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Colloidal particles can create reconfigurable nanomaterials, with applications such as color-changing, self-
repairing, and self-regulating materials and reconfigurable drug delivery systems. However, top-down methods
for manipulating colloids are limited in the scale they can control. We consider here a new method for using
chemical reactions to multiply the effects of existing top-down colloidal manipulation methods to arrange large
numbers of colloids with single-particle precision, which we refer to as chemical herding. Using simulation-
based methods, we show that if a set of chemically active colloids (herders) can be steered using external forces
(i.e. electrophoretic, dielectrophoretic, magnetic, or optical forces), then a larger set of colloids (followers) that
move in response to the chemical gradients produced by the herders can be steered using the control algorithms
given in this paper. We also derive bounds that predict the maximum number of particles that can be steered in
this way, and we illustrate the effectiveness of this approach using Brownian dynamics simulations. Based on
the theoretical results and simulations, we conclude that chemical herding is a viable method for multiplying
the effects of existing colloidal manipulation methods to create useful structures and materials.

I. INTRODUCTION

Colloids are ideal building blocks for the next generation
of reconfigurable nanomaterials. Researchers have already
demonstrated colloidal micromachines [1, 2], swarms of mi-
crorobots [3, 4], and groups of light-controlled micromo-
tors [5], all of which can reconfigure their structure. Such
reconfigurable materials pave the way for advanced technolo-
gies such as color-changing materials [6], self-repairing and
self-regulating materials [7, 8], and reconfigurable drug deliv-
ery systems [9–11]. These reconfigurable systems can be un-
derstood using the paradigm of top-down control of bottom-
up (self-assembly) processes. However, top-down (i.e. human
controllable) forces tend to be limited in either the amount
of local control they can apply or on the scale they can con-
trol [12]. For example, direct printing can only make static
arrangements that are not reconfigurable, magnetic and fluidic
forces tend to act globally and can upset areas of the domain
that have already been configured, and local actuators such as
optical tweezers can only control a small number of particles
at a time. To address this last challenge, we propose using
chemical forces in combination with existing top-down tech-
niques to facilitate the precise, local control of larger numbers
of particles. This approach has the potential to advance the
technologies capable of developing reconfigurable colloidal
materials.

Individual colloidal particles can be moved using electric
fields [13–15], fluid flow [16–18], magnetic forces [19], op-
tical forces [20, 21], and acoustic forces [22–24]. Chemical
forces have also been investigated. For example, we have
shown in simulation how direct feedback control of chem-
ical reactions can be used to steer individual colloidal par-
ticles [25]. Other researchers have shown that chemically-
propelled active colloids can be individually steered using
feedback control of magnetic fields and light-controlled lo-
calized chemical reactions [26–28]. Also, recent experimen-
tal work has also demonstrated colloidal shuttles, in which

a “shuttle” colloid attracts other particles as cargo through
chemical or electrical forces, and then it transports and re-
leases this cargo at some other location [29–31]. We see these
examples as early demonstrations of how chemical forces of-
fer vast potential to increase the design space of colloidal sys-
tems.

Chemical forces are an especially intriguing method of
manipulating colloids because natural biological systems are
known to move and adapt in response to chemical signals [32],
and because chemical reactions provide new and unexplored
degrees of freedom that can be used in tandem with optical,
magnetic, electric, or fluidic forces. For example, chemical
forces may act on particles that do not have the required di-
electric or magnetic properties to be manipulated directly us-
ing optical or magnetic tweezers. Even more significantly, we
expect that chemical forces can be used to increase the number
of particles that can be manipulated through other top-down
methods and, for example, make relatively inexpensive elec-
trophoretic steering techniques viable for a wider range of ap-
plications. In this paper, we use simulation-based methods to
present a new technique for using chemical reactions to multi-
ply the effects of other single-particle colloidal manipulation
methods by using a small number of chemically active parti-
cles to control the positions of a larger group of nonreactive
colloids. We refer to this method as chemical herding.

Chemical herding is inspired by a technique used for un-
manned aerial vehicles (UAVs) called indirect herding [33–
35]. Indirect herding uses directly controllable agents (re-
ferred to as herders) to move passive agents (followers) to
a desired location. While the small size of colloidal parti-
cles prevents them from being controlled using the same tech-
nologies as UAVs, the principle of indirect herding can still
be applied. In chemical herding, the herder is a colloid that
catalyzes a chemical reaction to create a solute concentration
gradient, and the followers are nonreactive colloids. This situ-
ation is illustrated in Figure 1. The followers (red circles) are
attracted to or repelled from the herder (orange circle) by dif-
fusiophoretic interactions with the solute (illustrated by gray
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lines). The herder is directly moved using external forces, and
it is made to herd the followers to target locations (red x’s)
through interactions with the solute it produces. The herder
is capable of moving many followers, one at a time, as illus-
trated by Figure 1. In this paper, we will move colloids onto
regularly spaced, pre-defined target locations, as shown in the
figure.

We present simulations of chemical herding using Brown-
ian Dynamics (BD) techniques. The BD simulations model
a physical system with the following properties, illustrated in
Figure 2:

1. A vision system that measures the position of each par-
ticle in real time,

2. A top-down manipulation method such as optical
tweezers or electrokinetic actuators that can be used to
steer the herder, and

3. A microfluidic device filled with colloidal particles in a
solvent/solute system.

Finally, in addition to the simulated system above, we add

4. A feedback controller to calculate the optimal values
for the actuators (e.g. electrode voltages or optical trap
position) using information from the vision system.

While this paper contains only simulation results, a physical
system that employs chemical herding would include the fol-
lowing elements: followers that are nonreactive colloids such
as silica or polystyrene, a herder that is a metal colloid that
catalyzes an H2O2 reaction, which has been seen in litera-
ture to attract other particles [1, 36, 37], and external forces
to move the herder implemented using optical tweezers, mag-
netic tweezers, or electrokinetic forces [13]. In our simula-
tions, we have attempted to choose physical parameters that
replicate physical conditions as closely as possible.

In the remainder of this paper, we will introduce our feed-
back controller and present simulations demonstrating the
steering of colloids using chemical herding. In Section II,
we will explain the simulation methods and controller. In
Section III, we will use Lyapunov stability theory to derive
bounds on the range of physical parameters that can be used
for chemical herding. Then, in Section IV we will present
the results of the simulations, including steering many parti-
cles with a single herder and using multiple herders working
together. We will end with our conclusions in Section V.

II. METHODS

In this section, we will first briefly describe our Brownian
Dynamics (BD) simulations, including the methods for calcu-
lating the chemical concentration profile for diffusiophoresis
and implementing interparticle interactions. Then we will ex-
plain the values of the physical parameters we used in our sim-
ulations. Afterward, we will compare the various timescales
present in the system. Finally, we will explain the controller
used for chemical herding.

ℓ

FIG. 1. An illustration of chemical herding. We wish to move pas-
sive “follower” particles (red circles) to target positions (red x’s). A
chemically active “herder” particle (orange circle) creates a chemical
gradient that attracts the followers through diffusiophoretic interac-
tions. We use external forces to move the herder on a path (solid
black line) that allows it to lead a follower to its target. Followers are
made to move to pre-designated positions, separated by a distance of
`.

Desired
follower
positions

Vision System
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(e.g. electrode
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ℓ

FIG. 2. A diagram that explains the steps of chemical herding. Nine
follower particles (red circles) are moved through interactions with a
herder particle (orange circle) in a microfluidic device. The position
of each particle is measured by a vision system and supplied to a
control algorithm to calculate values for the actuator that will move
the herder on its calculated path. The actuator implements a force or
field that will move the herder on its desired path.

For the remainder of this paper, we will use the follow-
ing notational conventions. We will represent vectors in bold,
with the norm of the vector being non-bold and the unit vec-
tor indicated by a hat, meaning the vector r has a norm r and
unit vector r̂. We will use the subscript i as the index for an
arbitrary follower particle, and the subscript c for the follower
that is currently being chased, or herded, to its target. Ad-
ditionally, the subscript f refers to followers and h refers to
herders.

A. Brownian dynamics simulation methods

Our simulations consider nh reactive colloidal particles
(herders) with radius Rh and n f nonreactive colloidal parti-
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cles (followers) with radius R f . The motion of these particles
is determined using BD simulations. We limit the motion of
the colloidal particles to the z = 0 plane. While the colloids
move in quasi-2D, we will use a chemical concentration field
that diffuses in 3D space to be physically realistic.

The Brownian Dynamics equation of motion for a colloidal
particle is given by [38, 39]

dri

dt
=

1
γi
Fi +

√
2Diξi, (1)

where ri is the position vector of particle i, γi is the fric-
tion coefficient and Di is the diffusion coefficient of the par-
ticle, ξi is a Gaussian white noise term, and Fi is the sum
of non-Brownian forces acting on the particle. We consider
forces from diffusiophoresis, interparticle interactions, and
externally applied forces (such as electrophoresis or optical
tweezers). Diffusiophoresis accounts for the interactions be-
tween the herder and the followers. Diffusiophoresis in a non-
ionic solute [40] can be modeled using

Fdiff,i = γiµi∇Cs(ri), (2)

where µi is the diffusiophoretic mobility and Cs is the con-
centration of the solute. Externally applied forces depend on
the method of actuating the herder (for example, an applied
electric field) and will be designated as Fext,i. Interactions
between particles are modeled using the Heyes–Melrose al-
gorithm [41], with the interaction force given by

Fint,i =


−γi

∆tsim
∑

j
κ(Ri +R j−di j)d̂i j di j < Ri +R j

0 otherwise,
(3)

where di j is the vector from particle i to particle j, d̂i j is the
unit vector in direction di j, ∆tsim is the timestep of the simula-
tion, Ri is the radius of particle i, R j is the radius of particle j,
and κ is a constant. Following Heyes and Melrose, we chose
κ = 1.0.

All other forces, including hydrodynamic flows, are not
accounted for in this model. Although colloids induce fluid
motion, which creates additional forces on each particle, ac-
counting for hydrodynamics introduces significant computa-
tional expense and analytical difficulties due to the complex
coupling between hydrodynamics and concentration profiles.
Therefore, we have chosen to neglect hydrodynamic interac-
tions at present to emphasize the development and validation
of our feedback controller. We further hypothesize that the
method of chemical herding described here may prove robust
to the addition of hydrodynamic flows, because the feedback
controller may compensate for errors introduced by their ne-
glect. We plan to test this assumption in future studies.

Using the above assumptions, Equation (1) can be ex-
pressed as

dri

dt
= µi∇Cs(ri)+

Fint,i

γi
+
Fext,i

γi
+
√

2Diξi. (4)

Our simulations contain two types of particles: followers and
herders, and for each of these two types of particles, we can
make further simplifications.

The forces acting on a follower particle are diffusiophoresis
and interparticle interactions. We assume the followers are not
impacted by the external forces from the actuator that steers
the herders, i.e. optical/magnetic tweezers or electrokinetic
forces, which primarily affect the herders. Thus the equation
of motion of the followers is

dri

dt
= µ f ∇Cs(ri)+

Fint,i

γ f
+
√

2D f ξi, (5)

where µ f is the diffusiophoretic mobility of a follower particle
in the solute, Cs is the concentration of the solute, γ f is the
friction coefficient and D f is the diffusion coefficient of the
followers, and Fint,i is the force of interparticle interactions
felt by the particle.

A herder particle experiences externally applied forces for
steering, Fext,h, and interparticle interactions, Fint,h. To sim-
plify the following analysis, we assume a single herder. We
also neglect diffusiophoretic forces on the herder (i.e. self-
diffusiophoresis). Applying these simplifications to Equa-
tion (4) gives the equation of motion for a herder particle

drh

dt
=
Fext,h

γh
+
Fint,h

γh
+
√

2Dhξh, (6)

where rh is the position vector of the herder with diffusion co-
efficient Dh, the friction coefficient is γh, and ξh is a Gaussian
white noise term.

Assuming the reaction only occurs on the surface of a
spherical herder, the solute concentration Cs is determined by
solving the reaction-diffusion equation,

∂Cs(x, t)
∂ t

= Ds∇
2Cs(x, t)+ghδ (x−rh), (7)

where x is the spatial coordinate, Ds is the solute diffusion
coefficient, δ is the Dirac delta function, and gh is the rate of
solute production on the surface of the herder located at rh.

We find the concentration profile around a herder by ap-
plying a pseudo-steady state approximation (∂Cs/∂ t ≈ 0) to
Equation (7). We can nondimensionalize Equation (7) using
x̃ = x/R f , r̃h = rh/R f , C̃s = Cs/C∞, and t̃ = t/therder, where
therder is the timescale of the herder moving at maximum speed
as defined in Section II C, to produce

R2
f

Dstherder

∂C̃s

∂ t̃
= ∇̃

2C̃s +
ghR f

DsC∞

δ (X̃− ỹ). (8)

If the Peclet number Pe = R2
f /Dstherder is small, then the

∂Cs/∂ t term of Equation (7) will be negligible. This will be
explored further in Section II C.

If the boundary condition for concentration is C∞ at a dis-
tance of ||x−rh|| → ∞, then Equation (7), in the steady state
limit, has a solution of [42]

Cs(x)≈
gh

4πDs||x−rh||
+C∞, (9)

with gradient

∇Cs(x)≈
−gh(x−rh)

4πDs||x−rh||3
. (10)
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These expressions are valid in the far field limit, and it has
been shown that such a pseudo-steady state approximation
gives a useful limit for modeling attractive phoretic interac-
tions [43, 44].

We now have all that we need to create our BD simulations.
The dynamics of a follower are given by Equation (5), using
the ∇Cs from Equation (10). The dynamics of a herder are
given by Equation (6), with Fext,h coming from the controller
we will develop in Section II D.

B. Brownian dynamics model parameters

We model the herder as a platinum-coated colloidal parti-
cle that catalyzes the reaction of H2O2. Table I presents the
physical parameters used in our simulations. In the following
paragraphs, we will provide a detailed explanation of the se-
lection of values for each parameter. These values serve as a
base case, and they will be varied in our later analysis.

TABLE I. Physical parameters used in our BD simulations.

Symbol Explanation Value
Jh Reaction flux of herder 0.02 mol/m2 s
Ds Diffusion coefficient of solute 2.01×10−9 m2/s
µ f Diffusiophoretic mobility 2.0×10−10 m2/M s
T Temperature 298K
η Solvent viscosity 0.89 cP

vmax Maximum speed of herder 5 µm/s
R f Radius of followers 4µm
Rh Radius of herders 4µm

The herder produces solute at a constant rate gh. For a
spherical herder, we can write gh = 4πR2

hJh, where Jh is the
flux of solute from the surface of the herder. We set Jh
based on the reaction rate of hydrogen peroxide to a plat-
inum catalyst, which we have taken as a prototype reaction
for chemical herding. The reaction surface flux of platinum
in 10% H2O2 is approximately 0.02 mol/m2s [45]. This gives
gh = 0.02×4πR2

h ≈ 0.25R2
h mol/s.

Experimental observations indicate that particles that cat-
alyze H2O2 create gradients that tend to attract other parti-
cles [1, 36, 37]. Thus, we use a positive value for the diffusio-
phoretic mobility µ f of the follower particles, with the magni-
tude of µ f based on a typical non-ionic solute, as predicted by
Anderson [40]. To simplify our simulations and analysis, we
modeled the reaction as a single solute species, which allowed
us to use a single value for the diffusiophoretic mobility. We
also set the diffusion coefficient of the solute, Ds, as the diffu-
sion coefficient of O2 in water.

The values for the diffusion coefficient of the followers, D f ,
and for the herders, Dh, were determined using the Stokes-

Einstein relations

D f =
kbT

6πηR f
(11)

Dh =
kbT

6πηRh
, (12)

where kb is Boltzmann’s constant, T is the temperature, η is
the viscosity of the solvent, and R f and Rh are the radii of the
followers and herders, respectively. For our simulations, we
used a temperature of 298K and the solvent viscosity of water.
Both Rh and R f were set to 4µm, which is a reasonable size
for colloidal particles that can be observed using an optical
microscope.

Finally, the upper limit on the velocity of the herder is deter-
mined by the maximum speed a physical actuator can achieve,
and is set to a fixed value of vmax. We set vmax to 5 µm/s to
ensure that the top-down forces applied to the system are not
exceeded, which is a speed easily achievable by using elec-
trode voltages to steer colloids, as reported by Armani [13].

C. Timescale analysis

We will now analyze five different timescales present in the
system: Brownian motion, diffusion of the solute, motion of
the herder, diffusiophoretic motion of a follower being herded,
and diffusiophoretic motion of a follower not being herded.
Then we will compare the timescales to understand the rela-
tive strengths of each type of motion.

Both the diffusion of the solute and the Brownian motion
of the particle can be described using the time it takes the
solute or particle to diffuse over a root mean square distance
of x [46]. The timescale of Brownian motion for the followers
is given by

tbrown =
x2

4D f
. (13)

Similarly, diffusion of the solute occurs on a timescale of

tsolute =
x2

4Ds
. (14)

The timescale for the motion of the herder when it is mov-
ing between follower particles at a speed of vmax is

therder =
x

vmax
, (15)

where x is the length scale of interest. This assumes the herder
travels in a straight line at its maximum speed vmax and does
not need to dodge any obstacles.

The timescale for the motion of the follower particles due to
their attraction to the herder can be derived from the dynam-
ics of the follower particles given by Equation (5), with the
concentration gradient defined in Equation (10). This concen-
tration profile was derived using a pseudo-steady state approx-
imation. We will also neglect Brownian motion and interpar-
ticle interactions to simplify the analysis; such particles may
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be referred to as “phantom” because of the lack of interactions
and “non-Brownian” due to the lack of Brownian motion. We
substitute Equation (10) into Equation (5), and suppose the
particles are phantom and non-Brownian, to obtain

dri

dt
≈ −kdiff(ri−rh)

||ri−rh||3
(16)

where

kdiff =
ghµ f

4πDs
. (17)

If we replace the velocity dri/dt with a length x divided by a
time t and take the norm of Equation (16), we find that

t =
xd2

ih
kdiff

, (18)

where dih = ||ri − rh||. We will look at two different dis-
tances dih between the follower and the herder. A follower
that is currently being herded is made to maintain a distance
that is as close as plausible to the herder. Hard sphere inter-
actions make the minimum distance between the follower and
the herder R f +Rh, and we add on an additional 0.2R f to give
the follower enough space to move, as explained in the follow-
ing section. This leaves a total distance of R f h = Rh + 1.2R f
between the follower and herder, giving a timescale of

tchased =
xR2

f h

kdiff
. (19)

A follower that is not currently being herded tends toward a
distance of at least ` (the characteristic scale of the target pat-
tern) from the herder, giving a timescale of

tunchased =
x`2

kdiff
. (20)

Using the parameters given in Tables I and II, and at a
length scale of x = R f , we find that tbrown = 65.2s, tsolute =
0.002s, therder = 0.8s, tchased = 4.9s, and tunchased = 56.5s. In
the following paragraphs, we will make several observations
about how these timescales demonstrate that chemical herding
is plausible.

First, since the timescales for the Brownian motion (tbrown)
and the diffusiophoretic motion of an unchased particle
(tunchased) are much slower than the timescale of the desired
motion of a particle being herded (tchased), the followers will
be drawn to their target locations much faster than they are
moved away. This suggests that chemical herding can be plau-
sibly performed using our choices of physical parameters.

Second, the diffusion of the solute (tsolute) is much faster
than the motion of the herder (therder). This fact is what makes
our pseudo-steady state approximation to the concentration
profile valid. As previously stated, a small Peclet number al-
lows us to assume pseudo-steady state. The Peclet number
is equivalent to the ratio of timescales Pe = tsolute/therder =
0.0025. Since this number is much smaller than unity, we
conclude that the pseudo-steady state approximation is valid.

Third, the timescale for the motion of the herder at its
maximum speed (therder) is much faster than the timescale for
the motion of the chased follower (tchased), which allows the
herder to detach from a follower after that follower reaches its
target.

FIG. 3. A herder (orange circle) produces a solute gradient (blue
background) which attracts the follower particles (red circles). Fol-
lowers closer to the herder are attracted more strongly due to the
steeper gradient, while followers further away are attracted more
weakly. This produces a “catch radius” R at which a follower will
move at the same speed as the herder.

This idea can be understood more clearly by referencing
Figure 3. This figure illustrates both how the concentration
gradient emitted by the herder decays with distance away from
the herder, and how the speed of the follower depends on that
distance. The follower reaches a theoretical maximum speed
when the follower is in contact with the surface of the herder,
which we represent using the timescale tchased. Since attrac-
tion is solely through diffusiophoresis, a follower can only
be dragged if the herder moves at the same speed or more
slowly than the speed of the diffusiophoretic motion of the
follower. If the herder moves faster than the timescale tchased,
then no particles can follow and the herder detaches from the
follower, which is necessary for leaving the follower behind
once it reaches its target.

Figure 3 also shows why only one follower at a time will be
dragged by the herder. For a given herder speed (which is set
by the controller), there is some “catch radius” R where col-
loids that are located at dih < R will move closer to the herder,
colloids at dih = R will exactly move with the herder, and col-
loids at dih > R will be left behind. Also, if the herder moves
at this maximum speed, only a follower that is in contact with
its surface can be dragged along with the herder, and all other
particles will not be able to “keep up” and will be left behind.

D. Switched systems control

In this section, we derive the control law that will be used
to move the herder. For evenly spaced target positions with a
spacing of `, as shown in Figure 1, we wish to create a con-
troller that will move one particle onto each target position.
We will derive the algorithms to do this in the following para-
graphs.

In deriving our control law, we assume that the herder can
be moved much faster using external forces than the speed
at which the followers can move via diffusiophoresis. This
allows us to decouple the path planning of the herder from the
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Switching rule

Algorithm 1

Herder placement

Equation (21)

Path planning

Equation (23)

Colloid  
movement

FIG. 4. A schematic diagram showing the three steps in our chemi-
cal herding controller. First, a switching rule given by Algorithm 1
dictates that the herder should chase the particles one at a time, be-
ginning with the particle farthest away from its target and then mov-
ing to the next farthest. Second, the optimal placement of the herder
which will move the selected follower towards its target is given by
Equation (21). Third, a GVF (given in Section I of the Supporting
Information [47]) is used to plan the path of the herder to avoid obsta-
cles while guiding the selected follower to its target, which produces
the force to apply to the herder, given in Equation (23).

calculation of where we want the herder to be in relation to
the followers. With this assumption, the herding problem can
be divided into three parts:

1. setting a switching strategy for choosing which follower
the herder will chase,

2. calculating the optimal placement of the herder, and

3. planning the path for the herder to lead the follower to
the target in a way that avoids collisions with other par-
ticles.

These steps are shown schematically in Figure 4, along with
the equation or algorithm to perform that step.

In the first step, we set a switching strategy for the herder
to select which follower to chase. We use the word “chase”
following the terminology of Licitra et al. [35], even though
in the present work, the nature of the attractive interactions
means the herder leads the follower particles rather than pur-
suing from behind. We chose a simple and intuitive switching
strategy described in the pseudo-code in Algorithm 1. Note
that in the pseudo-code, curly brackets refer to a set, i.e. {ri}
is the set of all the followers.

Algorithm 1 Switching rule
1: repeat
2: {r∗i }= linear sum assignment({ri},{r∗i })
3: for i = 1 to n f do
4: ei = ri−r∗i
5: end for
6: ec = max({ei})
7: repeat
8: Apply Equations (21)-(23)
9: until ec < dprec

10: until all ei satisfy ei ≤ dtol

Algorithm 1 proceeds as follows. First, in line 2, each fol-
lower position ri is matched to a target r∗i using the Python al-
gorithm linear sum assignment to minimize the distance
to the assignment. Next, in lines 3-6, one selects the follower
that is farthest from its target. Then, in lines 7-9, one herds
the selected particle by applying Equations (21)-(23) until the
particle is within precision dprec of its target position. Finally,
the process is repeated until all particles are within tolerance
dtol if their target position.

Note that it is necessary to have two different tolerance
length scales dprec and dtol in the switching algorithm, because
there are two different time scales associated with the Brow-
nian motion that can occur during the inner and outer loops.
The inner loop (with scale dprec) lasts for only a single time
step of the numerical integration of Equations (21)-(23). On
the other hand, the outer loop (with scale dtol) encompasses
the time it takes the herder to visit each follower particle. Val-
ues of dprec and dtol are given in Table II, along with the length
scale of the target pattern, `. The significance of these values
will be discussed further in Section IV.

TABLE II. Length scales used in the chemical herding controller.

Symbol Explanation Value/expression
dprec Controller precision 1µm
dtol Controller end tolerance 9µm
` Target spacing 30µm

*

rh

*h

Herder

Follower

r c r cr 

FIG. 5. A schematic of a herder (orange circle) moving to its optimal
placement (orange x), next to a follower (red circle). The target as-
sociated with that follower (red x) is also displayed. The solid black
line represents the motion of the herder, and the dotted black line rep-
resents the motion of the herder-follower pair to the follower target.

In the second step, we calculate the optimal placement of
the herder that will move the selected follower towards its
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target. Figure 5 depicts this step graphically. We define
ec = rc−r∗c as the difference between the position of the cur-
rently herded follower rc (red circle in the figure) and its tar-
get position r∗c (red x), where the subscript c refers to the fol-
lower that is being chased by the herder. We wish to ensure
ec = ||ec|| approaches zero as quickly as possible, and we do
this by placing the herder on a location r∗h (orange x in the
figure). Since the herder attracts the follower, placing r∗h on
the line in the direction of the unit vector êc leading from the
particle to its target (dotted line in the figure), will attract the
follower to location r∗c . We place the herder as close to the
follower as feasible to decrease this error as quickly as possi-
ble. Due to hard sphere interactions, the closest that the herder
can approach the follower is R f +Rh, where R f is the radius
of the follower and Rh is the radius of the herder. To give the
follower enough space to move, we add in a constant 0.2R f ,
for a total distance of R f h = R f +Rh +0.2R f . Therefore, the
ideal trajectory of the herder is given by

r∗h(t) = rc(t)− êc(t)R f h. (21)

Equation (21) gives the trajectory of a herder that will move
the selected follower towards its target as quickly as possible.
However, to produce this trajectory from any given initial po-
sition would require that the herder moves arbitrarily quickly.
To relax this assumption, we instead consider Equation (21)
as a relationship that lets us find the optimal placement of the
herder as a goal for the herder to move towards during any
discrete timestep. The actual trajectory of the herder will be
given in the following paragraph.

For the third step, we compute the trajectory for the herder
to lead the follower to the target in a way that does not dis-
rupt other particles or attempt to pass through the particle be-
ing herded. A straight-line trajectory is not suitable for this
purpose. Instead, we adopt a path-planning approach com-
monly used in UAV navigation called a gradient vector field
(GVF). The GVF is a vector-valued function Vg

(
rh,r

∗
h,{ri}

)
that produces a direction for the herder to move at each time
step. We treat the followers as obstacles that the herder must
avoid and use a modified version of the GVF proposed by
Wilhelm and Clem [48] to calculate the direction V̂g that will
move the herder to r∗h while avoiding collisions with the fol-
lower particles. The function Vg is defined in Section I of the
Supporting Information [47].

The resulting velocity we wish to produce is then

drh

dt
= V̂g (rh,r

∗
h,{ri})min

(
vmax,

eh

∆tcontrol

)
, (22)

where eh = ||rh− r∗h|| is the distance from the herder to its
target position and ∆tcontrol is the timestep of the controller,
which we set to ∆tcontrol = 0.1s. We then solve Equation (6)
for the force that will produce this velocity. If we neglect
Brownian motion and hydrodynamic interactions, then the ex-
ternal force we need to apply to the herder particle is

Fext,h = γhV̂g (rh,r
∗
h,{ri})min

(
vmax,

eh

∆tcontrol

)
. (23)

Chemical herding is achieved by using an external controller
that produces the desired value of Fext,h to move the herder.

As indicated in Algorithm 1, this process is then repeated for
each follower particle until all are within dtol of their target
positions.

Practical implementation of chemical herding in a physical
system will require a few additional considerations that are not
accounted for in the present simulations. The force produced
by the controllerFext,h given in Equation (23) will also require
a control law. For example, electrokinetically steering the par-
ticles would need a least squares minimization algorithm to
set the electrode voltages [13, 49]. By contrast, the simula-
tions presented in this paper are independent of the method
used to steer the herder, which allows our conclusions to be
more generally applicable. Note also that in an experimen-
tal realization of chemical herding, the variables rh and {ri}
would come from a measurement of the system, and not from
the Brownian dynamics equations of motion. Finally, Equa-
tion (23) assumes a constant friction coefficient γh, which may
not be accurate when there are hydrodynamic interactions be-
tween particles [50]. Consequently, an experimental realiza-
tion of the path planning algorithm may need to account for
hydrodynamic interactions or use a model-free approach.

III. LYAPUNOV STABILITY LIMITS ON HERDING

In this section, we introduce the concept of Lyapunov sta-
bility and show how it can be used to derive a limit on the
maximum number of particles that can be steered using a sin-
gle herder. Then, we show that Brownian motion creates an-
other limit on the number of particles that can be steered, and
we analyze the sets of physical parameters where chemical
herding is possible.

A. Lyapunov stability analysis

Lyapunov theory provides a rigorous framework to ensure
the stability of dynamical systems, which, in the context of
chemical herding, means that followers will converge to and
stay at their target locations. Lyapunov stability analysis re-
quires defining a positive definite function V (x), referred to
as the Lyapunov function, and then showing that this function
consistently diminishes as time progresses, i.e., its derivative
V̇ (x) is negative definite. If this is achieved, it follows that x
evolves towards zero over time. For some systems, it is also
possible to show that x approaches zero at an exponential rate,
or x≤ x(0)exp(−λ t) for some constant λ . More information
on these topics can be found in Khalil [51].

We derive the maximum number of particles that can be
steered with a single herder by using Lyapunov stability anal-
ysis to find conditions for which the switched system is stable,
i.e., the conditions for which the distance between the follow-
ers and their targets approaches zero as time increases. As
shown by Licitra et al. [34], the stability criterion is a function
of the number of followers, meaning that we can use our sta-
bility result to find the maximum number of particles that can
be herded. To aid the reader in understanding the following
analysis, we introduce the following terminology. By desired
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attraction, we mean the force of attraction between the herder
and the follower currently being chased. By unwanted attrac-
tion, we mean the force of attraction between the herder and
an unchased follower, which moves the follower away from
its target position. The stability analysis shows that the rela-
tive strengths of these two forces limit the number of particles
that can be steered.

We prove the stability of the switched system in three parts:
First, we prove the chased particle converges exponentially to
its target due to the desired attraction to the herder. After-
ward, we show that the unchased particles remain within an
exponentially bounded area around their targets, despite the
unwanted attraction to the herder. Then, we use a theorem of
switched system analysis [52] and relate the two exponential
functions to show that the entire system is stable. Finally, we
rearrange the stability criterion we derived to write a function
for the maximum number of particles that can be steered.

1. Convergence of chased particle

First, we use Lyapunov stability theory to show that the cur-
rently chased follower particle converges exponentially to its
target. We consider a single follower particle i, with the dis-
tance from its target defined as ei = ri−r∗i . We assume that
the particle is phantom and non-Brownian, so its dynamics
can be described by Equation (16).

Lemma 1. Assume that the trajectory of a herder rh(t) fol-
lows its optimal trajectory r∗h(t) given by Equation (21), and
that a follower with dynamics given by Equation (16) is cur-
rently being herded. Then that follower will converge expo-
nentially to its target with an exponential bound of

ei(t)≤ ei(0)e−λst/2, (24)

where λs is a positive constant.

The proof of this lemma is given in Section II of the Sup-
porting Information [47]. In the proof, we start with the Lya-
punov function

V s
i =

1
2
eT

i ei, (25)

and find that the system is exponentially stable, with

λs =
2kdiff

R2
f hei(0)

. (26)

2. Divergence of unchased particles

We next show that a follower particle that is not be-
ing chased by the herder will stay within an exponentially
bounded region around its target. In other words, we write
a function that gives a bound for how far a follower can wan-
der after it has been herded. A particle i may move away from
its target because, as the herder chases a different particle, par-
ticle i still feels a diffusiophoretic attraction to the herder. The

distance a particle can move due to this unwanted attraction to
the herder is bounded as described by the following lemma.

Lemma 2. Assume that the trajectory of a herder rh(t) fol-
lows its optimal trajectory r∗h(t) given by Equation (21), and
that a follower with dynamics given by Equation (16) is not
currently being chased. Then that follower will remain within
an exponentially bounded area around its target with an ex-
ponential bound of

ei(t)≤ ei(0)eλut/2, (27)

where λu is a positive constant.

The proof for this lemma is given in Section II of the Sup-
porting Information [47]. In the proof, we start with the Lya-
punov function

V u
i =

1
2
eT

i ei (28)

and find that the system is exponentially bounded, with

λu =
2kdiff

mint(dih)2ei(0)
. (29)

3. Switched systems analysis

We now show that the entire switched system is stable. To
do so, we make use of a theorem from Yang et al. [52] (see
also [53].) To paraphrase the theorem, a switched system is
exponentially stable if the following conditions are met.

1. One subsystem is exponentially stable with decay
constant λs and another subsystem is exponentially
bounded with growth constant λu.

2. The Lyapunov functions for each subsystem satisfy
V s

i ≤ µV u
i for some µ ≥ 1.

3. If ts,i is the time the system is stable and tu,i is the time
the system is unstable, then there must exist some con-
stant λ∗ ∈ (0,λs) such that

ts,i
tu,i
≥ λu +λ∗

λs−λ∗
. (30)

4. The average dwell time τa, or the average time the
switched system spends in each individual subsystem,
must obey

τa >
ln µ

λ∗
. (31)

Applying this theorem to chemical herding, Condition (1)
says that the herder must drive the follower to its target at a
faster rate than the follower runs away (due to unwanted at-
traction to the herder) when it is left alone. Condition (2) is a
common condition in switched system analysis that says that
the Lyapunov function for the unstable system cannot be of



9

a higher order than the stable system. Condition (3) requires
that the time a follower is unchased must be less than a cer-
tain fraction of the total time. Finally, condition (4) constrains
how fast the herder can switch between chasing different fol-
lowers. We will now show that, if Equation (30) holds, then
these conditions are true for chemical herding.

Theorem 1. Assume that the trajectory of a herder rh(t) is
equal to the optimal trajectory r∗h(t) given by Equation (21),
followers have dynamics given by Equation (16), and there ex-
ists a constant λ∗ ∈ (0,λs) such that Equation (30) is satisfied.
Then the chemical herding system is exponentially stable.

Proof. We have already shown in Lemmas 1 and 2 that Con-
dition (1) is satisfied with λs = 2kdiff/R2

f hei(0) and λu =

2kdiff/mint(dih)
2ei(0). Also, from Equations (25) and (28),

Condition (2) is satisfied with µ = 1. Since ln(1) = 0, Condi-
tion (4) is trivially satisfied. Then, if Equation (30) holds, then
Condition (3) is true, and the switched system is exponentially
stable.

B. Limits on the number of steerable particles

We can now derive two limits on the number of particles n f
that can be steered. First, using Theorem 1, we can derive a
limit on the number of particles that can be steered by finding
the conditions where Equation (30) holds. This limit occurs
because, as n f increases, the herder must spend more time
moving particles back to their targets after unwanted attrac-
tion between the herder and unchased particles moves them
away. Second, we can derive a bound on the number of par-
ticles by comparing the timescale of Brownian motion to the
time it takes the herder to visit each particle. This limit occurs
because, as n f increases, the herder must spend more time cor-
recting for the effects of Brownian motion. In this paper, we
treat these two limits independently of each other and claim
that herding works as long as both limits are kept.

1. Limit from unwanted attraction to herder

We now use Theorem 1 to derive a limit on the number of
particles that can be steered. In Equation (30), the ratio of
timescales tu,i and ts,i is a function of an arbitrary parameter
λ∗. Since Equation (31) is satisfied regardless of the value of
λ∗, we are free to take λ∗ to be as small as possible. In the
limit of λ∗→ 0, we can re-arrange Equation (30) to give

tu,i
ts,i
≤ mint(dih)

2

R2
f h

. (32)

We have found it useful to add 1 to each side and produce

tu,i + ts,i
ts,i

≤ 1+
mint(dih)

2

R2
f h

. (33)

Next, we will find a relationship for tu,i + ts,i. Note that,
tu,i + ts,i equals the total time for the herder to travel between

and herd each of the n f followers. We define the variable
th as the average time for the herder to travel between two
followers. Then

tu,i + ts,i = n f th +
n f

∑
i

ts,i. (34)

The maximum number of particles for which the inequality in
Equation (33) holds occurs when each follower takes the same
amount of time to move to its target. With this assumption, we
drop the subscript i, giving

tu + ts = n f (ts + th). (35)

Equation (33) can now be evaluated by substituting in
Equation (35) and solving for n f , which yields

n f ≤

(
1+

mint(dih)
2

R2
f h

)(
1+

th
ts

)−1

. (36)

This expression gives a limit for the number of particles that
can be steered before the herder requires more time to correct
for unwanted attraction than for moving the chased particle to
its target. However, is not yet useful, because dih, th, and ts
and x are functions of time. Let us address these variables one
at a time.

To evaluate th, assume the herder moves at a constant speed
vmax and an average distance ` every time it switches follow-
ers. Then the average time for the herder to travel between
followers is

th,avg = `/vmax, (37)

which is equivalent to evaluating Equation (15) at a distance
of x = `.

We can evaluate ts using Equation (19), though we must
choose an appropriate length scale x. The right-hand side of
Equation (36) is at its tightest bound when ts is minimized,
which happens when x is minimized, so we can substitute x
with its minimum value to get a function of constant param-
eters. The minimum value of x is dtol, the tolerance at which
we will stop the herding, as defined in Section II D, so we will
replace x with dtol and define

ts,min =
dtolR2

f h

kdiff
(38)

Finally, mint(dih) is both time-varying and unrealistically
restrictive. In practice, mint(dih) may be equal to R f h, the
closest the herder can approach a follower. This would imply
that a particle could be dragged away at the same rate as it
moves towards the target. Such behavior is never observed in
our simulations. On the other hand, if the herder can move
arbitrarily fast, then mint(dih) will be approximately equal to
the distance between follower i and follower i+ 1. We have
already said that this distance approaches `. With this reason-
ing, and our empirical observations, we postulate that replac-
ing mint(dih) with ` will produce a more useful bound.
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After these substitutions, we have

n f ≤

(
1+

`2

R2
f h

)(
1+

th,avg

ts,min

)−1

. (39)

Finally, we substitute in kdiff from Equation (17), th,avg from
Equation (37), and ts,min from Equation (38) to illustrate the
full set of parameters that affect n f . The maximum number of
particles that can be steered is then given by

n f ≤

(
1+

`2

R2
f h

)(
1+

ghµ f `

4πDsdtolvmaxR2
f h

)−1

. (40)

We note some interesting aspects of Equation (40). To be-
gin with, in the limit as vmax→∞, the number of followers n f
depends only on the ratio of the square of the distance ` be-
tween two targets and the square of the distance R f h between
the herder and a chased particle, or

lim
vmax→∞

n f ≤ 1+(l/R f h)
2. (41)

This relationship can be explained by comparing the strengths
of desired attraction and unwanted attraction. If ` is increased,
then the unchased followers are allowed to remain farther
from the herder, and the force of unwanted attraction is de-
creased, meaning more particles can be steered. If R f h is
increased, then only the chased follower is farther from the
herder, and the force of desired attraction is decreased rela-
tive to unwanted attraction, meaning fewer particles can be
herded. Also, both desired and undesired attraction have a
squared dependence on distance, as seen in Equation (16),
which explains the squared relationship between n f and ` and
R f h. However, we note that a number of approximations were
made in deriving this result, and so information may have been
lost. If the distance ` is not representative of the average dis-
tance between the herder and an unchased particle, then Equa-
tion (40) may not be accurate. We will analyze this possibility
further using simulations in Section IV.

If the herder cannot move sufficiently fast (vmax is not in-
finite), then we must use the full form of Equation (40). If
vmax is of comparable size to the diffusiophoretic velocities of
the followers, then the unwanted attraction between the herder
and unchased particles will have time to act while the herder is
moving betweeen followers, and this will decrease the number
of particles that can be steered. The diffusiophoretic velocity,
from Equation (16), is directly proportional to gh and µ f and
inversely proportional to Ds. That is why, in Equation (40),
the bound on n f gets tighter as gh and µ f increase and as Ds
decreases.

It is also interesting to note that Equation (40) is a func-
tion of dtol. This happens because dtol is the length scale over
which the desired attraction happens when the particles are
being maintained near their targets. If the time for the herder
to travel between followers, with length scale `, is large com-
pared to the time for the herder to interact with the followers,
with length scale dtol, then this will decrease the number of
followers that can be herded. Thus, if we want more precise
placement of the particles (a smaller dtol), we cannot herd as
many particles.

2. Limit from Brownian Motion

We now consider the effects of Brownian motion. We must
have the herder visit each particle more quickly than Brownian
motion can move the particles away from their targets, or

ts + tu ≤ tbrown, (42)

where tbrown comes from Equation (13). As in the previous
section, we will evaluate tbrown at a length scale of x = dtol,
which creates the tightest bound. Starting with Equation (42),
substituting in Equation (13), and solving for n f , we get

n f ≤
d2

tol

4D f
(
ts,min + th,avg

) . (43)

Finally, substituting in Equations (37) and (38) to see the full
set of parameters, we get

n f ≤
d2

tol
4D f

(
4πDsdtolR2

f h

ghµ f
+

l
vmax

)−1

. (44)

3. Predicted Limits based on Combined Bounds

Equations (40) and (44) give two different bounds on the
maximum number of particles that can be steered. Both
bounds must be satisfied for steering to be viable.

Figure 6 shows the number of particles that can be steered
as a function of the six parameters R f , l,dtol,Rh, Jh, and vmax.
The area shaded in blue shows the set of parameters for which
particle steering is viable. For example, Figure 6a has a max-
imum of n f ≈ 11 when R f is between 2 and 4 µm. Note
that this plot is only valid for the specific values of the other
parameters that have been selected, and different values of
`,dtol,Rh, Jh, or vmax may move the maximum to the left or
right.

Both the follower radius R f and the herder radius Rh
strongly affect the number of particles that can be steered, as
shown in Figure 6a and b. Each of these plots peaks (with our
chosen values of other parameters) between 2µm and 4µm.
For smaller particle sizes, the number of particles capable of
being steered falls sharply. At smaller sizes of R f , the diffu-
sion coefficient of the followers D f becomes large and Brown-
ian motion moves the followers away from their targets faster
than the herder can correct them. At smaller sizes of Rh, the
smaller reaction rate (since gh is proportional to Rh) makes
the herding take longer, which also allows Brownian motion
to dominate. At larger sizes of either parameter, the herder
and followers are forced to be farther apart, which lowers the
force of desired attraction compared to unwanted attraction
and lowers the number of particles that can be steered. This
analysis suggests that chemical herding is scale-dependent
and may only be viable for a narrow range of particle sizes.
We also note that the simulations in this paper only tested a
herder that was the same size as the followers; we expect that
if the herder is much larger than the followers, then it would be
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FIG. 6. The number of particles that can be steered as a function of six different parameters. In each plot, one parameter is varied, and the
rest take values given in Tables I and II. The bound given by Equation (40) is shown as a dashed line, and the bound given by Equation (44) is
shown as a solid line. The region in which both equations are satisfied is shaded in blue, and the choice of parameters used in the simulation
below for six particles is shown as a black x.

more likely to attract multiple followers at once, which would
make herding more difficult.

The number of particles that can be steered also depends
on how close together the target positions for the particles are,
represented by variable `. As shown in Figure 6c, a target dis-
tance of less than 20µm (with our choice of other parameters)
will only allow four or fewer particles to be steered, due to
the limit created by unwanted attraction. This is because the
unwanted attraction between the herder and the unchased par-
ticles gets stronger as the particles get closer together. A tar-
get distance that is too large will also create a limit on n f due
to Brownian motion. If the targets are placed far away from
each other, then the herder will take longer to move between
followers and Brownian motion will have time to move fol-
lowers away from their targets before the herder has a chance
to correct them. However, with the choice of parameters we
used, this upper limit is less restrictive, and up to 8 particles
can still be steered at ` = 100µm. We wish to note that the
bounds we have derived assumed a distance ` that is both the
average distance between the herder and an unchased follower
and also the average distance the herder must move when trav-
eling between followers. Different shapes of target positions
might make either of these assumptions inadequate to capture
the behavior of the system. Thus, the shape of the target may
affect the behavior of the system in ways we have not been
able to fully capture with this analysis.

The reaction flux of the solute on the surface of the herder,
Jh, also affects the number of particles that can be steered, as

shown in Figure 6d. We plotted Jh instead of gh to separate
the effects of changing the herder radius, but the two variables
can be related using gh = 4πR2

hJh. As seen in Figure 6d, a
reaction flux of less than about 0.005 mol/m2s (for our choice
of other parameters) will only allow fewer than four particles
to be herded, though the bound on n f increases steadily as Jh
increases to about 0.02 mol/m2s. Values of Jh in this range are
realistic for the H2O2 reaction we have chosen as our example.
Increasing Jh will increase the desired attraction between the
herder and chased follower, which will increase the speed at
which the herder moves a follower to its target and allow the
herder to correct for Brownian motion more quickly. But a
larger Jh will also increase the force of unwanted attraction on
the unchased particles, as discussed previously. This means
that if Jh is too large, unwanted attraction will limit the num-
ber of particles that can be steered.

The variable dtol, the tolerance at which we conclude that
the followers are close enough to their targets, also plays a
role in the number of particles that can be steered, as shown
in Figure 6e. In this plot, the Brownian motion curve is limit-
ing until about 8µm, where it crosses the unwanted attraction
curve. Since dtol is the tolerance that we require the herd-
ing to achieve, it makes sense that a smaller tolerance will
be more difficult to produce. At small values of dtol, Brown-
ian motion moves the followers away from their targets faster
than the herder can visit each follower to correct the distur-
bance. At large values of dtol Brownian motion is not a sig-
nificant factor, but unwanted attraction becomes important for
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reasons discussed previously, and n f approaches the asymp-
tote of n f = 1+ l2/R2

f h, as given by Equation (41).
Finally, the effects of the maximum speed of the herder,

vmax, are shown in Figure 6f. In this plot, both bounds in-
crease monotonically, but for our choice of parameters, un-
wanted attraction remains the more restrictive bound. A larger
vmax will decrease the time the herder takes to travel between
followers, which will allow the herder to meet both bounds
more easily. However, the effects of this increase asymptote
to n f = 1+ l2/R2

f h, as discussed previously.

IV. BROWNIAN DYNAMICS SIMULATIONS

Now we will demonstrate BD simulations of chemical
herding. First, we will demonstrate a single herder steering
particles from random initial positions into a lattice and into
a circular formation, with parameters selected using the rela-
tionships given in the previous section. Then we will demon-
strate that it is possible to use multiple herders in tandem to
move many particles at a time.

A. Single herder simulations

We will now show simulations of chemical herding and
demonstrate how the rules developed in the previous section
work in practice, by looking at the time it takes to solve the
herding problem under different conditions. We will also
show that chemical herding can be used to produce different
target shapes. Then, we will look at ways to reduce the time
needed for chemical herding.

Figure 7 shows a chemical herding simulation where nine
followers are steered from an initial random arrangement to a
regular lattice with ` = 30µm spacing. The initial positions
were chosen from a random uniform distribution on the por-
tion of the domain between 50 and 150µm. Each particle was
steered to a target using the control algorithms explained pre-
viously, and the simulations were ended after each particle
was steered to within dtol of its target, plus another five min-
utes to show that the herder could maintain the particles on
their targets. A full simulation is shown in Supplementary
Video 1 [47]. We repeated this simulation 100 times with dif-
ferent initial conditions, and the example shown in Figure 7 is
a typical result.

The herding problem can be divided into two phases, as
illustrated by Figure 7: first, initially moving each particle to
within dtol of its target, and second, maintaining the particles
near their target positions. Figure 7a-c shows part of the initial
phase, and figure 7d-f shows the latter maintenance phase.

In the initial phase, the herder moves each follower from
their initial position to their target position. Figure 7a shows
the initial positions of the particles. Figure 7b shows the tra-
jectory of each particle as the herder moves the first follower
to its target. According to our switching rule, the follower
farthest from its target is chased first. Then, once the first fol-
lower reaches its target, the herder switches to chasing another
follower that is now the farthest from its target at the new time.

Figure 7c shows the trajectories of each particle as the herder
moves a second particle to its target and begins chasing a third
particle.

Herding continues similarly until all particles are within dtol
of their targets, and then a maintenance phase begins. Fig-
ure 7d shows the positions of the particles after each particle
has been moved to within dtol of its target position. Brown-
ian motion and unwanted attraction continue to affect the par-
ticles, so the herder must continue to herd the followers to
maintain their positions. Figure 7e shows how the herder uses
the same switching rule and control algorithms to maintain the
particles on their target positions and correct for the Brown-
ian motion moving the particles away from their targets. And
Figure 7f shows the positions of the particles five minutes af-
ter the particles reached dtol, illustrating that the arrangement
of particles can be maintained.

Using similar simulations, we tested the theoretical predic-
tions made in the previous section that Equations (40) and
(44) provide bounds for the number of particles n f that can
be steered as a function of different parameters. To do this,
we ran simulations for many values of the number of follow-
ers n f and the radius of a herder R f , and tracked the time to
completion. If the herder took longer than two hours (7200
seconds) to move all followers to their targets, we ended the
simulation, reasoning that two hours would be an unrealisti-
cally long time to perform this type of experiment in a physi-
cal system. We performed 100 iterations for each n f between
1 and 17, and for each of six different radii, with the results
shown in Figure 8. Figure 8a shows the parameter values used
in our simulations compared to the bounds predicted by Equa-
tions (40) and (44) from Figure 6a. Figure 8b shows the time
to reach the desired configuration as a function of n f , and Fig-
ure 8c shows the time as a function of R f .

The results in Figure 8a and Figure 8b where the number of
follower particles (n f ) is varied show that the bounds we pre-
dicted by Lyapunov stability theory are close but conservative.
The theoretical bounds in Figure 8a predict that only 10 par-
ticles can be steered, but in Figure 8b, up to 14 particles were
consistently moved to their targets within the two-hour time
limit. For n f = 15, five (out of 100) simulations did not finish,
for n f = 16, 46 simulations did not finish, and for n f = 17, 65
simulations did not finish within the two-hour time limit. Thus
the bounds we derived can be interpreted as a conservative es-
timate of how many particles can be steered in a reasonable
amount of time.

The results in Figure 8a and Figure 8c that show variation
in the follower radius R f demonstrate that both qualitative ef-
fects predicted by theory—unwanted attraction and Brownian
motion—are important bounds. Figure 8c shows the time it
took the herder to move nine particles onto a lattice for radii of
0.6, 1, 2, 4, 6, and 8 µm. The time gets very large for radii that
are too small or too large. For both R f =0.6µm and R f = 8µm,
at least some simulations were cut off at the two-hour mark.
For R f =0.6µm, three simulations (out of 100) exceeded the
two-hour limit, and for R f =8 µm, 91 of the simulations ex-
ceeded the two-hour limit. This shows that there is both a
bound on how small and how large follower particles can be,
as predicted by our theory.
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FIG. 7. One herder (orange circle) is used to move six follower particles (red circles) to their associated target positions (red x’s) on a lattice
with a spacing `= 30µm. Contours show the concentration produced by the herder. Plot (a) shows the random initial condition. Plot (f) shows
the particles after they have been moved to within dtol of their target positions and maintained there for 5 minutes. Plots b-e show intermediate
times. The tails (orange and red lines) behind the particles show their trajectory over different time periods, with the choice of tail length
explained in the text.
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FIG. 8. Statistics of BD simulations performed over a range of parameters. Plot (a) shows the parameter values for the simulations. Plot (b)
shows box plots of the time to solve at each value of n f . Red x markers represent simulations that did not end in the two-hour time limit. Plot
(c) shows box plots of the time to solve at each value of R f . Again, red x markers represent simulations that did not end in the two-hour time
limit.

We also investigated patterns other than a lattice. Figure 9
shows a simulation in which a single herder steers 10 particles
into a circular pattern. Particles started from initial positions
taken from a random uniform distribution on the portion of
the domain between 25µm and 175µm. The full simulation
is shown in Supplementary Video 2 [47]. We again used the
parameters from Table I, which, as seen from Figure 6, allows

us to steer up to 10 particles with a single herder without vi-
olating the constraints given by Equations (40) and (44). As
previously noted, these bounds are only approximate; we have
observed some situations in which a greater number of parti-
cles can be steered. The shape of the target arrangement likely
impacts the actual number of particles that can be herded. We
expect that, in general, when the average distance between
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FIG. 9. One herder (orange) is used to move ten followers (red) to their target positions (red x’s), arranged in a circle with a spacing between
targets `= 30µm. Plot (a) shows the random initial condition. Plot (b) shows the particles after the herder has moved each particle to within
dtol of their targets. Plot (c) shows after it has maintained them there for 5 minutes.

targets is much greater than the minimum distance `, Equa-
tions (40) and (44) will not adequately predict the number of
particles that can be steered.

Another important consideration in chemical herding is the
time it takes the system to reach the desired configuration. For
the simulations where ten particles were herded into a circle,
the average time to converge was 1200 seconds with a stan-
dard deviation of 370 seconds (in 100 runs with random ini-
tial conditions). In the simulation shown in Figure 9, it took
1480 seconds to move all ten particles to within dtol of their
targets, which may be longer than convenient for many types
of experiments.

There are several methods that may potentially increase the
speed of the chemical herding system. First, a more effi-
cient switching strategy could be chosen. In Supplementary
Video 2 [47], there are numerous times where the herder trav-
els across the diameter of the circle to chase the next particle,
when it would be preferable to first chase a closer particle.
A more efficient switching strategy could account for the dis-
tance the herder must travel.

Second, unwanted attraction to the herder could be lever-
aged to speed up chemical herding. Unwanted attraction
causes the followers to be pulled off their targets as the herder
chases other particles. But for some target orientations, like
the circle, the particles could be placed farther out from their
target positions, knowing that the unwanted attraction would
tend to move them towards the center. This observation sug-
gests that a more advanced control technique such as model
predictive control could be used to plan the trajectory of the
herder to use unwanted attraction as beneficially as possible.

Third, physical parameters could be selected to cause the
herder and followers to move faster. When a herder travels
between followers, the maximum speed vmax it can travel is
constrained by how much force (e.g., electrophoretic forces
on the herder) can be applied by the actuator. A more power-
ful actuator would increase vmax and thereby reduce the time
for the herder to travel between followers. More importantly,
much of the time spent in chemical herding is at the slower
diffusiophoretic speed of the follower particles. The time for
diffusiophoresis to move a follower a given distance is given

by Equation (19). Thus a larger mobility, a higher reaction
rate, a smaller solute diffusion coefficient, or smaller herder
and follower sizes would increase the herding speed.

Fourth, the chemistry of the physical system could affect
the amount of unwanted attraction present. For example, some
chemical reactions can be turned on and off using light [1, 2].
Such a light-controlled reaction could be used to eliminate the
unwanted attraction that occurs when the herder is moving
between followers. As another example, a bulk reaction that
consumes the solute as it diffuses away from the herder could
serve to reduce the unwanted attraction between the herder
and unchased followers. Such a bulk reaction has been re-
ferred to as “chemical screening” [44, 54]. If the solute is
consumed by a bulk reaction, then that would decrease the
strength of the gradient that is felt far from the herder, which
could allow us to greatly relax the bound created by unwanted
attraction and also save time by reducing the number of times
the herder must go back and correct the positions of followers.

Finally, hydrodynamics could both positively or negatively
affect the number of followers that can be herded. Though hy-
drodynamic interactions were not included in this paper, we
hypothesize that they would have three main effects. First,
hydrodynamics introduces convection that alters the concen-
tration profile around both herders and followers, which could
affect both desired and unwanted attraction. Second, hydro-
dynamic interactions from the herder or other followers could
perturb followers from their target positions (analogous to un-
wanted attraction), making herding more difficult. And, third,
hydrodynamic interactions would create a coupling (i.e., alter
the drag forces) between the herder and the chased follower,
which would tend to make the pair move faster than expected
from diffusiophoresis alone [50], possibly make herding eas-
ier. Because of the apparent complexity of these interactions,
the effects of hydrodynamics will need to be studied further in
future work.
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FIG. 10. Three herders (orange) are used to move 12 followers (red) to their target positions (red x’s). Plot (a) shows the random initial
condition. Plot (b) shows the particles after the herder has moved each particle to within dtol of their targets. Plot (c) shows after it maintained
them there for 5 minutes.

B. Multiple herders

The BD equations and control laws derived in this paper
assume a single herder, but they only need slight modifica-
tions to the concentration profile to model multiple herders.
With multiple herders, we neglect the diffusiophoresis felt be-
tween herders. With this assumption, the BD equation for
each herder is still given by Equation (6) and the BD equa-
tion for each follower is still given by Equation (5). However,
∇Cs is now evaluated as the sum of the solute gradient (Equa-
tion (10)) produced by each herder, or

∇Cs(x)≈∑
i

−gh(x−rh,i)

4πDs||x−rh,i||3
. (45)

The control algorithm developed in Section II D can be ap-
plied to each herder independently, with two modifications.
These modifications prevent the herders from getting too close
to each other and causing the followers to group together,
which was a common failure condition before these changes.
First, the switching strategy was modified by adding the con-
straint that a herder could not chase a follower located within
dapproach of another herder. Second, the GVF for each herder
was modified to consider an area around each of the other
herders as an obstacle to avoid, as detailed in Section I of the
Supporting Information [47].

In Figure 10, three herders move 12 followers onto targets
arranged on a regular lattice, using parameters from Table I.
This example illustrates that scale-up to multiple herders is
possible. With the modifications mentioned above to ensure
that herders never get too close together, we quickly and ac-
curately arrange the particles on a lattice. The full simulation
is shown in Supplementary Video 3 [47], and it took 370 sec-
onds to move all followers within dtol of their targets. In 100
simulations with different initial conditions, the average time
was 430 seconds, with a standard deviation of 130 seconds.

We note that in Supplementary Video 3, there are times
when a herder attracts multiple follower particles at once. At
the low densities of follower particles we used in our sim-
ulations, the controller is able to deal with this situation and

quickly leave all but one behind. This is because our controller
makes the herder move away from the followers at the same
speed as the diffusiophoretic attraction moves the nearest (and
therefore the fastest) follower towards the herder. Since dif-
fusiophoretic interactions fall off with distance, all but one
follower is left behind.

We also note that Equations (40) and (44), which we used to
predict the number of particles that can be steered by a single
herder, do not apply to these multiple herder simulations. The
analysis that led to those bounds was based on a single herder.
However, while the numerical predictions are no longer valid,
we expect the general principles that underlie Equations (40)
and (44)—that herding is limited by Brownian motion and un-
wanted attraction—still apply to the multiple herder case.

Finally, it might be reasonable to attempt to make each
herder steer a subset of particles so that no herder has to move
too far, and so that scale-up is more intuitive. However, initial
attempts with this approach were unsuccessful because par-
ticles on the edges of the target pattern were attracted to the
middle too strongly. Particles near the edges need more atten-
tion than particles in the middle, so future herding strategies
could focus on how to more efficiently partition herders and
followers so that scale-up is intuitive and effective.

V. CONCLUSION

In summary, we have used an externally-steered reactive
particle to place passive particles on target positions, in a pro-
cess we have dubbed chemical herding. We did this using
a control law divided in three parts: First, a switching strat-
egy was employed and the optimal herder position was calcu-
lated. Second, a GVF was used to determine the herder trajec-
tory. And third, an actuator-specific controller was needed to
find the actuator values (e.g., electrode voltages) to make the
herder move. Using Lyapunov stability theory, we derived a
bound on the number of particles that could be steered using
a single herder, by comparing the desired attraction between
the herder and a chased particle with the undesired attraction
between the herder and an unchased particle. We added to this



16

another bound due to Brownian motion and found the range
of parameters in which particle steering is viable.

Simulations were performed to validate the bounds we de-
rived, and it was discovered that while these bounds are con-
servative, they capture the qualitative behavior of how param-
eters such as the radius of the followers cannot be either too
large or too small for chemical herding to work. We conclude
that chemical herding is viable for a narrow range of parti-
cle sizes, which, for the parameters chosen in our simulations,
is roughly between 1 and 10µm. These sizes roughly cor-

respond to the sizes of particles that are small enough to be
considered colloids but large enough to be viewed through an
optical microscope.

Finally, multiple herders were used in tandem to demon-
strate that chemical herding is a viable means to create a mul-
tiplicative factor on the number of particles that can be moved
using top-down single-particle steering methods. Chemical
herding shows promise as a means to facilitate the precise,
local control of a large number of particles using top-down
methods and has great potential for the creation of dynami-
cally configurable colloidal materials.
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I. GRADIENT VECTOR FIELD

In this section, we give the equations for the gradient vector
field (GVF) used to set the trajectory of the herder. We use a
slightly modified version of the GVF presented by Wilhelm
and Clem [1]. Equations (S1)-(S8) summarize their work,
while Equation (S9) gives our modifications.

A GVF is a function Vg(rh,r
∗
h,{ri}) that produces a direc-

tion for the herder to move at each time step. (Recall that rh
is the position of the herder, r∗h is the target position for the
herder, and {ri} is the set of the positions of each follower.)
We wish to calculate the direction V̂g that will move the herder
to r∗h while avoiding collisions with the follower particles.

The GVF is described by

Vg = Vpath +
nf

∑
i=0

PiVobs,i, (S1)

where Vpath is the 2D vector that guides the herder to its opti-
mal placement r∗h , and Vobs,i is the vector that repels the herder
from obstacle i. Also, Pi is a decay function that determines
how far from obstacle i the repulsion persists, defined as

Pi =− tanh
(

2πdih

Ri
−π

)
+1, (S2)

where dih = ||rh−ri|| (the distance between obstacle i and the
herder). For followers, we set Ri = kR f h, where the value of
k = 1.6 was chosen by trial and error to ensure the particles
do not overlap. In simulations with multiple herders, we set a
different value of Ri for herders to prevent them from moving
too close to each other, settling on a value of Ri = 16µm.

Each of the terms in Equation (S1) is further divided into
a convergence term and a circulation term. The convergence
terms make the herder either approach its target or avoid an
obstacle. The circulation terms help the GVF avoid singu-
larities, or points where ||Vg|| = 0. Each term is weighted
appropriately, giving

Vpath = GpathV
conv

path +HpathV
circ

path (S3)

Vobs,i = GobsV
conv

obs,i +HobsV
circ

obs,,i, (S4)

which introduces the functions V conv
path ,V circ

path ,V conv
obs , and V circ

obs
that will be defined in the following paragraphs, as well as a
set of constant weights. To calculate Vpath, we used a con-
vergence weight Gpath = 1 and a circulation weight Hpath = 0,
meaning there is no circulation when the herder is far from

any obstacle. To calculate each Vobs,i we used a convergence
weight Gobs = −2, meaning the herder will be repelled from
obstacles, and a circulation weight Hobs = 0.5, which will bias
the particle into clockwise movement around obstacles. These
parameters were selected by trial and error.

The convergence and circulation terms of the portion of the
GVF that make the herder approach its goal are

V conv
path =

−1√
(cos(δ )x+ sin(δ )y)2

[
xcos2(δ )+ cos(δ )sin(δ )y
ysin2(δ )+ cos(δ )sin(δ )x

]
(S5)

and

V circ
path = [sin(δ ),−cos(δ )]T , (S6)

where δ is the angle between the desired path and the x-axis.
The convergence and circulation terms that prevent the

herder from colliding with an obstacle centered at (xc,yc) are

V conv
obs =

−1
x̄2 + ȳ2

[
2x̄3 +2x̄ȳ2

2ȳ3 +2x̄2ȳ

]
(S7)

and

V circ
obs = [2ȳ−2x̄]T , (S8)

where x̄ = x− xc and ȳ = y− yc.
The GVF, as given so far, encounters a problem when the

followers are close together. When an unchased follower is
too close to the chased follower, treating that unchased fol-
lower as an obstacle may prevent the herder from ever reach-
ing its optimal placement r∗h . Our heuristic for solving this
problem is that we consider only those followers that are lo-
cated further than R f h from r∗h as obstacles to be included in
the sum in Equation (S1). Collisions with obstacles closer
than that are deemed necessary.

In Equation (S1), Vg gives the direction for the herder to
move. We would also like the herder to move at the maximum
speed vmax allowed by the physical system. However, since
the controller is discrete in time, care must be taken to ensure
the herder does not overshoot its target. Thus the velocity we
wish to move the herder at is

drh

dt
= V̂g min

(
vmax,

eh

∆tcontrol

)
, (S9)

where eh = ||rh−r∗h|| is the vector from the herder to its target
position and ∆tcontrol is the timestep of the controller. This
velocity ensures that the herder moves at a speed of vmax until
it is within the distance from its optimal position that it can
move in a single timestep, then it slows to avoid overshooting.
We used a value of ∆tcontrol = 0.1 s.
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II. LYAPUNOV STABILITY PROOFS

Here we will give the proofs for Lemmas 1 and 2 from the
main text. These proofs follow the strategy given by Licitra et
al. in References [2–4].

Lemma 1. Assume that the trajectory of a herder rh(t) fol-
lows its optimal trajectory r∗h(t) given by Equation (21), and
that a follower with dynamics given by Equation (16) is cur-
rently being herded. Then that follower will converge expo-
nentially to its target with an exponential bound of

ei(t)≤ ei(0)e−λst/2, (S10)

where λs is a positive constant.

Proof. Define the Lyapunov function

V s
i =

1
2
eT

i ei, (S11)

with time derivative

V̇ s
i = eT

i ėi. (S12)

Applying Equation (16), where we recall that ėi = dri/dt,
gives

V̇ s
i =

−kdiff

||ri−rh||3
eT

i (ri−rh). (S13)

Substituting Equation (21) into Equation (S13), where parti-
cle i is the currently chased particle c, and assuming rh = r∗h
yields

V̇ s
i =−kdiffei

R2
f h

. (S14)

Since Equation (S14) is negative definite, Lyapunov theory
guarantees that ei will decrease over time. This implies that
ei(t)≤ ei(0). Then, if we multiply the right hand side of Equa-
tion (S14) by ei(t)/ei(0), we can use Equation (S11) to write

V̇ s
i ≤−

kdiff

R2
f h

e2
i

ei(0)
=−λsV s

i , (S15)

where

λs =
2kdiff

R2
f hei(0)

. (S16)

We can then integrate to produce

V s
i ≤V s

i (0)e
−λst . (S17)

Substituting in Equation (S11) and solving for ei yields Equa-
tion (S10).

Lemma 2. Assume that the trajectory of a herder rh(t) fol-
lows its optimal trajectory r∗h(t) given by Equation (21), and
that a follower with dynamics given by Equation (16) is not
currently being chased. Then that follower will remain within
an exponentially bounded area around its target with an ex-
ponential bound of

ei(t)≤ ei(0)eλut/2, (S18)

where λu is a positive constant.

Proof. Consider the Lyapunov function

V u
i =

1
2
eT

i ei (S19)

with time derivative

V̇ u
i = eT

i ėi. (S20)

Substituting Equation (16) into Equation (S20) as before, we
get

V̇ u
i =
−kdiff

d3
ih

eT
i dih, (S21)

where dih = ri−rh is the vector from the herder to particle i.
The inner product can also be written as eT

i di = eidih cos(θ),
where θ is the angle between the two vectors. The function
V̇ u

i is maximized when θ = 180◦, which gives

V̇ u
i ≤

kdiff

d2
ih

ei. (S22)

When θ = 180◦, ei increases with time, so we will have
ei(t) ≥ ei(0). Consequently, the inequality is preserved if we
multiply by ei(t)/ei(0). We also replace dih with the minimum
value it attains while it is not being chased by the herder, mak-
ing it constant and giving us

V̇ u
i ≤

kdiff

mint(dih)2
e2

i
ei(0)

= λuV u
i , (S23)

where

λu =
2kdiff

mint(dih)2ei(0)
. (S24)

We can then integrate to produce

V u
i ≤V u

i (0)e
λut . (S25)

Substituting in Equation (S19) and solving for ei, we see that
ei is exponentially bounded by Equation (S18).
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