11.  Superposition Principle for Non-Homogeneous Heat Equation with Non-Homogeneous Boundary Conditions:

 

            :    ,         

 

        Initial condition:                  

               

        Boundary conditions:                                  (Dirichlet)

                                                                             (Neumann)

 

Supplemental problems:            a)             steady state solution:

                                                                                        :                 

               

                                                                                                   

                                                                               

                       

                                                b)             transient solution:

                                                                                     :  ,          

 

                                                                                       

                                                                                                                                                         

                            

 

       

The first supplemental problem is a BVP for ODE;

The second supplemental problem is an IBVP problem for a homogeneous Heat Equation with

homogeneous boundary conditions (basic case).

 

Show that     is a solution of the non-homogeneous IBVP.

Solve the problem with , and a) ; b) .  Sketch the graph.

               

 

       

                       

 

Solution:

 

The Heat Equation.  1-D. Finite domain . B.c. are not homogeneous; Equation is non-homogeneous.

Reduce to basic case by subdivision into supplemental problems: steady state and transient solutions.

 

1) Steady state solution:

 

 

 

2) Transient solution:

 

 

 

Separation of variables:     

                            

 

Sturm-Liouville Problem (equation with two homogeneous b.c.):

 

                               

                                 

 

Second equation:

 

The solution:

               

 

Write the solution in the form of the infinite series:

   

 

Apply the initial condition to determine coefficients :

 

Treat it as the sine Fourier series expansion of the function , then coefficients are:

                                               

     

       

3) Then solution is: