,37,40 Instead, we reserve the word “dynamic”
for systems that are physically moving, which includes many but
not all far-from-equilibrium results. While “programmable” as-
sembly is not the main focus of the review, its definition is often
ambiguous in the literature. We use it to denote cases where
user-supplied information (either contained within the material
or supplied by top-down methods) are used to achieve a de-
sired state.51 Finally, we typically refer to equilibrium and near-
equilibrium processes as “self-assembly” and far-from-equilibrium
processes as “self-organization.”52

With the above in mind, the review is organized as follows.
We discuss specific challenges to achieving active control of col-
loidal materials, and we review techniques that have been used to
overcome them in Section 2. In Section 3, we discuss Approach
(I), namely using active control to create a desired equilibrium
result, and in Sections 4 and 5, we discuss Approaches (II) and
(III), respectively. In Section 6, we discuss some of the possible
applications of colloidal system with active control. Finally, in
Section 7, we conclude with a discussion of the open questions
and possible future directions for the field.

2 Challenges and solutions to applying active con-
trol to colloids

The fundamental challenge to imposing top-down control on
bottom-up processes is the mismatch between length scales and
system sizes (i.e., number of colloidal particles in the system) be-
tween the two approaches. Top-down techniques use externally
controlled fields and forces to assemble individual materials and
objects. For example, laser-based optical tweezers are used to po-
sition micron- or sub-micron-scale objects such as cells or silica
beads relative to one another.53,54 Top-down techniques are ver-
satile and precise, but alone they cannot reach all length scales
of interest in a way that can be scaled to fabricate microscopic
structures.41 Bottom-up techniques deal with a complimentary
set of length scales (< 100 nm), but they do not have the same
versatility and precision as top-down methods.41

This fundamental reality translates into a number of specific
challenges when attempting to control the self-assembly or self-
organization of colloids. These include a general lack of real-time
sensors, stochastic nonlinear dynamics, high dimensionality, un-
intentional kinetic trapping, a lack of local actuators that leads
to underactuation, and, finally, a large design space that is dif-
ficult to explore systematically.55 Sensors, which include differ-
ent types of microscopes, are expensive and may not be available
for real-time measurements.50 Nonlinear dynamics make control
difficult because slight changes to parameters may cause abrupt
changes to the behavior of a system, and stochastic dynamics
make precision and consistency difficult to achieve. Colloidal
systems are high-dimensional when each particle is treated inde-
pendently, and this makes them difficult and expensive to model
without reducing the dimensionality of the system. Particles may
also get stuck in unintentional kinetic traps, which are hard to
characterize and model. Local actuators (meaning top-down in-
fluences that affect only a subset of the particles) for colloidal sys-
tems are rare and limited, and macroscopic global variables such
as temperature and composition may disrupt particles that have
already assembled. Finally, the design space of possible combi-
nations of building blocks, interactions, and top-down inputs to
apply is large and very difficult to explore systematically to gen-
erate useful results.

To solve these problems, researchers have used a combination
of techniques to measure, model, and manipulate colloids, in-
cluding (i) feedback control, (ii) model-based control, (iii) di-
mensionality reduction, and (iv) inverse design. In contrast to
open-loop control where a pre-designed control program is used
without any further measurements, feedback control refers to any
control method where measurements (e.g., positions of colloidal
particles) are used to make calculated adjustments to control in-
puts (e.g., top-down field to apply) that will guide the system to
a desired final state (e.g., high degree of crystallinity). Feedback
control can deal with the stochastic dynamics and kinetic traps
that are inherent to colloidal systems. In model-based control, a
dynamic model relates the control inputs to the measured val-
ues. Such model-based control strategies handle the nonlinear
dynamics and underactuation present in colloidal systems. How-
ever, a dynamic model that treats each measured particle position
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independently becomes unmanageably complex. To deal with
the “curse of dimensionality”, dimensionality reduction techniques
such as order parameters and machine learning may be used. Fi-
nally, identifying a result that can be achieved using the control
strategies previously mentioned is a difficult task in itself. Recent
“inverse design” principles, which use constrained optimization to
explore the design space and discover desirable results, have been
proposed as a solution to this problem.

In the remainder of this section, we review the basic principles
of (i)-(iv) that are relevant to colloidal assembly. Examples of
the techniques mentioned in this section will appear throughout
the rest of this review. One purpose of this section is to make
it easier for the reader to grasp these techniques so they may be
applied to new systems to create increasingly useful applications
in either equilibrium, near-equilibrium, and far-from-equilibrium
assembly processes.

2.1 Feedback and open-loop control

Control operations can be either open-loop, where a predesigned
control program is used without any measurements needed, or
closed-loop/feedback controlled, where measurements (position,
velocity, temperature, etc.) are used to guide assembly to a de-
sired final state. Open-loop strategies are typically used when
sensors are unavailable or expensive.56,57 However, they perform
poorly when knowledge of the system is incomplete or imperfect,
such as for the stochastic dynamics of colloidal self-assembly.

Feedback control can be used when sensors are available and is
generally more stable and robust than open-loop control. This is
important for colloidal systems because inherently stochastic dy-
namics mean repeated experiments can produce different results
even in the absence of noise.55 Historically, feedback control has
not been used to direct assembly at the length scale of colloids,
but recent advances in sensing and computation have allowed
feedback control to become a possibility.50 Accordingly, feedback
control has been used in equilibrium self-assembly to escape un-
wanted kinetic traps.45,58 It has also been used in far-from equi-
librium systems of active particles to mimic the group formation
and cohesion of biological systems.59,60

2.2 Model-free and model-based control

The nonlinear dynamics and underactuation present in colloidal
systems can be addressed using one of two general types of con-
trollers: model-free or model-based. Model-free controllers are
simpler to implement, but they do not perform as well and rely on
the existence of established heuristics. Model-based approaches
do not require preestablished heuristics to derive a control law,
but they are more complicated to produce, and in some cases
they rely on an online optimization step that is too slow to im-
plement in real time. This subsection is divided into three parts.
First we will discuss how model-free and model-based approaches
deal with the problems of nonlinear dynamics and underactua-
tion. Then we will present three models used in model-based con-
trol of colloidal systems. Finally, we will discuss two approaches
to implementing a controller in real time.

Nonlinear dynamics and underactuation are present in nearly

all colloidal systems.55 Nonlinear dynamics are difficult to control
because slight changes to parameters may cause extreme changes
to the behavior of a system. Standard control strategies are de-
rived by assuming they will be used on a linear or linearized sys-
tem, and so basic control techniques may not perform well on
highly nonlinear systems.61 Underactuation, which refers to the
inability to control the motion of individual particles, is also a
problem in colloidal systems. Since local actuators (or inputs that
influence only a subset of particles) are rare, control algorithms
must be written in terms of global properties such as temperature
and composition. Changing these global variables may disrupt
particles that have already assembled. To deal with nonlinear
dynamics and underactuation, a controller may take one of two
forms: model-free or model-based.

The most well-known model-free control method is
proportional-integral-derivative (PID) control.61 A PID con-
troller is a feedback controller that uses proportional, integral,
and derivative functions of the error, or difference between the
measured value of a variable and desired value of that variable,
to calculate control inputs to apply. PID control has been used
in several cases to guide equilibrium colloidal systems.44,62,63

For example, Gao and Lakerveld62 implemented a PID controller
that used dielectrophoresis to control the density of colloidal
particles in a microfluidic device. In this example the nonlinear
dynamics were dealt with using gain scheduling, where the
PID gains changed depending on the magnitude of the error.
Underactuation was dealt with using the heuristic that a stronger
field produced a higher density. When such heuristics can
be discovered, a PID controller with gain scheduling may be
effective. However, when such heuristics do not exist, a different
approach such as model-based control must be used.

Both the complicated nonlinear dynamics and the underactua-
tion present in colloidal systems can be dealt with using model-
based control.64 Model-based control deals with the nonlinear
dynamics by explicitly modeling them, for example by using a
force balance on individual particles. The dynamic model may be
physical, empirical, or data-driven (e.g., machine learning). The
dynamic model, written in terms of the global variables used as
inputs, is used to predict how a given input would affect the fu-
ture state of the system, and this information is incorporated into
the control algorithm. Optimization or machine learning is used
to discover the optimal control policy without having to rely on
human-supplied heuristics.65

Model-based strategies have already been used for control-
ling equilibrium self-assembly,12,57,66–69 or identifying and avoid-
ing unwanted kinetic traps.57,70 Model-based controllers may be
open-loop (i.e., they may not require real-time measurements), or
they may take advantage of feedback to improve consistency and
precision. In the following paragraphs we will introduce several
models that are commonly used, including Langevin equations,
Master equations, and machine learning models.

Langevin equations describe stochastic motion in continuous
systems.71 They are derived from Newton’s equation of motion
where the only forces affecting a particle are the drag force and
a random fluid force from solvent molecules.55 Models based on
Langevin equations have been used to direct continuous processes
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such as colloidal crystal assembly.12,67–69

Systems with a discrete number of possible states are modeled
by Master equations. A Master equation, also called a Markov
state model, is a set of differential equations that model the prob-
abilities of each state the system could occupy.72 The probabili-
ties are often calculated by averaging over many simulations.55

Master equations are well-suited for systems where the number
of states is small, such as modeling the number of crystals in a
droplet,66 or when the configuration space can be divided into
discrete sections.45 However, when the number of states becomes
large, Master equations become computationally intractable.12,56

In addition to physical models, both discrete and continuous
processes may be modeled using machine learning. Machine
learning is useful when large data sets exist for training. How-
ever, models based on machine learning may give results that are
difficult to accurately interpret. Machine learning has been used
to model both equilibrium73–76 and non-equilibrium48,77 assem-
bly. A review of applying machine learning to soft materials engi-
neering, including colloidal self-assembly, is given by Ferguson.78

Applying model-based control to colloidal assembly creates a
new problem: the controller may be too slow to perform in real
time. For example, this has occurred in research using model
predictive control.45,79 This drawback can be overcome using dy-
namic programming. Dynamic programming is a technique in
which the optimal control problem is broken into smaller sub-
problems. The solution to each sub-problem can then be stored
and used to reduce the computation time for future calls to the
controller.79 Dynamic programming has been used to speed up
the control of colloidal assembly by computing the control pol-
icy offline and implementing it as a look-up table that is quickly
accessed in real time.45

Finally, instead of creating a dynamic model and implementing
it using dynamic programming, the modeling step can be skipped
completely using a machine learning technique called reinforce-
ment learning. Reinforcement learning is not model-based con-
trol as described above because it does not model the dynam-
ics of a system. However, it accomplishes the same purpose as
model-based control by relating the state of a system to the op-
timal control inputs. In reinforcement learning, the control pol-
icy is learned directly from the experiment by using trial and er-
ror to maximize a reward function. Reinforcement learning has
been used to find the optimal control policy to guide crystal for-
mation using an electric field12,80,81 and in simulations to guide
patchy particles to assemble into a particular polymorph.82 Rein-
forcement learning does not require the derivation of a dynamic
model, which is useful if the dynamics are difficult to model or
if the dynamics drift over time.45 However, the drawback is that
a controller that uses reinforcement learning takes large amounts
of data to train.

2.3 Dimensionality reduction

Modeling and controlling self-assembly are difficult when the
measured data is high-dimensional. For example, a colloidal crys-
tal is composed of thousands of individual particles whose posi-
tions can be tracked by a visual sensor. Individually controlling

the motion of each of the colloidal particles would be extremely
difficult. Instead, control algorithms have been made to track ag-
gregate variables formed from the position data, such as the de-
gree of crystallinity.12,44,69,80 In other words, information from
the high-dimensional data is condensed into a tractably small set
of parameters that describe the phenomenon of interest. Aggre-
gate variables can be identified using physically meaningful order
parameters and/or using empirical descriptors identified by ma-
chine learning.

Order parameters are a concept from thermodynamics used
to characterize phase transitions, where a physically measurable
variable goes from zero in one phase to nonzero in another. Or-
der parameters are often used to characterize phase transitions
in simulations,83 and they have also been used to guide the cre-
ation of colloidal crystals in studies where the individual colloids
were large enough to be tracked by microscopy.44,49,80 Stochas-
tic models such as Langevin-based models and Master equations
can be modified to model how the order parameters change with
time.69,80 For example, two common order parameters are the
radius of gyration to identify condensed phases and the number
of hexagonally close packed neighbors to capture degree of crys-
tallinity.12,44,49,69,80

Original Set Embedding

Fig. 2 A diffusion map is used to embed data collected in a noisy helix
pattern in three dimensions (left), where the changing color represents
the passing of time, into a two-dimensional space (right). Adapted from
Reference 84 with permission from Elsevier.

Machine learning can also be used to reduce the dimensionality
of data without relying on physically measurable variables. Many
machine learning techniques exist, including linear methods, such
as principal component analysis, and nonlinear methods, such
as manifold learning.76,78,85 In colloidal assembly the current
state-of-the-art technique for reducing high-dimensional data is
a nonlinear technique called a diffusion map,12,48,69,78,86,87 il-
lustrated in Figure 2. A diffusion map is a technique introduced
by Coifman and Lafon84 to embed high-dimensional data onto
a low-dimensional geometric space. The embeddings are com-
puted using eigenvectors and eigenvalues of a diffusion opera-
tor on the data, and when only the largest eigenvalues are used,
the data can be described using a reduced number of dimen-
sions. For example, in Figure 2, the original three-dimensional
data is plotted on the left, with color representing time, and
the same data embedded into a diffusion map of only two di-
mensions is plotted on the right. The largest eigenvalues of
the diffusion operator are empirical descriptors that can be used
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as convenient aggregate variables. In some situations it is pos-
sible to relate the empirical descriptors identified by a diffu-
sion map to physically meaningful order parameters,12,69,75 but
this is not always possible.75 Diffusion maps have been used to
guide both equilibrium self-assembly12,69 and non-equilibrium
self-organization48,86 processes.

2.4 Forward and inverse design

In forward design, a researcher creates building blocks, observes
them organize into a structure, and then measures the proper-
ties of the resulting structure. By synthesizing many different re-
sults, a researcher may identify heuristics for creating structures
with desirable properties. However, the design space for potential
structures is immense and slow to explore systematically. Adding
time-varying active control adds another dimension to the for-
ward design space, making it even larger.

By contrast, in inverse design,74,77,88–94 a researcher specifies
desirable properties, then uses optimization algorithms89,90,92

and machine learning74,77 to identify the structure and building
blocks that will produce those properties. Inverse design greatly
speeds up the discovery of useful structures. However, the in-
verse problem is generally much more difficult to solve than the
forward problem.

Recent reviews of inverse design strategies have been given by
Sherman et al.88 and by Dijkstra and Luijten.74 In general, in-
verse design involves identifying a figure of merit, then using
constrained optimization to navigate the design space of possi-
ble colloidal systems and determining the building blocks, inter-
actions, and combination of external inputs that will score the
highest on that figure of merit. This requires a model of the de-
sign space, which is currently lacking for many non-equilibrium
processes. However, new non-equilibrium theories, methods, and
models are quickly being developed.77,89,92,95,96

3 Controlled equilibrium systems

In this section, we review approaches to control equilibrium self-
assembly. Recall that we choose to include externally-controlled
fields in our definition of the thermodynamic system. That is to
say, when an external field is applied, the system will come to a
new equilibrium that is different from the no-field equilibrium.
Any sudden change to a system, including the application of a
top-down input, temporarily drives a system away from equilib-
rium. In this section, we consider cases where this input is used
to produce an equilibrium (minimum free energy) configuration.

Accordingly, we consider here cases where an external fields is
applied for one of the two reasons: (1) to actively modify the en-
ergy minimum to follow a changing set-point (Figure 1a), or (2)
to escape kinetics traps/kinetic arrest and arrive at equilibrium
(i.e., the global minimum in free energy) faster (Figure 1b). A
good example of the former is the use of external fields to mod-
ulate structural color in dynamic color-change materials.97–99 An
example of the latter is escaping kinetic traps by using tempera-
ture or electric/magnetic fields to produce defect-free crystals.45

3.1 Active manipulation of the equilibrium state

Active control of an external field can be used to manipulate the
free energy minimum of a system. This is because an energy land-
scape may be a function of global parameters, such as tempera-
ture and electric/magnetic fields, and changing these parameters
moves the energy minimum to create a new equilibrium state.
Active control may be used to switch a material between two
distinct phases, potentially providing a mechanism for reconfig-
urable materials100 or actuation in soft robotics.101 Alternatively,
active control may be used to actively tune the properties of a
material, which could be used for dynamic metamaterials appli-
cations such as adaptive camouflage.

The simplest case is to use top-down control to switch a col-
loidal system between two phases. For example, a system may
be switched from a disordered fluid to an ordered crystalline
phase using temperature,83,100 pH,102 voltage,103,104 light,105

or acoustic waves.39 Top-down control has also been used to
switch between crystal structures with different optical proper-
ties,106 between glasses and crystals,107 and between a disor-
dered fluid and microtubes.108 The control method in these ex-
amples is a simple open-loop on/off switching. One could argue
that with such a simple control law, these systems may be clas-
sified as directed self-assembly without active control. Indeed,
this is reasonable, and we see the traditional paradigm of di-
rected self-assembly as the base case of active control. More ad-
vanced systems, such as reconfigurable materials, will build on
this base case and require active control beyond simple on/off
switching.100

Fig. 3 Superparamagnetic crystals of colloidal magnetite changed color
as a permanent magnet was moved closer (right to left). The diffraction
peaks of the crystals are also shown as the distance from the magnet was
decreased (right to left) from 3.7 to 2.0 cm with a step size of 0.1 cm.
Adapted from Reference 97 with permission from Wiley.
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Model-free open-loop control beyond simple on/off switching
has also been used to dynamically tune the optical properties
of colloidal materials.97–99,109 The classic example of a mate-
rial with dynamically tunable properties was given by Ge et al.97

and is shown in Figure 3. Ge et al. tuned the band gap of pho-
tonic crystals made of superparamagnetic colloidal magnetite by
changing the strength of a magnetic field. Applying the magnetic
field made the magnetite particles self-assemble into crystals. As
the strength of the applied magnetic field was increased, the equi-
librium lattice spacing of the crystals decreased, and this changed
the reflection spectra of the crystals so that the color of the mix-
ture shifted from red to blue, as shown in the top panel of Fig-
ure 3. This color change was also completely reversible. More
broadly, structural color change is an ongoing active area of re-
search,110 and so far it has only required open-loop control. This
is because crystals are typically large enough that defects created
by the stochasticity of colloids do not significantly affect the op-
tical properties. We anticipate that future color-change materi-
als that exploit smaller-scale crystals may require more advanced
control methods. If so, feedback control is an attractive solution
because color changes can be sensed without a microscope.

Fig. 4 A quadrupole electrode patterned on a microscope slide (a) created
an AC electric field that caused silica particles to assemble into a crystal
(b). A frequency of 1MHz created an energy maximum in the center (c),
while a frequency of 0.1MHz created an energy minimum in the center
(d) and caused a controlled disassembly of the crystal. Adapted from
Reference 44 with permission from Wiley.

Feedback control has been applied to manipulate the equilib-
rium state of a colloidal assembly for other applications using a
microscope as a sensor and electrodes as the control inputs. The
first example of feedback-controlled colloidal self-assembly was
created by Juarez and Bevan,44 who used an electric field to cre-
ate a two-dimensional crystal, as shown in Figure 4. They used
microelectrodes patterned onto a microscope slide (Figure 4a) to
create an alternating current (AC) electric field and manipulate
silica particles suspended in fluid. When the AC field was turned
on at a high frequency of 1 MHz, particles moved toward the cen-

ter of the four electrodes (Figure 4b) due to a potential energy
minimum (Figure 4c) created by the electric field. A digital cam-
era and optical microscope tracked particle positions to compute
an order parameter representing the degree of crystallinity. Using
the heuristic that a higher field strength increased the value of
the order parameter, a proportional feedback controller was con-
structed to move the order parameter to a set point by changing
the voltage of the field. Furthermore, the authors demonstrated
the ability to partially disassemble the crystal by lowering the fre-
quency of the AC field to 0.1 MHz and create an energy maxi-
mum (Figure 4d), which could be used to repair defects through
partial disassembly and reassembly. More examples of switching
between fields to create better crystals and further innovations on
this system will be given in the following section.

In addition to the above examples of global actuation, re-
searchers have also developed local actuators using light,105 fluid
flows,8,111 and electric fields56,62,63 to create precisely defined
colloidal structures. For example, an algorithm was designed by
Solis et al.112,113 to place time-varying point charges to control
the positioning of nanoparticles. This method was later adapted
to use AC electrodes and implemented experimentally by Gao and
Lakerveld63 to create lines of particles, as shown in Figure 5. Us-
ing electrodes made of indium tin oxide (ITO) patterned with
photoresist stripes, silica particles were directed into a line. With
a series of steps in which the voltage and frequency of the elec-
trodes were modulated with time, the electric field moved the
particles onto the photoresist stripes, and PI feedback control was
used to ensure that the lines were only one particle thick. In
further work, they first improved their methods by implement-
ing a gain-scheduling PID controller62 and then a model-based
open-loop controller.56 The latter method is particularly effective,
because it eliminates the need for experimentally laborious real-
time observation. Their control methods proved to be successful
for aligning colloidal silica particles, but there are challenges in
scaling such methods with local actuators to larger numbers of
particles. This drawback, as well as the fact that few methods of
local actuation have been developed, means that assembly using
local actuators has not yet been widely explored.

Of the scenarios outlined in Figure 1, active manipulation of
the equilibrium state is likely the most mature approach. Much
of the literature is an extension of concepts from directed self-
assembly and uses global actuation with relatively simple control
methods such as on/off or PID control. As noted, there are some
examples of local actuation and (open-loop) model-based control,
but the focus on manipulating the equilibrium landscape makes
it unlikely that these approaches will play a large role. Instead,
promising avenues for future research may lie in greater use of
feedback control. For example, several authors have suggested
that feedback control could potentially be used to fabricate meta-
materials with dynamically tunable properties.44,68,114,115

3.2 Faster and defect-free equilibrium states

Perfect crystals or otherwise defect-free equilibrium states are of-
ten necessary for creating desirable materials, such as metamate-
rials with the novel properties mentioned in other sections.45,116
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Fig. 5 Silica particles were aligned using AC electrodes made of ITO and
patterned with stripes of photoresist. A feedback controller was used to
change the electrode voltage and frequency to move the silica particles
onto the photoresist stripes in a defect-free line. Adapted from Reference
63 with permission.

However, during the process of equilibration, it is easy to get ki-
netically trapped in an imperfect or disordered arrangement of
particles. Top-down control can be used to bypass kinetic bot-
tlenecks and avoid common metastable phases to quickly reach
defect-free equilibrium phases, including those that are some-
times otherwise unreachable. We focus here on cases that reach
equilibrium; studies that used active control to arrest at a desir-
able metastable state will be discussed in the following section.

Defect-free equilibrium states have traditionally been made us-
ing an open-loop control process called annealing. Thermal an-
nealing is a process where a crystalline solid is heated to a speci-
fied temperature and then allowed to cool slowly. This gives de-
fects and internal stresses the energy to escape kinetically trapped
states and relax to equilibrium.117 Other types of annealing also
exist in soft matter systems. For example, in solvent annealing a
solvent is added and then slowly evaporated off. Similar to ther-
mal annealing, the solvent allows the system to overcome energy
barriers and escape disordered metastable states.118

Like annealing, open-loop cycling of external fields has been
used to avoid kinetic arrest in colloidal crystals.119–123 Swan et
al.119 studied paramagnetic latex particles that formed chains
that aggregated laterally and kinetically arrested in a steady mag-
netic field. However, toggling the magnetic field on and off at the
correct frequency caused the chains to escape the kinetically ar-
rested state and arrive at an equilibrium crystal state that was
otherwise inaccessible. This and other simple open-loop con-
trol cases120–123 illustrate the point that top-down control can
be used to reach defect-free equilibrium states by leveraging al-
ternate dynamic pathways.

In cases where open-loop control is insufficient, feedback con-
trol can be used to give more precise and consistent results. For
example, model-based feedback control was used to improve the
micropatterned electrode system for assembling SiO2 particles
into 2D crystals that was introduced in the previous section (see
Figure 4).67,68,80 As before, defect-free crystals were created by
imposing an electric field, but in Ref. 68 Tang et al. show that

switching electrodes between different voltages modifies the en-
ergy landscape and enables the system to avoid kinetic traps. The
Master equation-based controller was implemented with dynamic
programming to drive the system rapidly to a high degree of crys-
tallinity with a 98% success rate compared to a 60% success rate
for uncontrolled crystallization (defined as the number of crystals
that achieved perfect ordering in 1000 seconds, see also Ref. 80
for related simulations).

These feedback control methods worked well for 2D crystals
with relatively small numbers of particles. While possible, it takes
more sophisticated methods to track individual particles and sim-
ilarly manipulate a 3D system. Instead, feedback control can be
used in conjunction with sensors that track aggregate variables
(e.g., order parameters) that are easier to observe. For exam-
ple, Griffin et al.73 used crystal mass and the number of crystals
as aggregate variables to control molecular crystallization using
temperature. A similar strategy could potentially be applied to
3D colloid crystallization if better sensors are developed to track
order parameters without the need to directly measure the posi-
tions of individual particles.

In summary, open-loop, feedback, model-free, and model-
based control have all been used to guide equilibrium colloidal
assembly. Open-loop control is an option when sensors are not
available or prohibitively expensive. When sensors are available,
feedback control provides increased consistency and precision to
the final result. Model-free control works well when heuristics
can be used to relate global variables such as temperature or
magnetic field to the behavior of the system. Model-based con-
trol does not require the use of human-created heuristics, but it
is difficult to implement on new systems. One of the challenges
for applying the model-based control methodology given in the
previous examples to new systems is that it can be difficult to
construct a model, even when basing it on Langevin equations or
Master equations. In these situations, if plentiful data is available,
machine learning can be used to construct the dynamic model.45

4 Near-equilibrium systems
As mentioned previously, a system can be trapped in a local min-
imum of the free energy landscape due to a sufficiently large en-
ergy barrier.83,124,125 In this situation, the system is kinetically
trapped in a metastable state. It is also possible that—although
it is not in an energy minimum—the kinetics are slow enough
that a system stays in an arrested state within any reasonable
experimental timescale, as may occur with colloidal glasses and
gels. We refer to a system in this situation as being in a kineti-
cally arrested state. Together, metastable and kinetically arrested
states may be categorized as “near-equilibrium” states because
they can be understood using equilibrium concepts such as free
energy landscapes.

In practice, it can be difficult to distinguish if a physical system
is trapped in an energy barrier or is simply in a region of kinetic
arrest. Thus we will instead organize our discussion around two
other interesting features of both types of near-equilibrium sys-
tems: path-dependence and degeneracy. Path-dependence means
that because the system fails to reach equilibrium, the properties
of a colloidal assembly depend on the processing history to which
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the system is subjected. From an energy landscape perspective,
this means that (even for a fixed landscape) processing can be
used to place a system in a local energy minimum124 or to lead a
system through a region of kinetic arrest.126 Degeneracy implies
that multiple persistent configurations exist, and that it is possible
to switch between them. Usually, degeneracy occurs when there
is a “rough” energy landscape with multiple metastable states of
similar free energy. In the following subsections we provide ex-
amples of how active control can exploit degeneracy and path-
dependence to achieve useful non-equilibrium states.

4.1 Process history dependence

A desired non-equilibrium configuration can be created by care-
fully controlling its processing history. The most common way to
process a colloidal assembly is through quenching or annealing,
where temperature (or another global state parameter) is used to
navigate the energy landscape to either pass by or to kinetically
arrest in a state of interest.116,117 Alternatively, if several local
free energy minima are possible, external fields or forces may be
used during processing to change the free energy landscape with
time to direct the system towards a targeted energy minimum.57

Colloidal glasses and gels are two well-known examples of
near-equilibrium systems that are created by controlling process-
ing history.127,128 Both glasses and gels exhibit path-dependence.
For example, a glass—a kinetically-arrested state—can be formed
by rapidly changing the temperature, whereas a more gradual
temperature change can lead to crystal formation even though
the final temperature can be the same in both cases. In the jar-
gon of control theory, quenching is one of the simplest examples
of model-free open-loop control. While the use of more complex
control techniques may be important in the future, so far, the use
of active control to achieve metastable/kinetically arrested states
has mostly been open-loop and empirically driven, as seen in the
following examples.

One area of recent interest has been an investigation beyond
traditional single-step temperature quenches to more complex
multi-step thermal profiles.126,129–132 This strategy has been used
to make gels that are more resistant to aging,129 to create hier-
archically structured materials,130 and to synthesize multicom-
ponent gels with applications in photonics and drug delivery.126

In one illustrative example, Di Michele et al.126 subjected gel-
forming DNA-coated colloids to a two-step temperature profile
with an intermediate temperature of variable length before a fi-
nal quench. They found that the two-step procedure led to a dif-
ferent gel microstructure than the traditional single-step quench,
and that varying the holding time of the intermediate temper-
ature led to materials with tunable properties. Cheng et al.129

used a similar two-step temperature profile on a nanoemulsion
gel and found that it was more resistant to aging. Immink et
al.131 also investigated multi-step temperature profiles of a ther-
moresponsive microgel made of two different types of particles
(i.e., a binary microgel or bigel). As shown in the confocal mi-
crographs in Fig. 6, the microstructures of these bigels are also
sensitive to their thermal history. Immink et al. found that a slow,
two-step temperature profile (Fig. 6a) produced a “core-shell” gel

structure with a single-component scaffold onto which the second
component condensed. By contrast, faster quenches (Fig. 6b-c)
resulted in a gel without the core-shell structure and with a thin-
ner network mesh. The gels also differed significantly in their
mechanical properties.

(a)

(b)

(c)

Fig. 6 A binary microgel composed of a mixture of cross-
linked poly-N-isopropylacrylamide (pNIPAm) particles and poly-N-
isopropylmethacrylamide (pNIPMAm) particles that forms different mi-
crostructures depending on the temperature history. In part (a), the
mixture was held at an intermediate temperature and heated very slowly
(60 minutes); in part (b) the temperature was heated quickly (2 min-
utes), and in part (c) the temperature change was near instantaneous.
Additional experimental details are found in Ref. 131. Adapted from Ref.
131 under an ACS AuthorChoice License.

Toggling schemes have also been used to achieve path-
dependent near-equilibrium structures. In Section 3, we dis-
cussed how toggling a magnetic field on and off at a given
frequency can be used to approach the equilibrium state more
quickly.121 In further simulation and experimental work, Sher-
man and Swan,121,122 and Kim et al.123 showed that toggling
fields can also be used to access and stabilize metastable states.
Note that persistent toggling is a form of continuous energy input,
technically making this a case of far-from-equilibrium assembly.
However, Sherman and Swan showed that if instantaneous quan-
tities are replaced by their time averages, the behavior can be
explained using concepts from near-equilibrium thermodynam-
ics.121,122

In Ref. 121, Sherman and Swan performed simulations in
which interparticle attractions (a proxy for a magnetic field) were
toggled on and off at different frequencies. In Figure 7, they show
that (i) metastable phases that are short-lived in a steady field can
become long-lived in a toggled field, and (ii) that field-toggling
can be used to control the final state. Principle (i) is demon-
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strated in the bottom right panel of Figure 7 where a metastable
liquid-liquid coexistence becomes long-lived when the toggling
frequency is low. Switching to a higher frequency, the system
crystallizes (top right and top left), which is a lower free-energy
state. The system remains crystallized when the frequency is low-
ered again (bottom left), demonstrating principle (ii). Sherman
and Swan122 later extended their simulation work to show stabi-
lization of additional crystal structures. Finally, Kim et al.123 per-
formed experiments mirroring the system of Sherman and Swan.
They used a toggled magnetic field to extend the phase diagram
to include more nonequilibrium states, and they demonstrated
experimentally that a toggled field can be used to consistently ar-
rive at different near-equilibrium states by taking advantage of
different kinetic pathways.

Fig. 7 Simulations of colloidal assembly in a toggled magnetic field
demonstrating pathway dependence. Liquid-liquid coexistence is ob-
served at low-frequency (bottom right). When the frequency is increased
(top-right and then top-left) the system crystallizes. When the frequency
is subsequently decreased (bottom-left), the system remains crystalline.
Reprinted with permission from Ref. 121. Copyright 2016 American
Chemical Society.

In principle, more complex control methods such as feedback
control can also be used to create a desired non-equilibrium state.
For example, in the previous section we discussed how feedback
can be used to avoid kinetic traps.58 Several authors have sug-
gested that the reverse is also possible: feedback control can be
used to modify the energy landscape to ensure that the system
arrives at a desired kinetically trapped state.45,133 However, to
the best of our knowledge, to date this idea remains untested in
colloidal systems.

4.2 Switching between multiple end-states
In some systems with multiple energy minima, it is possible to use
active control to reversibly switch between states. Alternatively,
if the energy barrier is low enough that the system switches spon-
taneously, active control can be used to raise the energy barrier
to trap the system in one of the states. A non-colloids example
of switching between multiple end-states is the well-established
technology of phase-change materials, which were used, for ex-
ample, in the 1990s to create re-writable optical disks.134 These
phase-change materials used heat-quench cycles around the glass
transition to create crystalline and glassy bits on the disk to record
information. A similar principle can also be applied to switchable
colloidal materials.135

Active control can be used to modify the energy landscape of
a system to switch between metastable states. An example of
a switchable colloidal optical material was given by Stratford et
al.136 They performed simulations of colloidal particles mixed
with liquid crystals that formed multiple metastable states that
could be switched between using a magnetic or electric field.
Switching between metastable states with different optical prop-
erties could be used for applications such as e-paper. Another
example of a colloidal material with switchable states was given
by Bharti et al.14 Using particles that were subject to both a mag-
netic field and an AC electric field, they created metastable inter-
mediates (networks, bidirectional chains, and 2D crystals) that
led to the formation of networks with different properties. Bharti
et al. conclude that their strategy of using multiple types of fields
is useful for controlling the density and stiffness of colloidal gels,
which could lead to materials with adaptive properties.

Fig. 8 Spontaneous switching between two configurations of a digital
colloid tetramer. Reconfigurable digital colloids have been suggested
as a method of memory storage in unusual computing environments.
Reprinted from Reference 137, with permission.

Active control can also be used to raise an energy barrier to
trap a system so that it cannot switch spontaneously. One partic-
ularly interesting example of this principle are “digital colloids”
that were created by Phillips et al.137 Digital colloids are col-
loidal clusters that can switch between discrete microstates due to
thermal fluctuations, with the possibility to use external control
to “lock” the state in place. They have potential applications as
high-density information storage or computing elements.137 The
simplest example is a chiral tetrahedral structure made of five col-
loidal particles, shown in Figure 8. This structure was observed to
switch from one chiral configuration to its mirror image, as illus-
trated from left to right on the figure, thus acting as a binary ma-
terial capable of storing one bit of information. These two states
are energetically equivalent, but the energy barrier between them
is low enough that spontaneous switching can occur. Phillips et
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al.137 suggested that an external control such as an electric field,
change in temperature, or change in solvent concentration could
be used to raise the energy barrier and lock the structure in place.

Due to the nature of switchable states, simple open-loop con-
trol techniques such as on/off switching and step-wise tuning
are likely all that is required to produce and switch between the
states. However, model-based approaches can give insights into
discovering new metastable states through inverse design.77,89

For example, Nguyen and Vaikuntanathan made a general model
that relates a given non-equilibrium configuration of particles to
the chemical potential of the monomers that will produce it. This
type of model could be used as a starting place to designing pro-
cesses that will produce a desired kinetically trapped structure.95

5 Far-from-equilibrium systems
In far-from-equilibrium systems, continuous energy input and
dissipation allows particles to self-organize into ordered states
that may be either stationary or dynamic. Note that dynamic
assemblies are a unique attribute of far-from-equilibrium sys-
tems that are not possible in the previous categories. Far-from-
equilibrium systems have potential applications as responsive ma-
terials,47 nano/micromachines,9,10 and they offer opportunities
for researching and understanding the mechanisms behind bio-
logical swarms and other biomimetic technologies.11,46

By definition, far-from-equilibrium systems cannot be fully de-
scribed by thermodynamic concepts such as a free energy land-
scape, which makes it difficult to control such systems using
approaches developed for equilibrium or near-equilibrium pro-
cesses. To date, general theories of far-from-equilibrium assembly
are an extremely active area of research, but there has yet to be a
consensus on the best approach.95,138,139 The lack of general the-
ories makes applying model-based control to far-from-equilibrium
systems challenging, and so far, most of the control techniques
that have been applied to these systems have been open-loop and
empirically determined. However, one can say at least two things.
First, while it may be possible to define a (time-dependent) en-
ergy landscape, doing so does not give useful insight into the or-
ganized state of the system. Indeed, one may take this observa-
tion as a distinguishing feature of a far-from-equilibrium process.
Second, similar to near-equilibrium systems, far-from-equilibrium
colloidal assemblies also exhibit path-dependence and degener-
acy. Accordingly, as before, actively controlling external forces
that vary in both space and time can be used to achieve a desired
stationary or dynamic state. Additionally, active control can be
used to switch between two or more states that exist at different
values of an external field.

5.1 Processing history dependence

In a situation similar to kinetic trapping, far-from-equilibrium sys-
tems can also be caught in a specific final state that depends on
their processing history. This is accomplished using spatially-
or temporally-varying external fields or forces. In one partic-
ularly interesting manifestation of this phenomenon, top-down
locally-applied forces are used to assemble far-from-equilibrium
micromachines that persist even after the top-down forces are re-

moved.9,10 Thus, even though multiple configurations are possi-
ble, processing leaves the structure “trapped" so that it is unable
to switch to a different configuration.

Fig. 9 Micromachines assembled from Janus particles made of a pho-
toactive hematite cube attached to an inert polymer bead. Optical traps
focused on an area caused beads to assemble into a structure that de-
pended on the optical trap template and that persisted even after the
lasers were turned off. First column: chiral machines rotate in a fixed
direction. Second column: centrosymmetric machines rotate by sponta-
neous symmetry breaking. Third column: axisymmetric machines have
translational motion. Fourth column: hybrid machines have the active
particles assemble around passive spheres. Adapted with permission from
Ref. 10 under a CC BY 4.0 license.

A specific example of using local actuation to create history de-
pendence in a far-from-equilibrium system was given by Aubret et
al.9,10 and is shown in Figure 9. They used Janus particles, made
of photoactive hematite cubes attached to inert polymer beads,
that were activated under illumination. When uniformly illumi-
nated, the particles exhibited random, self-propelled motion that
is expected for active Janus particles. However, when a laser was
focused on an area, a group of seven particles self-assembled into
a rotating microgear.9 The microgear persisted with a speed of
rotation determined by the light intensity even after the laser was
turned off as long as there was uniform light illumination. Notice
the interaction between active control and history dependence;
temporary laser illumination directed assembly towards a stable
and steady microgear state rather than active Brownian motion
or other more complex states.

This work was extended beyond microgears in Ref. 10 to in-
clude more complex micromachines using different optical trap
(laser) patterns, as shown in Figure 9. Micromachines included
chiral and centrosymmetric machines that rotated in a fixed di-
rection, axisymmetric machines with translational motion, and
hybrid machines made from a combination of active and passive
particles. As with the microgears, these micromachines were as-
sembled from active particles that were uniformly illuminated.
When a templated pattern of optical traps was shined on a re-
gion of particles, they assembled into a micromachine dictated by
the optical template which persisted even after the optical traps
were turned off. However, when a new optical trap template was
applied, the micromachines reorganized into a different shape.
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These findings suggest that highly controllable time-dependent
dynamics are possible, and they point towards the possibility of
developing shape-shifting materials.

Another example of history dependence was given by Grotsch
et al.140 They used gold and iron oxide nanoparticles functional-
ized with DNA that assembled when an organic fuel was present.
In these experiments, adding a large amount of fuel all at once
produced a kinetically trapped assembly that did not disassem-
ble for several weeks. However, adding the same amount of fuel
in smaller quantities over time produced a temporary structure
that persisted when the fuel was present, but fell apart once the
fuel was depleted. Similar to the previous example, this experi-
ment reiterates the principle that self-organization of a far-from-
equilibrium system is not necessarily reversible, even when the
external energy source or fuel is removed. This is an impor-
tant point to keep in mind when designing a controller for sit-
uations in which it is desirable to switch between multiple far-
from-equilibrium states, as discussed in the following section.

Far-from-equilibrium self-assembly already offers a huge field
of possibilities, and applying active control broadens the field
even more. Because the results of active control and path his-
tory are not always intuitive, we postulate that inverse design al-
gorithms that use optimization and machine learning to navigate
the design space more effectively could greatly accelerate the dis-
covery of interesting far-from-equilibrium results. Inverse design
principles have been applied to non-equilibrium self-assembly in
situations where modeling strategies exist,77,89,93 but new theo-
ries and models must be developed for far-from-equilibrium sys-
tems before these strategies will reach their full potential.

5.2 Switching between far-from-equilibrium states

Analogous to the scenario in Section 3 on equilibrium assembly,
far-from-equilibrium systems may self-organize into different con-
figurations depending on the external field applied. Active control
may then be used to switch between these configurations.

There are several examples in the literature where external
fields and forces have been used to switch far-from-equilibrium
colloidal systems between different modes of behavior.46,141–145

Zhang et al.145 investigated how Quincke rollers formed differ-
ent patterns in different on and off pulse times, including flocks,
clusters, vortices, and lattices with different lattice constants. Xie
et al.46 studied a swarm of magnetic colloidal particles that cre-
ated different formations by adjusting the direction and frequency
of a rotating magnetic field. The formations included an evenly
distributed "liquid", a line of particles called a “chain", an aggre-
gated swarm called a “vortex", and synchronized lines or “rib-
bons". Yan et al.141 examined the behavior of Janus spheres, silica
half-coated in a metal, that assembled in an alternating current
(AC) electric field. As shown in Figure 10, switching the field fre-
quency led to different configurations including swarms, chains,
and clusters. As we detail below, this type of switchable behavior
could be used to create microrobots, for example as agents for
drug delivery.

External fields or forces may also be used to control chemi-
cal reactions kinetics in a way that allows a system to switch be-

Fig. 10 Janus spheres assembled into different configurations as the fre-
quency of an AC field is varied. The states were labeled gas, swarms,
chains, and clusters. Adapted with permission from Reference 141.
Copyright 2016 Springer Nature.

tween far-from-equilibrium states.47,142,146 An example of this
was demonstrated by Singh et al.146 and is illustrated in Fig-
ure 11. They studied a binary system composed of passive par-
ticles and Janus particles that self-propelled by decomposing hy-
drogen peroxide when irradiated with UV light. By themselves,
the active particles did not cluster, but when passive particles
were included in the system, the light-activated Janus particles
formed a nucleus that the passive particles clustered around, as
shown in Figure 11. The intensity of the UV light affected the
photochemically driven reaction rate and controlled the strength
of interaction between the active and passive particles. Thus, in-
creasing the intensity of the light allowed each Janus particle to
add an additional layer of passive particles around it. Interest-
ingly, Singh et al. also played with particle geometry, showing
that particle clusters with hexagonal symmetry led to ordered lat-
tices whereas particles that led to pentagonal symmetry formed
a glass. Particles giving clusters with square symmetry were sen-
sitive to light intensity, with low intensity generating an ordered
lattice but high intensity leading to glass-like disorder.

The above are all examples of model-free open-loop control,
but more advanced control techniques are also applicable to far-
from-equilibrium systems. In simulations, Norton et al.147 used
model-based optimal control to calculate control inputs to switch
an active nematic liquid between a clockwise and a counterclock-
wise rotating state. The control inputs were an applied stress
that could be produced by light and an applied rotation rate that
does not have an experimental analogue. Although their con-
troller cannot yet be reproduced physically, their methods show
that model-based optimal control can be applied to far-from-
equilibrium in situations where a dynamic model for the system
exists. However, to apply model-based approaches to far-from-
equilibrium systems more broadly, new tools must be developed
to model non-equilibrium systems.
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Fig. 11 Clusters of passive particles form around self-propelled Janus
particles when light is on. The number of layers that formed around
each Janus particle depended on the light intensity and was completely
reversible. Reproduced from Reference 146 with permission from Wiley.

6 Applications of actively controlled colloidal sys-
tems

Active control of the assembly of colloidal systems have a wide
range of potential applications. In this section, we specifically
highlight the fields of photonic materials,15–20 drug delivery,25–29

and smart materials.86,137 A running theme in these applications
is the way in which active control addresses challenges to col-
loidal assembly. We underscore three notable themes that appear
below. First, the movement of colloids is largely dominated by
Brownian motion, which makes it difficult to precisely and con-
sistently create useful and functional assemblies. Second, many
assemblies are much more useful if they are defect-free or opti-
mized in some other way that is hard to achieve using bottom-up
forces alone. Finally, numerous applications require colloidal as-
semblies that are dynamic or adaptive to their environment. As
discussed in Section 2 and seen in the examples below, active
control will be invaluable for addressing these challenges.

6.1 Photonic materials
One application of colloidal self-assembly is the creation of pho-
tonic materials, which are periodic structures with a band gap
that blocks a certain frequency range of light. For example, pho-
tonic crystals give butterfly wings their color and iridescence, as
shown in Figure 12.148–150 Photonic crystals have applications for
coatings on lenses and mirrors,17–19 color-changing paints and
inks,17–19 miniaturization of semiconductors,21,22 solar-cell coat-
ings,12 and optical computing.12 Many photonics applications re-
quire defect-free colloidal crystals of a consistent size. Active con-
trol strategies have been used to create such defect-free crystals
with a high degree of consistency.45

Active control may also be used to create photonic materials
with color-changing properties. Chameleons change color by ac-

Fig. 12 Butterfly wings naturally covered in photonic crystals. The mi-
crostructure of the scales reflects wavelengths that create the irridescent
blue color of the wings. Adapted from References 148 and 149 with
permission.

tively tuning the lattice spacing of photonic crystals in their cells.
This gives them advantages in social signaling, camouflage, and
potentially passive thermal protection,151 which suggests the pos-
sibility of developing these capabilities in synthetic materials.2

Active top-down control could be used to direct how the photonic
properties of colloidal crystals change with time to produce appli-
cations such as adaptive camouflage, smart glass, and e-paper.136

Another useful photonic material is a negative-index material,
which has potential applications in super-resolution imaging and
cloaking devices.20 In general, such materials require structural
elements smaller than the wavelength of light and arranged in a
way that gives the material both a negative electric permittivity
and a negative magnetic permeability, which is difficult to achieve
at optical wavelengths. Several different negative-index metama-
terials have been produced,152–157 but the technology is still in its
infancy and further research is required to scale up sizes and im-
prove transmission. Active control can be used to manipulate the
permittivity and permeability of a material by changing its struc-
ture to explore new candidates for negative-index materials more
quickly. It can also be used to ensure perfect isotropic crystals to
improve transmission.68

6.2 Drug delivery

Traditional drug delivery routes, such as pills, lotions, or injec-
tions have the advantage of simple administration and good pa-
tient compliance.158 However, there are also two disadvantages
that we wish to highlight. First, some drugs have low solubility
in water and low intestinal resorption, which means their efficacy
is reduced by the time they reach targeted sites.158 Second, the
drugs may be toxic to non-targeted sites. Targeted drug delivery
approaches can maximize the efficacy of the drug and minimize
toxicity to non-targeted sites.158,159 Colloidal particles have been
proposed as agents for drug delivery, and targeted drug deliv-
ery contains two stages that would potentially benefit from active
control: site-targeting transport of the drug carrier and release
of pharmaceutical agents after reaching the destination.25–27,159

The following examples illustrate the potential benefits of using
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actively controlled dynamic colloids to aid drug delivery.

Site-targeting transport of the drug carrier is important for min-
imizing the area exposed to potentially harmful drugs. However,
the locomotion of colloid-sized objects is a non-trivial research
topic that has been studied for decades.160–162 Transport of col-
loids within biological organisms is even more complicated due
to the complexity of biological environments. For instance, dif-
ferent tissues and patients under different conditions might have
different requirements for drug dosage and distribution,163 and
the delivery pathways may exhibit confinements of different ge-
ometries.164

It has been suggested that these challenges can be met using
an adaptable swarm of colloidal particles as drug-delivery agents.
As shown in Figure 13, controllable adaptable swarms are possi-
ble. As discussed above, Xie et al.46 has demonstrated swarming
magnetic colloidal particles with controllable formations includ-
ing “liquids”, “chains”, “ribbons”, and a “vortex.” Such a recon-
figurable swarm of particles could be useful for drug delivery ap-
plications by adapting to the different environments present in
the human body. For example, the vortex could be used to carry
heavy loads, the ribbons could be used to cover large areas in a
synchronized manner, and the chain configuration could be used
to pass through narrow spaces such as blood vessels.

Fig. 13 Peanut-shaped magnetic colloids change formations in different
rotating magnetic fields. Such a reconfigurable swarm has been suggested
as an agent for drug delivery. Adapted from Reference 46 with permission
from AAAS.

The second challenge of targeted drug delivery is implementing
controlled release. Controlled release of drugs after the drug de-
livery agents reach their destination could maximize the efficacy

as well as minimize the adverse effects of therapy.158,159 Respon-
sive surfactants have been suggested as ideal materials for soft
medical microrobots due to their ability to change shape and size
in response to external stimuli, which also makes them ideal can-
didates as actively controlled systems.165,166 Take responsive hy-
drogel colloids as an example, where hydrogels can fold and un-
fold for targeted delivery in response to temperature or light.167

Active control of temperature or light can be used to change the
folding behavior of hydrogels, i.e. the size of openings in the
folded structure, to achieve controlled release of drugs when de-
livered to the targeted sites. The same concept can also be applied
to responsive swelling/unswelling,168,169 or ultrasound induced
shape change,170,171 to enable the controlled release of loaded
molecules.

6.3 Smart materials

It has been suggested that in the future, colloidal materials
could be designed to respond adaptively and intelligently to their
environment through cooperative feedback.142,172 These types
of smart materials are highly desirable for self-healing,173 self-
regulation,174 sensors,175 or anti-counterfeiting.175 To a lesser
extent, any material that reacts to external inputs in a control-
lable and reversible way may also be called a smart material.

Researchers have put much effort into designing smart materi-
als where the material itself performs numerical computations.
This paradigm of “materials that compute" interprets the pro-
grammable response of these materials to external stimulation as
a logic input.176 Thus chemistry and biochemistry are used to cre-
ate analogues for logical variables, which are connected through
network to function as logical circuits, thus performing computa-
tion. The logical variables can be represented by the conditions
of the material, such as pH, electrostatic interactions, molecular
weight distribution, volumetric variations, etc.176–179 One inter-
esting proposal of such a computing material that uses colloidal
particles is the “digital colloids” introduced in Section 4.2.86,137

Digital colloids are colloidal clusters that can switch between
multiple configurations, and active control is needed to set and
lock/unlock the configuration. Such materials may be useful as
a form of high-density reconfigurable memory storage that can
eventually be used for soft robots and other unconventional com-
puting environments.

Self-healing materials have also attracted considerable atten-
tion as a class of smart materials. Self-healing materials are
inspired by biological systems with the capability to recover
from damages with minimal interference. Self-healing has been
demonstrated using polymer healing agents to cover damaged
sections of the material180–184 or using molecular crystals that
recover their previous shape after irradiation or thermal treat-
ment.185,186 Recently, self-healing colloidal crystals have also
been demonstrated in literature.187–191 Many of these recent ex-
amples use colloids either bonded to polymers or embedded in
a polymer matrix. Lee et al.190 presented DNA-crosslinked col-
loids that deform when dehydrated and then recover their origi-
nal crystal structure when rehydrated. Ma et al.189 demonstrated
photonic crystals crosslinked by a polymer that perfectly healed
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when cut. Yin et al. et al.187 made a self-healing photonic crys-
tal by using a magnetic field to embed colloids into a hydrogel
structure. Active control could be applied to each of these cases
to help study or improve the results. For example, control prin-
ciples could be used to create a crystal with the desired photonic
or material properties inside the polymer structure before curing.
Or, inverse design principles could be used to discover colloid-
polymer systems with the required properties for self-healing.

Finally, self-healing is also present in far-from-equilibrium sys-
tems. Massana-Cid et al.188 showed how crystals made of mag-
netic colloidal rotors healed when the magnetic field was in-
creased, as shown in Figure 14. The colloidal rotors assembled
into into a two-dimensional carpet when a magnetic field was ap-
plied. When they increased the amplitude of the field, defects in
the carpet were repaired in a process similar to annealing.

Fig. 14 Crystals made of magnetic colloidal rotors quickly transitioned
from a defective/polycrystalline state to a single crystal when the am-
plitude of the magnetic field was increased. Reproduced from Reference
188 under a Creative Commons CC BY license.

7 Open questions and future directions
Active control may be used to modify the equilibrium state of a
system, modify the energy landscape to create an organized near-
equilibrium state, or to select a preferred far-from-equilibrium
state for a system. It also offers the possibility of tuning fields
and forces to make more precise and consistent materials and to
control the dynamic properties of materials. As such, active con-
trol is a promising avenue for creating new materials with useful
properties for many fields of science and engineering, especially
in the areas of photonics, drug delivery, and smart materials.

However, there are problems that remain unsolved, including
high dimensionality, unintentional kinetic trapping, the need to
model complicated dynamics, and a lack of sensors and actua-
tors to provide feedback. Future research will need to solve these
problems with both instrumental innovations, such as the devel-
opment of new sensors, and with methodological solutions, such

as the development and application of active control techniques
that include feedback control, model-based control, and dimen-
sionality reduction.

Feedback control has only recently been applied to equilibrium
self-assembly because of advances in the available sensors. So
far, very few examples exist of using feedback control to produce
a non-equilibrium result. Currently, far-from-equilibrium assem-
bly mostly employs microscopes to directly image the configura-
tion of particles. Certainly, reduced costs and increased quality
have made optical microscopy increasingly accessible and useful.
However, future innovation in sensor technology aimed at indi-
rect measurements, such as measuring the photonic properties of
aggregates instead of individually imaging the particles, will be
important for increased use of feedback control in a wider range
of situations.

Another reason more complex control methods are not applied
is the uncertainty over what variables should be measured and
controlled or what to use as a reference state. This uncertainty
often stems from high dimensionality, and machine learning is a
good candidate method that can be applied to identify a reduced
set of dimensions. Diffusion maps are another promising method
that has already seen wide use as a dimensionality reduction tech-
nique in colloidal systems. We expect that diffusion mapping and
other nonlinear dimensionality reduction techniques will play an
important role for the future of actively-controlled assembly.

A related but different way of addressing the high dimen-
sionality of colloidal systems is to design particles with internal
feedback—that is each particle contains internal control elements
that respond to its local environment to direct self-assembly to-
wards a desired result. This concept is related to the field of con-
sensus control of multi-agent systems.192–194 It is possible that
results from the field of consensus control could be portable to
active top-down assembly, enabling rapid progress on designing
process for materials that assemble using internal feedback.

Model-based control and reinforcement learning are more ob-
vious “low-hanging fruits” and can be applied more broadly. For
example, model predictive control shows promise for guiding
a system to a desirable near-equilibrium (kinetically trapped)
state, and model-based control using machine learning is espe-
cially promising for near-equilibrium self-assembly.78 However,
simple models based on standard thermodynamics do not gen-
erally provide insight into far-from-equilibrium systems, making
these systems more difficult.89 Perhaps techniques such as re-
inforcement learning and genetic algorithms could be used to
identify and guide the creation of desirable far-from-equilibrium
states, as it has been done in equilibrium and near-equilibrium
self-assembly.73,76,92,195

Another promising research direction is to use optimiza-
tion89,90 and machine learning74,77 to reverse-engineer desired
structures by discovering “inverse design” principles that will cre-
ate a given desired state.91,92 Non-equilibrium self-assembly al-
ready offers a huge parameter space for exploring behavior, and
active control techniques further expand the scope. As such, in-
verse design algorithms could greatly accelerate the discovery of
interesting non-equilibrium results, especially since the results of
active control and path history are not always intuitive.
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The future is bright, and opportunities abound in the field of
actively-controlled colloidal assembly. All of the research areas
surveyed here contain important and tractable fundamental and
applied questions, and active control may be the missing key to
enable viable applications for many areas of colloidal assembly. In
addition, improvements and enhancements to the development
of equipment, tools, and methods for active control in any one
area will inevitably carry over to other fields, further enabling
advancements in the field. Along these lines, we hope that this
review contributes to a unified framework and interpretation of
the literature on the self-assembly of colloidal systems and the
way in which active control is applied. Clearly, this field is of
interest to many but remains in its infancy, and we anticipate an
explosion of consequential and beneficial research in the years to
come.
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