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2.1   Basic concepts, definitions, notations and classification 
     

Engineering design focuses on the use of models in developing predictions of 
natural phenomena. These models are developed by determining relationships 
between key parameters of the problem. Usually, it is difficult to find 
immediately the functional dependence between needed quantities in the model; 
at the same time, often, it is easy to establish relationships for the rates of 
change of these quantities using empirical laws. For example, in heat transfer, 
directional heat flux is proportional to the temperature gradient (Fourier’s Law) 

    
dx
dTkq −=  

where the coefficient of proportionality is called the coefficient of conductivity.  
Also, during light propagation in the absorbing media, the rate of change of 
intensity I  with distance is proportional to itself (Lambert’s Law)  

    kI
ds
dI

−=   

where the coefficient of proportionality is called the absorptivity of the media. 
 
In another example, if we are asked to derive the path ( )tx  of a particle of mass 
m  moving under a given time-dependent force ( )tf , it is not easy to find it 
directly, however, Newton’s second law (acceleration is proportional to the 
force) gives a differential equation describing this motion. 

    ( ) ( )tf
dt

txdm 2

2

=  

The solution of which gives an opportunity to establish the dependence of path 
on the acting force. 
 
The basic approach to deriving models is to apply conservation laws and 
empirical relations for control volumes. In most cases, the governing equation 
for a physical model can be derived in the form of a differential equation.  The 
governing equations with one independent variable are called ordinary 
differential equations.  Because of this, we will study the methods of solution of 
differential equations. 
 
 

Differential equation    Definition 1  A differential equation is an equation, which includes at least  
one derivative of an unknown function. 

 
 

        Example 1:  a)  ( ) ( ) xexxy
dx

xdy
=+ 2               

            b)   ( ) xyyy sin2 =′+′′               

            c)   
( ) ( )

0,,
2

2

2

2

=
∂

∂
+

∂
∂

y
yxu

x
yxu              

    d)   ( )( ) 0y,...,y,y,xF n =′   
 

    e)   ( ) ( ) 0
x

t,xuv
x

t,xu
2

2

=
∂

∂
−

∂
∂               

 
If a differential equation (DE) only contains unknown functions of one variable 
and, consequently, only the ordinary derivatives of unknown functions, then this 
equation is said to be an ordinary differential equation (ODE); in a case where 
other variables are included in the differential equation, but not the derivatives 
with respect to these variables, the equation can again be treated as an ordinary 
differential equation in which other variables are considered to be parameters.  
Equations with partial derivatives are called partial differential equations 
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(PDE).  In Example 1, equations a),b) and d) are ODE’s, and equation c) is a 
PDE; equation e) can be considered an ordinary differential equation with the 
parameter t . 

 
Differential operator D It is often convenient to use a special notation when dealing with differential  

equations. This notation called differential operators, transforms 
functions into the associated derivatives.  Consecutive application of the 
operator D  transforms a differentiable function ( )xf  into its derivatives of 
different orders: 

   ( ) ( )
dx

xdf
xf =D   ff ′→:D  

   ( ) ( )
2

2
2D

dx
xfdxf =  ff ′′→:D 2  

  #   
A single operator notation D  can be used for application of combinations of 
operators; for example, the operator 
   DD baD n +=  
implies 

   ( ) ( ) ( ) ( ) ( )
dx

xdfb
dx

xfdaxfbxfaxDf
n

n
n +=+= DD  

Order of DE  The order of DE is the order of the highest derivative in the DE.  It can be 
reflected as an index in the notation of the differential operator as 
   cbaD ++= DD 2

2  
Then a differential equation of second order with this operator can be written in 
the compact form 
   ( )xFyD =2   

Linear operator A differential operator nD  is linear if its application to a linear combination of 
n times differentiable functions ( )xf  and ( )xg  yields a linear combination 
   ( ) gDfDgfD nnn βαβα +=+ ,  R∈βα ,   
The most general form of a linear operator of nth order may be written as 
   ( ) ( ) ( ) ( )xaDxaDxaDxaL nn

nn
n ++++≡ −

−
1

1
10 "  

where the coefficients ( ) ( )ia x C∈ R  are continuous functions. 
 

Linear and non-linear DE A DE is said to be linear, if the differential operator defining this equation is 
linear.  This occurs when unknown functions and their derivatives appear as 
DE’s of the first degree and not as products of functions combinations of other 
functions. A linear DE does not include terms, for example, like the following: 
   2y  , ( )3y ′ , yy ′ , ( )yln , etc. 
If they do, they are referred to as non-linear DE’s. 
 
A linear ODE of the nth order has the form 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xFxyxaxyxaxyxaxyxaxyL nn
nn

n =+′+++≡ −
−

1
1

10 "  
where the coefficients ( )xai  and function ( )xF  are, usually, continuous 
functions.  The most general form of an nth order non-linear ODE can be 
formally written as 
   ( )( ) 0,...,,, =′ nyyyxF  
which does not necessarily explicitly include the variable x and unknown 
function y with all its derivatives of order less than n. 
 
A homogeneous linear ODE includes only terms with unknown functions:  
   ( ) 0=xyLn  
A non-homogeneous linear ODE involves a free term (in general, a function of 
an independent variable): 
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   ( ) ( )xFxyLn =  
A normal form of an nth order ODE is written explicitly for the nth derivative: 
   ( ) ( )( )1,...,,, −′= nn yyyxfy  

 
Solution of DE     Definition 2  Any n times differentiable function ( )xy  which satisfies a DE 

                                   ( )( ) 0,...,,, =′ nyyyxF  
is called a solution of the DE, i.e. substitution of function 

( )xy  into the DE yields an identity. 
 

 “Satisfies” means that substitution of the solution into the equation turns it into 
an identity. This definition is constructive – we can use it as a trial method for 
finding a solution (guess a form of a solution (which in modern mathematics is 
often called ansatz), substitute it into the equation and force the equation to be 
an identity). 

 
 Example 2:  Consider the ODE  0=+′ yy   on  ( )∞∞−=∈ ,Ix  

     Look for a solution in the form axey =  
     Substitution into the equation yields  
      0=+ axax eae  
      ( ) 01 =+ axea  divide by 0>axe  
      01 =+a  ⇒  1−=a  
     Therefore, the solution is xey −= .   
 But this solution is not necessarily a unique solution of the 

ODE. 
 
 The Solution of the ODE may be given by an explicit expression like in example 

2 called  the explicit solution; or by an implicit function (called the implicit 
solution integral of the differential equation)  

     ( ) 0, =yxg  
If the solution is given by a zero function ( ) 0≡xy , then it is called to be a 
trivial solution.  Note, that the ODE in example 2 posses also a trivial solution. 

 
 The complete solution of a DE is a set of all its solutions. 
 
 The general solution of an ODE is a solution which includes parameters, and 

variation of these parameters yields a complete solution.   
 Thus, { }Rccey x ∈= − ,  is a complete solution of the ODE in example 2. 

The general solution of an nth order ODE includes n independent parameters and 
symbolically can be written as 
    ( ) 0,...,,, 1 =nccyxg  
The particular solution is any individual solution of the ODE.  It can be 
obtained from a general solution with particular values of parameters.  For 
example, xe −  is a particular solution of the ODE in example 2 with 1c = . 
 
A solution curve is a graph of an explicit particular solution. An  integral 
curve is defined by an implicit particular solution. 

 
 Example 3:  The differential equation  

1=′yy   
has a general solution  

cxy
+=

2

2

 

The integral curves are implicit graphs of the general solution for different  
values of the parameter c  
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To get a particular solution which describes the specified engineering model, the 
initial or boundary conditions for the differential equation should be set. 
 

Initial Value Problem   An initial value problem (IVP) is a requirement to find a solution of nth order  
        ODE 
            ( )( ) 0,...,,, =′ nyyyxF  for x I∈ ⊂ \  
        subject to n conditions on the solution ( )xy  and its derivatives up to order n-1  

specified at one point Ix ∈0 : 
    ( ) 00 yxy =  

     ( ) 10 yxy =′  
     #  
            ( ) ( ) 10

1
−

− = n
n yxy  

        where 0 1 n 1y , y ,..., y − ∈\ . 
 
Boundary Value Problem  In a boundary value problem (BVP), the values of the unknown function and/or  
        its derivatives are specified at the boundaries of the domain (end points of the  
        interval (possibly ±∞ )). 

For example,   find the solution of 2xyy =+′′  on [ ]bax ,∈  
     satisfying boundary conditions: 
    ( ) ayay =  
    ( ) byby =  
    where a by , y ∈\  
 
The solution of IVP’s or BVP’s consists of determining parameters in the 
general solution of a DE for which the particular solution satisfies specified 
initial or boundary conditions. 

 
Types of Boundary Conditions I) a boundary condition of the Ist kind (Dirichlet boundary condition) specifies 

the value of the unknown function at the boundary Lx = : 
            fu

Lx
=

=
 

 II) a boundary condition of the IInd kind (Neumann boundary condition) 
specifies the value of the derivative of the unknown function at the boundary 

Lx =  (flux): 

            f
dx
du

Lx

=
=

  

 III) a boundary condition of the IIIrd kind (Robin boundary condition or mixed 
boundary condition) specifies the value of the combination of the unknown 
function with its derivative at the boundary Lx =  (a convective type boundary 
condition) 

            fhu
dx
duk

Lx

=



 +

=
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        Boundary value problems can be well-posed or ill-posed. 
 
 
Uniqueness of solution The solution of an ODE is unique at the point ( )00 , yx , if for all values of 

parameters in the general solution, there is only one integral curve which goes 
through this point.  Such a point where the solution is not unique or does not 
exist is called a singular point. 
 
The question of the existence and uniqueness of the solution of an ODE is very 
important for mathematical modeling in engineering.  In some cases, it is 
possible to give a general answer to this question (as in the case of the first order 
ODE in the next section.)  
 

  
 Example 4:  a) The general solution of the ODE in Example 2 is    

        { }xy ce ,c R−= ∈  

There exists a unique solution at any point in the plane 
 

                  
 
 

b) Consider the ODE 02 =−′ yyx  

The general solution of this equation is { }2y cx ,c R= ∈  

( )0,0  is a singular point for this ODE  
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2.2 First order ODE 
 

In this section we will consider the first order ODE, the general form of which 
is given by 
  ( ) 0,, =′yyxF  
This equation may be linear or non-linear, but we restrict ourselves mostly to 
equations which can be written in normal form (solved with respect to the 
derivative of the unknown function): 

normal form     ( )yxfy ,=′  
or in the standard differential form: 

standard differential form    ( ) ( ) 0,, =+ dyyxNdxyxM  
Note that the equation in standard form can be easily transformed to normal 
form and vice versa.  If the equation initially was given in general form, then 
during transformation to normal or standard form operations (like division or 
root extraction) can eliminate some solutions, which are called suppressed 
solutions.  Therefore, later we need to check for suppressed solutions. 
 

Initial Value Problem In an initial value problem (IVP) for a first order ODE, it is required to find a 
solution of 

          ( ) 0,, =′yyxF   for x I R∈ ⊂  
subject to the  initial condition at Ix ∈0 : 
  ( ) 00 yxy = ,   0y R∈  
Boundary value problems will differ only by fixing 0x  at the boundary of the  
region  I. 
The question of existence and uniqueness of the solution of an IVP for the first 
order ODE can be given in the form of sufficient conditions for equations in 
normal form by Picard’s Theorem: 

 
Picard’s Theorem Theorem (existence and uniqueness of the solution of IVP)  

Let the domain R be a closed rectangle centered at the point   
( ) 2

00 , Ryx ∈  : 

 ( ){ }2
0 0R x, y R : x x a, y y b= ∈ − ≤ − ≤  

and let the function ( )yxf ,  be continuous and continuously  
differentiable in terms of the y function in the domain R: 
 ( ) [ ]RCyxf ∈,  
 ( ) [ ]RCyxf y ∈,  
and let the function ( )yxf ,  be bounded in R: 
 ( ) Myxf ≤,  for ( ) Ryx ∈, . 
Then the initial value problem 
 ( )yxfy ,=′  
 ( ) 00 yxy =  
has a unique solution ( )y x  in the interval 

 { }hxxxI ≤−= 0: ,  where 






=

M
bah ,min  

 
 
                  

The proof of Picard’s theorem will be given in the following chapters; it also can 
be found in Hartmann [ ], Perco [ ] etc. and it is based on Picard’s successful 
approximations to the solution of IVP which we will consider later.  This 
theorem guarantees that under given conditions there exists a unique solution of  
the IVP, but it does not claim that the solution does not exist if conditions of the 
theorem are violated. Now we will consider the most important methods of 
solution of the first order ODE 
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2.2.1   Exact ODE    
        Consider a first order ODE written in the standard differential form: 

    ( ) ( ) 0,, =+ dyyxNdxyxM , ( ) 2x, y D∈ ⊂ \             (1) 
If there exists a differentiable function ( )yxf ,  such that  

    ( ) ( )yxM
x

yxf ,,
=

∂
∂                                                                  (2) 

    ( ) ( )yxN
y

yxf ,,
=

∂
∂                    (3) 

 for all ( ) Dyx ∈, , then the left hand side of the equation is an exact differential 
of this function, namely 

exact differential     ( ) ( )dyyxNdxyxMdy
y
fdx

x
fdf ,, +=

∂
∂

+
∂
∂

=  

and the function ( )yxf ,  satisfying conditions (2) and (3) is said to be a 
potential function for equation (1).  The equation in this case is called to be an 
exact differential equation, which can be written as 
    ( ) 0, =yxdf                                                   (4) 
direct integration of which yields a general solution of equation (1): 
 
    ( ) cyxf =,                     (5) 
  
where Rc ∈  is a constant of integration.  The solution given implicitly defines 
integral curves of the ODE or the level curves of function ( )yxf , . 

 
Example 1 The First order ODE  023 2 =+ ydydxx   is an exact equation 

with the general solution  ( ) 3 2f x, y x y c≡ + = .  Then the 
integral curves of this equation are 

              
 
To recognize that a differential equation is an exact equation we can use a test 
given by the following theorem:  

 
Test on exact differential   Theorem 1 (Euler, 1739)  

Let functions ( )yxM ,  and ( )yxN ,  be continuously  

differentiable on 2D ⊂ \ , then the differential form  
( ) ( )dyyxNdxyxM ,, +                (6) 

 is an exact differential if and only if 
 

   
x
N

y
M

∂
∂

=
∂

∂  in 2D ⊂ \                           (7) 

 
Proof: 1) Suppose that the differential form is exact. According to definition, it 

means that there exists a function ( )yxf ,  such that  ( ) ( )yxM
x

yxf ,,
=

∂
∂   and 

( ) ( )yxN
y

yxf ,,
=

∂
∂ . Then differentiating the first of these equations with respect 
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to y and the second one with respect to x, we get ( ) ( )
y

yxM
yx

yxf
∂

∂
=

∂∂
∂ ,,2

  and 

( ) ( )
x

yxN
yx

yxf
∂

∂
=

∂∂
∂ ,,2

.  Since the left hand sides of these equations are the same, 

it follows that
x
N

y
M

∂
∂

=
∂

∂ . 

 2)  Suppose now that the condition 
x
N

y
M

∂
∂

=
∂

∂  holds for all ( ) Dyx ⊂, .     

To show that there exists a function ( )yxf ,  which produces an exact differential 
of the form (6), we will construct such a function.  The same approach is used 
for finding a solution of an exact equation. 
 We are looking for a function ( )yxf , , the differential form (6) of which is 
an exact differential.  Then this function should satisfy conditions (2) and (3).  
Take the first of these conditions: 

    ( ) ( )yxM
x

yxf ,,
=

∂
∂  

and integrate it formally over variable x, treating y as a constant, then 
    ( ) ( ) ( )∫ += ykdxyxMyxf ,,                 (8) 
where the constant of integration depends on y.  Differentiate this equation with 
respect to y and set it equal to condition (3): 

    ( ) ( ) ( )
∫ +

∂
∂

=
∂

∂
dy

ydkdxyxM
yy

yxf ,,     ( )yxN ,=  

Rearrange the equation as shown 

    ( ) ( ) ( )∫∂
∂

−= dxyxM
y

yxN
dy

ydk ,,  

Then integration over the variable y yields: 

    ( ) ( ) ( )∫ ∫ +







∂
∂

−= 1,, cdydxyxM
y

yxNyk  

Substitute this result into equation (8) instead of ( )yk  

  ( ) ( ) ( ) ( )∫ ∫ ∫ +







∂
∂

−+= 1,,,, cdydxyxM
y

yxNdxyxMyxf      (9) 

To show that this function satisfies conditions (2) and (3), differentiate it with 
respect to x and y and use condition (7).  Therefore, differential form (6) is an 
exact differential of the function ( )yxf ,  constructed in equation (9).  
The other form of the function ( )yxf ,  can be obtained if we start first with 
condition (3) instead of condition (2):  

  ( ) ( ) ( ) ( )∫ ∫ ∫ +





∂
∂

−+= 2cdxdxy,xN
x

y,xMdyy,xNy,xf               (10) 

Note, that condition (7) was not used for construction of functions (9) or (10), 
we applied it only to show that form (6) is an exact differential of these 
functions.                                                  ■ 
Then according to equation (5), a general solution of exact equation is given by 
an implicit equations: 
 

  ( ) ( ) ( ) ( )f x, y M x, y dx N x, y M x, y dx dy c
y

 ∂
= + − = ∂ 

∫ ∫ ∫         (11) 

 
 

or  ( ) ( ) ( ) ( )f x, y N x, y dy M x, y N x, y dx dx c
x

∂ = + − = ∂ ∫ ∫ ∫           (12) 
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The other form of the general solution can be obtained by constructing a 
function with help of a definite integration involving an arbitrary point ( )00 , yx  

in the region 2D ⊂ \ : 
  

  ( ) ( ) ( )∫ ∫ =+=
x

x

y

y

cdttxNdtytMyxf
0 0

,,, 0                   (13)  

 
 

  ( ) ( ) ( )∫ ∫ =+=
x

x

y

y

cdttxNdtytMyxf
0 0

,,, 0                                 (14) 

 
Formulas (1) and (12) or (13) and (14) are equivalent – they should produce the 
same solution set of differential equation (1), but actual integration may be more 
convenient for one of them. 

 
Example 2 Find a complete solution of the following equation 
   ( ) ( ) 033 =+++ dyxydxxy  
Test for exactness: 

M 3
y

∂
=

∂
 N 3

x
∂

=
∂

  ⇒  the equation is exact 

 
We can apply eqns. 11-14, but in practice, usually, it is more convenient to use 
the same steps to find the function ( )f x, y as in the derivation of the solution.  
Start with one of the conditions for the exact differential 

( ) ( )yxM
x

yxf ,,
=

∂
∂ ( )3y x= +  

Integrate it over x , treating y  as a parameter (this produces a constant of 
integration  ( )k y  depending on y ) 

( ) ( )
2xf x, y 3yx k y

2
= + +  

Use the second condition for the exact differential 
( ) ( )

f x, y
N x, y

y
∂

=
∂

3x y= +  

( )k y
3x 3x y

y
∂

+ = +
∂

 

( )k y
y

y
∂

=
∂

 

Solve this equation for ( )k y  

( )
2yk y

2
=  

neglecting the constant of integration.  The function is completely determined 
and the solution of  the ODE is given by 

( )
2 2x yf x, y 3yx c

2 2
≡ + + =  

or we can rewrite it as a general solution given by the implicit equation: 
 
General solution: 
   06 22 =++ yxyx  
Solution curves: 
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        Note that at the point )0,0(  the solution is not unique. 
Where also conditions of Picard’s theorem are violated? 
The solution with help from equation 13: 
Choose 0x 0= , 0y 0= , then 

( ) ( ) ( )
yx

0 0

f x, y 3y t dt 0 t dt c= + + + =∫ ∫  

x y2 2

0 0

t t3yt c
2 2

   
+ + =   

   
 

2 2x y3yx c
2 2

+ + =  

This is the same solution as in the first approach. 
 

 
2.2.2 Equations Reducible to Exact - Integrating Factor 
 
Integrating factor In general, non-exact equations, which possess a solution, can be transformed to 

exact equations after multiplication by some nonzero function ( )yx,µ , which is 
called an integrating factor (existence of the integral factor was proved by 
Euler).   

 
Theorem 2 The function ( )y,xµ  is an integrating factor of the differential 

equation ( ) ( ) 0,, =+ dyyxNdxyxM  if and only if ( )y,xµ  
satisfies the partial differential equation 

  µ
µµ









∂

∂
−

∂
∂

=
∂
∂

−
∂
∂

y
M

x
N

x
N

y
M  

 
        Proof: as an exercise                       ■ 
 
        But it is not always easy to find this integrating factor.  There are several special 
        cases for which the integrating factor can be determined: 
 

1)  0
x
N

y
M

=
∂
∂

−
∂

∂  The test for exactness. The integrating factor  

                   ( ) 1y,x =µ  

2)  ( )xf
N

x
N

y
M

=
∂
∂

−
∂

∂

 The test for exactness fails but the given 

ratio is a function of x  only.  Then the 
integrating factor is 

    ( ) ( )∫=
dxxf

exµ  
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3)  ( )yg
M

x
N

y
M

=
∂
∂

+
∂

∂
−

 The test for exactness fails but the given 

ratio is a function of y  only.  Then the 
integrating factor is 

   ( ) ( )g y dy
y eµ = ∫  

4)  ( )xyh
xMyN

x
N

y
M

=
−

∂
∂

−
∂

∂

 The test for exactness fails but the given 

ratio is a function of the product of x  and 
y .  Then the integrating factor is 

   ( ) ( ) ( )xydxyhy,x ∫=µ  

5)  






=
+









∂
∂

−
∂

∂

x
yk

yNxM
x
N

y
My 2

 The test for exactness fails but the given 

ratio is a function of the ratio 
y
x .  Then the 

integrating factor is 

   ( ) 














= ∫ x
y

d
x
y

ky,xµ   

 

6)  
( )
( )

( )
( )y,xN

y,xM
y,xN
y,xM

=
λλ
λλ  The functions  M  and N  are homogeneous 

functions of the same degree (see section).  
Then the integrating factor is 

     ( )
yNxM

1y,x
+

=µ  

providing 0yNxM ≠+ . 
 
 

Example 3 Find a complete solution of the following equation 
     ( ) 0xydy2dxyx 2 =−+  
Test for exactness: 

y2
y

M
=

∂
∂  y2

x
N

−=
∂
∂       ⇒  equation is not exact  

 
test for integrating factor:  

( )xf
x
2

xy2
)y2(y2

N
x
N

y
M

=
−

=
−

−−
=

∂
∂

−
∂

∂

  ⇒  int.factor by Eq. 2 

( ) ( )
2

x
1

ln
xln2dx

x
1

2dxxf

x
1eeeex 2 ===== −− ∫∫µ  

( )
0dy

x
y2dx

x
yx

2

2

=−
+  

2

2

2

2

x
y

x
1

x
yx

x
f

+=
+

=
∂
∂

 ⇒  k
x

yxlnf
2

+−=  

 

       
x

y2
y
k

x
y2

y
f −

=
∂
∂

+−=
∂
∂  ⇒   ck =  
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General solution: 

cxln
x

y 2

=+−    ⇒   x
y 2

ecx =  

 

Is 0x =  a suppressed solution:  ( ) 0xy2
dy
dxyx 2 =−+         (yes) 

 
Illustration of this problem with Maple: 
 
> restart; 
> with(plots): 
> f:={seq(log(abs(x))-y^2/x=i,i=-10..10)}: 
>implicitplot(f,x=1..1,y=2..2,numpoints=6000); 

               
 

Solution with Maple:   > restart; 
> with(DEtools): 
> DE:=diff(y(t),t)*2*y(t)*t=y(t)^2+t; 

 := DE  = 2 





∂

∂
t ( )y t ( )y t t  + ( )y t 2 t  

 
> s:=dsolve(DE,y(t)); 

 := s , = ( )y t  + t ( )ln t t _C1  = ( )y t −  + t ( )ln t t _C1  

> restart; 
> q:={seq(y(t)^2=t*ln(abs(t))+t*i/4,i=-8..8)}: 
> with(plots): 
> implicitplot(q,t=-10..10,y=2..2,numpoints=5000); 
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Supressed solutions If the given differential equation is reduced to standard differential form  

   ( ) ( ) 0,, =+ dyyxNdxyxM  

with some algebraic operations,  then zeros of the expressions involved in 

division can be solutions of the differential equation not included in the general 

solution.  Such lost solutions are called suppressed solutions.  If such 

operations were applied for the transformation of the differential equation, then 

the equation has to be checked for suppressed solutions.   

To check if ay =  is a suppressed solution of Eq. 1, reduce the differential 

equation to normal form with y  as a dependent variable 

  
( )

( )y,xN
y,xM

dx
dy −

=  

and substitute ay = . 

To check if bx =  is a suppressed solution of Eq. 1, reduce the differential 

equation to normal form with x  as a dependent variable 

  
( )
( )y,xM

y,xN
dy
dx −

=  

and substitute bx = . 

Then the suppressed solutions should be added to the general solution. 
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2.2.3   Separable equations 
     

 
Separable equation    Definition 1  A differential equation of the first order is called separable if   
            it can be written in the following standard differential form:  

  ( ) ( ) ( ) ( ) 02121 =+ dyyNxNdxyMxM                  (1) 

where ( ) ( )xNxM 11 ,  are functions of the variable x only and 
      ( ) ( )yNyM 22 ,  are functions of the variable y only. 
 
Assuming that ( ) 01 ≠xN  and ( ) 02 ≠yM  for all x and y in the range, variables 
in equation (1) can be separated by division with ( ) ( )xNyM 12 : 

    
( )
( )

( )
( ) 0

2

2

1

1 =+ dy
yM
yN

dx
xN
xM

                 (2) 

Then equation (2) can be formally integrated to obtain a general solution: 
 

    
( )
( )

( )
( ) cdy
yM
yN

dx
xN
xM

=+ ∫∫
2

2

1

1                 (3) 

 
where Rc ∈  is an arbitrary constant. 
Note, that separated equation (2) is exact - it can be obtained from equation (1) 

by multiplication by the integrating factor ( ) ( )yMxN 21

1
=µ ; the  potential 

function for this equation  

    ( ) ( )
( )

( )
( )∫∫ += dy
yM
yN

dx
xN
xM

yxf
2

2

1

1,  

Which yields the same general solution ( ) cyxf =, . 
Because of division by ( ) ( )xNyM 12 , some solutions can be lost; therefore, 
equations should be checked for suppressed solutions.  If 1xx = , where Rx ∈1  
belongs to the domain and is a root of ( ) 01 =xN , then the function 1xx =  is 
obviously a solution of differential equation (1).  Similarly, if 1yy =  is a real 
root of ( ) 02 =yM , then the function 1yy =  is also a solution.  They both 
should be added to the general solution (3). 

 
     
        Example 1: Find a general solution of the following ODE: 
           ( ) 0ln12 =++′ xyyxy , 0>x  

           ( ) 0ln12 =++ xdxyxydy   

           0
1

ln
2

=
+

+ dy
y

ydx
x
x   

           ( ) ( ) cyx =++ 1lnln 22  no suppressed solutions 
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        Example 6  Find a solution of the following ODE: 
 
            ( )2x 4 y x cot y 0′− − =  
 
 
        Solution:  Separate variables: 

     2

xdx tan ydy 0
x 4

− =
−

 

      
Integrate: 

     ( )2 2ln cos y ln x 4 lnc+ − =  

 

     General solution: 
 
     ( ) cyx =− 22 cos4  
 
 
     Check for suppressed solutions: 
 

     ππ ny +=
2

 are suppressed solutions. 

 

 2±=x  are solutions of ( ) ( ) 0
dy
dxytanx4x 2 =+−    

if independent and dependent variables are reversed.   
 
Then the family of solution curves is represented by 

 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y
2
π

=

y
2
π

= −

3y
2
π

= −

3y
2
π

=
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2.2.4   Homogeneous Equations 
 
        In this section, we will study a type of equations which can be reduced to a  
        separable equation or to an exact equation. 
     

 
Homogeneous function Definition 1 Function ( )yxM ,  is homogeneous of degree r, if 

     ( ) ( )yxMyxM r ,, λλλ =  for any  Rλ ∈ , 0>λ  
 
 It means that after replacing x  by xλ  and y  by yλ  in the function ( )yxM , , 

the parameter rλ  can be factored from the expression. 
 
     

Examples 1:  
        a)  Homogeneous function of degree zero. 

        Let   ( )
yx
yxyxM

+
−

=, , then  

          ( )
yx
yxyxM

λλ
λλ

λλ
+
−

=, ( ) ( )yxMyxM
yx
yx ,,0 ==

+
−

= λ      for 0>λ  

        Therefore, ( )yxM ,  is homogeneous of degree zero. 
        If we divide the numerator and the denominator by x, then 

          ( )

x
y

1

x
y1

y,xM
+

−
=  

and we see that the function ( )y,xM  depends on a single variable 
x
y

.   

It appears to be a fact for zero degree homogeneous functions: 
the function ( )y,xM   is homogeneous of degree zero if and only if it depends 

on a single variable 
x
y

 [Goode, p.62]:  

  ( ) 






=
x
yfy,xM  

 
b) A more general fact: homogeneous functions of degree r can be written as 
 

  ( )n yx M x, y f
x

 =  
 

 or 

  ( )n xy M x, y g
y

 
=  

 
 

To show it, choose parameters of the form 








<
−

>
=

0x
x
1

0x
x
1

λ  

 
c)  Consider  ( ) yxyy,xM 23 −= .  Test on homogeneity yields 
 

  ( ) ( ) ( ) ( )y,xMyxyyxyy,xM 32233223 λλλλλλλ =−=−=  
 
Therefore, the given function is homogeneous of degree 23 . 
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Homogeneous equation Definition 2  A Differential equation written in standard differential form 
        ( ) ( ) 0dyy,xNdxy,xM =+  

is called a homogeneous differential equation if functions 
( )yxM ,  and ( )y,xN are homogeneous of the same degree r. 

 
Reduction to separable If the equation written in standard differential form 
            ( ) ( ) 0dyy,xNdxy,xM =+  
 is homogeneous, then it can be reduced to a separable differential equation by 

the change of variable: 
     uxy =   udxxdudy +=   
 or 
     vyx =   ydvvdydx +=  
 Both approaches are equivalent, just because in standard differential form the 

variables are equivalent.  But actual integration of the equation may be more 
convenient with one of them. 

 Justification:  First  apply the substitution to the differential equation y ux=  
      ( ) ( ) ( ) 0udxux,xNxduux,xNdxux,xM =++  

and divide it formally by ( )dxux,xN  

    ( )
( ) 0u

dx
dux

ux,xN
ux,xM

=++  

If the differential equation is homogeneous then the functions ( )yxM ,  and 
( )y,xN are homogeneous of the same degree r and, according to Example 1b), 

can be written as 

     ( ) ( )r r
1 1

yM x, y x f x f u
x

 = = 
 

 

     ( ) ( )r r
2 2

yN x, y x f x f u
x

 = = 
 

 

 Substitute them into the previous equation, then 

    
( )
( ) 0u

dx
dux

uf
uf

2

1 =++  

Now variables can be separated 

    ( )
( )

0
u

uf
uf
du

x
dx

2

1
=

+
+  

Formally this equation can be integrated to a general solution 

    ( )
( )

c
u

uf
uf
duxln

2

1
=

+
+ ∫  

where c is a constant of integration.  The solution of the original equation can be 

obtained by back substitution 
x
y

u = . 

     
Example 2:  Solve the differential equation 
    ( ) 0xydydxx2y 22 =++  
 
    M  and N  are homogeneous functions of degree 2 . 

     Use change of variable: 
    uxy =   udxxdudy +=  

    ( ) 0)udxxdu(xuxdxx2xu 222 =+++  

    ( ) 0duuxdxxux2xu 322222 =+++  

    ( ) 0duuxdx1ux2 322 =++   separable 
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    0
1u

udu
x

dx2
2

=
+

+  

    ( ) 0
1u
1ud

2
1

x
dx2

2

2

=
+
+

+  

    ( ) cln1ulnxln 24 =++     general solution 

    ( ) c1ux 24 =+     backsubstitution 

    ( ) cxyx 222 =+  
 
    0x =       is also a solution 
 

> f:={seq(x^2*(y^2+x^2)=i/8,i=0..12)}: 
> implicitplot(f,x=-2..2,y=-5..5); 
 

                                                                 
 

Reduction of homogeneous differential equation to a separable equation by 
transition to polar coordinates.  This method is convenient when the solution is 
represented by complicated transcendental functions which are more suitable for 
representation in polar coordinates (ellipses, spirals, etc). 
Conversion formulas from Cartesian to polar coordinates: 

            θcosrx =  222 ryx =+  

            θsinry =  θtan
x
y

=  

      

            θθθθ
θ

dsinrdrcosdxdr
r
xdx −=

∂
∂

+
∂
∂

=  

    θθθθ
θ

dcosrdrsind
y

dr
r
y

dy +=
∂
∂

+
∂
∂

=  

 
     

Example 3:  Solve the differential equation 

    ( ) ( ) 0dxyx2dyy2x =−−−  
 

It is a homogeneous equation of order 1 .   
Reduce it to a separable equation by transition to polar 
coordinates: 

( ) ( ) 0dyy2xdxx2y =−+−  
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( )( ) ( )( ) 0dcosrdrsinsinr2cosrdsinrdrcoscosr2sinr =+−+−− θθθθθθθθθθ
 

( ) ( ) 0dsincosrdr1cossin2 22 =−+− θθθθθ      separable equation 

( ) 0d
1cossin

sincos
r

dr2
22

=
−

−
+ θ

θθ
θθ  

( ) 0
cossin1
cossin1d

r
dr2 =

−
−

+
θθ
θθ  

clncossin1lnln
2r =−+ θθ       general solution 

 

θθ cossin1
cr

−
=  equation of ellipse in  

polar coordinates 
     

> f:={seq(i/sqrt(1-sin(r)*cos(r)),i=0..4)}: 
> polarplot(f,r=0..2*Pi,y=-5..5); 
 

                                               
 
 

Homogeneous functions in n\  Definition 3  A real valued function ( ) nf x : →\ \  defined in n\   
    is called homogeneous of degree r , if   

( ) ( )xfxf rλλ =  λ ∈\ , 0>λ  
 
 

Theorem 1 (Euler) 
Suppose nU ⊆ \  is a region in n\  and the function 
f :U → \  homogeneous of degree r , then 

 
( ) ( ) ( )xrf

x
xfx

x
xfxfx

n
n

1
1 =

∂
∂

++
∂

∂
≡∇⋅ "  

 
Proof: Consider an identity following from the definition of the 

homogeneous function of degree r 

 ( ) ( )
r

xf
xf

λ
λ

=  

 Differentiate it with respect to the parameter λ , using the 
chain rule 

( ) ( )xfxrfr0 r1r λλλλ ∇⋅+−= −−−  
Choose 1=λ  , then 

( ) ( )xfxrrf0 ∇⋅+−=  
            from which follows the claimed result.                ■ 
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2.2.5 Linear 1st order ODE 
 
        The properties of a linear ODE of an arbitrary order will be established later. 
 
Standard form     The general form of the first order linear differential equation is given by: 
 
        ( ) ( ) ( )xfyxayxayL =+′≡ 101   x D∈ ⊂ \                  (1) 
 
        We can rewrite this equation in the standard form, if we divide it by ( )xa0  
 

        ( )
( )

( )
( )xa
xfy

xa
xay

00

1 =+′     ( ) 0xa0 ≠  

 
        Then for simplicity, coefficients may be renamed, and the equation becomes 
 

         ( ) ( )xQyxPy =+′    where ( ) ( )
( )xa
xaxP

0

1=  and ( ) ( )
( )xa
xfxQ

0

=      (2)  

 
Initial value problem For the first order o.d.e., an initial value problem (IVP) is formulated in the 

following way: 
 
 Solve the equation     ( ) ( )xQyxPy =+′   

subject to the condition    ( ) 00 yxy = , Dx0 ∈   
 

 In other words, we need to find a particular solution of differential equation (2) 
which goes through the given point ( ) 2

0 0x , y ∈\ .  Picard’s Theorem established 
conditions for existence and uniqueness of the solution of the IVP. 

 
General solution We will try to find a solution of the linear equation with a help from the methods 

which we have already studied (integrating factor) and to do that, we transform 
equation (2) into standard differential form 

 
 ( ) ( )[ ] 0dydxxQyxP =+−                      (3) 
 
 from which we can identify the coefficients of the standard differential form as 
 
 ( ) ( ) ( )xQyxPy,xM −=  and ( ) 1y,xN =  
 
 Check this equation for exactness: 

 ( )xP
x
N

y
M

=
∂
∂

−
∂

∂
=φ ,   if ( ) 0≠xP  then the equation is not exact. 

 From the test for an integrating factor 

 ( )xP
N

=
φ  (function of x only), it follows that the integrating factor is 

determined by the equation 

 ( ) ( )∫=
dxxP

exµ                         (4) 
 Multiplication of our equation by the integrating factor ( )xµ  transforms it to an 

exact equation 
 
 ( ) ( ) ( )[ ] ( ) 0dyxdxxQyxPx =+− µµ                       (5) 
 
 Following the known procedure, we can find a function ( )y,xf  for which 

differential form (5) is an exact differential: 
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 ( ) ( ) ( )[ ]xQyxPx
x
f

−=
∂
∂ µ  ⇒  ( ) ( ) ( )[ ] ( )ykdxxQyxPxf +−= ∫ µ  

 ( ) ( ) ( )[ ] ( ) ( )xykdxxQyxPx
yy

f µµ =′+−
∂
∂

=
∂
∂

∫  

 ( ) ( ) ( ) ( )xykdxxPx µµ =′+∫  

 ( ) ( ) ( ) ( )dxxPxxyk ∫−=′ µµ  

 ( ) ( ) ( ) ( )ydxxPxyxyk ∫−= µµ  

 ( ) ( ) ( )[ ] ( )ykdxxQyxPxf +−= ∫ µ  

 ( ) ( ) ( )[ ] ( ) ( ) ( )ydxxPxyxdxxQyxPxf ∫∫ −+−= µµµ  

 ( ) ( ) ( )dxxQxyxf ∫−= µµ  

 ( ) ( ) ( ) cdxxQxyx =− ∫ µµ     
 Solving this equation with respect to y, we end up with the following general 

solution (division by ( )xµ  is permitted because ( )xµ  is an exponential function 
and never equals zero): 

 
 
general solution   ( ) ( ) ( ) ( )dxxQxxxcy 11 ∫−− += µµµ                   (6) 
  
 We see that the solution of a first order linear differential equation is given 

explicitly and may be obtained with this formula provided that integration can 
be performed.   

 
 The same result may be obtained, if we show first that the differential equation 

multiplied by the integrating factor may be written in the form 

 ( ) Qy
dx
d µµ =  

 then after direct integration (from inspection, yµ  is a function of x only) we end 
up with the same general solution. 

 
 In a case of an equation with constant coefficients, the integrating factor may be 

evaluated explicitly  

( ) ( ) axadxdxxP
eeex === ∫∫µ   

And the solution becomes 
 

   ( )dxxQeecey axaxax ∫−− +=                   (7) 
 
 
Solution of IVP Using initial condition ( ) 00 yxy = , we can determine the constant of integration 

directly from the general solution. 
 In another more formal approach, we can check by inspection that 
 

   ( ) ( ) ( ) ( ) ( )∫−− +=
x

x

11
0

0

dxxQxxxxyy µµµµ                      (8) 

 
 is a solution satisfying the initial condition. 
 For an equation with constant coefficients, the solution of the IVP is given by 
 

   ( ) ( )0

0

x
a x x ax ax

0
x

y y e e e Q x dx− − −= + ∫                                (9) 
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Example 1    First order linear o.d.e. with variable coefficients 
 

    Find a general solution of equation 
    ( ) x2sinyxcoty =+′   
    and sketch the solution curves. 
 
 Solution:    The integrating factor for this equation is 
 

    ( ) xsineex xsinlnxdxcot
=== ∫µ  

 
    then a general solution is 
 

            y  ( ) ( )dxx2sinxsin
xsin

1
xsin

c
∫+=  

 

    ( ) ( ) ( )dxxcosxsinxsin
xsin

2
xsin

c
∫+=         

  

    ( ) ( )xsindxsin
xsin

2
xsin

c 2∫+=    

 

    
3

xsin2
xsin

c 2

+=   

 
 

In Maple, create a sequence of particular solutions by varying the 
constant c, and then plot the graph of solution curves: 

 
> y(x):=2*sin(x)^2/3+c/sin(x); 

 
 := ( )y x  + 

2
3 ( )sin x 2 c

( )sin x
 

> f:={seq(subs(c=i/4,y(x)),i=-20..20)}: 
 
> plot(f,x=-2*Pi..2*Pi,y=-5..5); 

 
 

  
                               x π= −                       x 0=                   x π=  
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Example 2    An Initial value problem for an equation with constant coefficients 
 

    Solve the equation 
 
    xsinyy =+′  subject to the  initial condition: 
        ( ) 10y =  
 
 Solution:    Applying equation (9), we obtain the solution of the IVP: 
 

            y  ( ) ( )∫−− +=
x

x

axaxxxa
0

0

0 dxxQeeey  

    ( ) ( )∫ ⋅⋅−−⋅ +⋅=
x

0

x1x10x1 dxxsineee1  

    ( )∫−+=
x

0

xxx dxxsineee  

    



 −++= − xcose

2
1xsine

2
1

2
1ee xxxx  

    
2

xcosxsine
2
1e xx −

++= −  

 
 
    Use Maple to sketch the graph of the solution: 
 

> y := exp(x)+exp(-x)/2+(sin(x)-cos(x))/2; 
 

 := y  +  +  − ex 1
2 e

( )−x 1
2 ( )sin x

1
2 ( )cos x  

> plot(y,x=-1..1,color=black); 
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2.2.6   Special Equations 
 

Some first order non-linear ODE’s which do not fall into one of the 
abovementioned  types can be solved with the help of special substitution.  
These equations arise as a mathematical model of specific physical phenomena, 
and they carry the names of mathematicians who first investigated these 
problems.  

 
1. Bernoulli Equation Definition 1    The differential equation which can be written in the form 
 

( ) ( ) nyxQyxPy =+′                                          (1)  
 
where n ∈\  is a real number is called a Bernoulli equation. 
 

 
  
 If n=0 or n=1, then the equation is linear and it can be solved by a 

corresponding method, otherwise the Bernoulli equation is a non-linear 
differential equation.   
By the change of dependent variable  

       n1
1

zy −=                   (2) 
 The non-linear Bernoulli equation ( 1n ≠ ) can be reduced to a linear first order 

ODE.  Indeed, the derivative of the function y can be expressed as  

 zz
n1

1
dx
dzz

n1
1z

dx
d

dx
dy n1

n1
n1

1
n1

1

′
−

=
−

=











= −

−
−−                              (3) 

 Substitution of (2) and (3) into equation (1) yields 

 ( ) ( ) n1
n

n1
1

n1
n

zxQzxPzz
n1

1 −−− =+′
−

 

 Dividing this equation by n1
n

z −  and multiplying by n1 − , we end up with 
 
 
  ( ) ( ) ( ) ( )xQn1zxPn1z −=−+′                    (4) 
 
 
 Equation (4) is a linear ODE, the general solution of which can be found with a 

known method (see section 4).  Then solution of the Bernoulli equation is 
determined by back substitution 

 n1yz −=                           (5) 
 It is easy to see that the Bernoulli equation possesses also a trivial solution 

0y =  when n is positive. 
 
  
 Example 1   Bernoulli equation 
 
 Find a general solution of the equation 

 3
2

xyyy =+′  

 Solution:   Use a change of variable 3321
1

n1
1

zzzy === −−  which yields a linear 
equation 

 
3
xz

3
1z =+′  

 The integrating factor for this equation is 3
x

e=µ , and then the general solution 
is 
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 z ∫
−−

+= dx
3
xeece 3

x
3
x

3
x

3xce 3
x

−+=
−

 

 Back substitution results in the general solution of the initial equation  

  3xceyz 3
x

3
1

−+==
−

 
 or in explicit form, the general solution is determined by the following equation 

 
3

3
x

3xcey 









−+=

−

 

 One more solution of the given equation is a trivial solution 0y = . 
 
 Use Maple to sketch the solution curves: 
 
          > y(x):=(c*exp(-x/3)+x-3)^3; 

      := ( )y x ( ) +  − c e
( )− /1 3 x

x 3
3

 

> f:={seq(subs(c=i/4,y(x)),i=-16..16)}: 
> plot(f,x=-5..6,y=-5..10,color=black); 
 

                                  
 
 
2.  Ricatti equation Definition 2    A differential equation which can be written in the form 
 

( ) ( ) ( )xRyxQyxPy ++=′ 2                                      (6)  
 
is called a Ricatti equation.  

 
        If one particular solution of Ricatti equation is known, then as it was first shown  

by Euler, it can be reduced to a first order linear ODE:  
 
Theorem 1    Suppose that ( ) ( ) ( ) ][,, DCxRxQxP ∈ , D ∈\  are continuous 

functions on D. Then if the function ( )xu , Dx ∈  is a solution 
of  the Ricatti equation (6) in D, then the substitution 

   ( ) ( ) ( )xz
xuxy 1

+=                 (7) 

 for all Dx ∈  for which ( ) 0≠xz  transforms the Ricatti 
equation (6) into the first order ODE: 

 
   ( ) ( ) ( )[ ] ( ) 02 =+++′ xPzxQxuxPz              (8) 
 
Proof: Suppose the function ( )u x : D R→  solves the Ricatti 

equation, then 

( ) ( )
( )( )2xz

xzxuy
′

−′=′  
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and, substituting the expression on the right into the Ricatti equation, we first 
obtain 

( ) ( )
( )( )2xz

xzxu
′

−′ ( ) ( ) ( ) ( ) ( ) ( ) ( )xR
xz

xuxQ
xz

xuxP +







++








+=

11
2

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )xR

xz
xQxuxQ

xzxz
xuxuxP +++








++=

1112
2

2

 
        which, using the fact that (because ( )xu  is a solution of (6)) 

        ( ) ( ) ( ) ( ) ( ) ( ) 02 =−−−′ xRxuxQxuxPxu  
        simplifies to 
                   0  ( ) ( ) ( ) ( ) ( ) ( )xRxuxQxuxPxu −−−′= 2  

            ( )
( )

( ) ( ) ( )[ ] ( ) ( )
( )xz

xP
xz

xQxuxP
xz
xz

22

112 +++
′

=  

Multiplication of this equation by ( )xz 2 , finally yields the claimed linear first 
order equation 
    ( ) ( ) ( )[ ] ( ) 02 =+++′ xPzxQxuxPz  
                               ■ 
 
Remarks: -  It does not matter how simple the particular solution ( )xu is; 
 - For an equation with constant coefficients, this particular 

solution  can be found as a constant (steady state solution). 
 
By the other substitution, the Ricatti equation can be reduced to a linear ODE of 
the second order: 
 
 
Theorem 2    Suppose that ( ) ( ) ( ) ][,, DCxRxQxP ∈ , D ∈\  are continuous 

functions on D. Then the substitution 

  ( ) ( )
( ) ( )xwxP

xwxy
′

−=                   (9) 

 for all Dx ∈  for which ( ) 0≠xP  and ( ) 0≠xw  transforms the 
Ricatti equation (4) into a second order ODE: 

  ( )
( ) ( ) ( ) ( ) 0=+′








+

′
−′′ wxPxRwxQ

xP
xPw                 (10) 

Proof: Differentiate equation (9) 
  

         y ′   
( )

( )wPwP
Pw
w

Pw
w ′+′

′
+

′′−
=

2
 

      ( )
2

2

2 Pw
w

wP
wP

Pw
w ′

+
′′

+
′′−

=  

and substitute it together with equation (9) into the Riccati 
equation (4).   It yields the linear equation (10) 

                          ■ 
 
  
 Example 2     Riccati equation with a known particular solution 
 

Find a general solution of the equation 
     322 −−=′ yyy  
 

Solution:   Given that the equation has two obvious particular solutions: 
1−=y    and  3=y  
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Choose the first one of them for substitution (7): 

11
−=

z
y  

Identify coefficients of the Riccati equation: 
1=P  

1−=Q  
3−=R  

Then the corresponding linear equation (8) is 
14 −=−′ zz  

The general solution of  this first order linear ODE is 

( )∫ +=−+= −

4
1cedx1eecez x4x4x4x4  

Then the solution of the given Riccati equation becomes 

1

4
1ce

11
z
1y

x4
−

+
=−=  

Use Maple to sketch the solution curves: 
 
> p:={seq(1/(i*exp(4*x)/2+1/4)-1,i=-20..20)}: 
> plot(p,x=-2..1,y=-4..8,color=black,discont=true); 
 

                                                      
 
Special case of Riccati equation [Walas,  p.13]     
 
 

3.  Clairaut equation Definition 3    A differential equation which can be written in the form 
 

( )yfyxy ′+′=                                                     (11)  
 

is called a Clairaut equation. 
 
        The general solution of a Clairaut equation is given by: 

              ( )cfcxy +=               (12) 
        This can be confirmed by a direct substitution into the Clairaut equation. 

        The Clairaut equation additionally may include a particular solution given in  
parametric form: 

              ( )tfx ′−=  
              ( ) ( )tfttfy ′−=               (13) 

y 1= −

y 3=
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 Example 3     Solve 
     ( )2yyxy ′−′=  

 This equation belongs to the Clairaut type.  Therefore, the 
general solution of the equation is given by the one-parameter 
family  

 2ccxy −=  
 
 Check if the parametric solution (13) is also a solution of this 

equation: 

 2 2 2

x 2t

y t 2t t

=

= − + =
 

 Which can be reduced to an explicit equation by the solution 
of the first equation for t  and substitution into the second 
equation: 

 
4
xy

2

=  

 This solution defines a (limiting curve) for the family of 
curves from the general solution: 

 
> p:={seq(c*x-c^2,c=-20..20)}: 
> g1:=plot(p,x=-10..10,y=-10..20,color=red): 
> g2:=plot(x^2/4,x=-10..10,y=10..20,color=blue): 
> display({g1,g2}); 
                                                                                                

                                                                                  
 
 

4.  Lagrange equation Definition 4    A differential equation which can be written in the form 
 
 

( ) ( )yfyxgy ′+′=                                       (14)  
 
 
is called a Lagrange equation. 

 
Note, that the Clairaut equation is a particular case of a 
Lagrange equation when ( ) yyg ′=′  . 

 
Apply the substitution  yv ′=  

          ( ) ( )vfvxgy +=           (15) 

2xy
4

=
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        Differentiate the equation w.r.t x ( ) ( ) ( )
dx
dvvf

dx
dvvgxvgvy ′+′+=≡′  

        Solve this equation for 
dx
dv   

( )
( ) ( )vfvgx

vgv
dx
dv

′+′
−

=  

        Invert the variables:    
( ) ( )

( )vgv
vfvgx

dv
dx

−
′+′

=  

 
This equation is a linear equation for ( )vx  as a function of an independent 
variable v  

                
( )

( )
( )

( )vgv
vfx

vgv
vg

dv
dx

−
′

=
−

′
−  

        The general solution can be obtained by integration to determine 
( )cvFx ,= ,  c ∈\             (16) 

  To determine a general solution of the Lagrange equation (14), use equation (15) 
 to eliminate v (if possible) from equation (16) to get 
        ( ) 0,, =cyxϕ              (17) 
Othervise, the variable v can be used as a parameter in the parametric solution  
organized from equation (16) and equation (15) which is replaced from  
equation (16): 
            ( )cvFx ,=     c ∈\  
        ( ) ( ) ( )vfvgcvFy += ,  v Z∈         (18) 
 

 
     

Example 5   Lagrange equation   

        Find a general solution of   
2

2 






−=
dx
dy

dx
dyxy  

        General solution: 
 
        ( ) ( ) ( )( )222 14237214237 xycxyxxyycxy +−−+=−  
 
        Plot the solution curves with Maple: 
     

      > p:={seq((7*x*y-3*i/2)^2=y*(2*y+14*x^2)-2*x*(7*x*y- 
3*i/2)*(2*y+14*x^2),i=-4..4)}: 

> implicitplot(p,x=-2..2,y=-3..3,numpoints=10000,color=black); 
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5.  Equations solvable for y        ( )yxfy ′= ,                 (19) 
  

 
This type of equations is a further generalization of Clairaut and Lagrange  
equations.  

 
Apply the substitution  yv ′=  

       ( )vxfy ,=  
 differentiate with respect to x  







=′

dx
dvvxy ,,ϕ  or 

       





=

dx
dvvxv ,,ϕ  

 this equation may be solvable for 
dx
dv  or 

dv
dx  to get a general solution 

       ( ) 0,, =cvxF  
 Then if from the two equations 
 
       ( )vxfy ,=  
       ( ) 0,, =cvxF                     (20) 
 
 v can be eliminated, then it yields an explicit general solution 
 
       ( )cxyy ,=  
 
 and if v cannot be eliminated, then the system of equations (20) can be 

considered as a parametric solution of equation (19) with parameter ν  for fixed 
values of the constant of integration c . 

 
 
 
 
 Additional reading : 
 
 History of special equations:   [D.Richards, p.629] 
 Tricky substitutions, Lagrange equation:  [J.Davis, p.71] 
 Euler equations [Birkhoff, p.17] ( )2 2 21 x y 1 y′− = −   

(solution curves are conics) 
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2.2.7   Applications of first order ODE’s 
     
1. Orthogonal trajectories  There are many mathematical models of engineering processes where families  

of orthogonal curves appear.  The most typical are: isotherms (curves of 
constant temperature) and adiabats (heat flow curves) in planar heat transfer 
systems; streamlines (lines tangent to the velocity vector) and potential lines of 
the incompressible flow of irrotational fluid; magnetic field …  ; level curves 
and lines of steepest descent; … 
 
 

Family of trajectories   A one-parameter family of planar curves is defined, in general, by the implicit  
equation 

( ) 0c,y,xF =  2x, y ∈\      c ∈\                   (1) 
For each value of the parameter c, there corresponds one particular curve (a 
trajectory).  For example, equation 

cy3xyx2 22 =++  
describes the family of ellipses shown in the figure 

> g:={seq(2*x^2+x*y+3*y^2=i,i=-10..10)}: 
> implicitplot(g,x=-3..3,y=-3..3,numpoints=2000, 
  scaling=constrained,view=[-3..3,-3.                                         

 
 

Slope of tangent line    At each point of the curve, we can define a slope or tangent line to the curve by  
differentiation of equation (1) w.r.t. x and solving it for its derivative   

( ) 0c,y,xF
x

=
∂
∂       ⇒  ( )cyxfy ,,=′                   (2) 

 
     
Orthogonal lines     Lemma  (slope of orthogonal lines) 
   
        Let two lines L1 and L2 be defined by equations 
        L1: 11 bxmy +=  0m1 ≠  

L2: 22 bxmy +=  0m2 ≠  

Then line L1 is orthogonal to line L2 if and only if        
2

1 m
1m −=             (3) 

Proof: 
Define two lines 1l  and 2l  which are parallel to lines L1 and L2, but go through 
the origin, and define vectors on these lines: 

1l : xmy 1=  ( )11 ,1 mu =
G

  

2l : xmy 2=  ( )22 ,1 mu =
G

 
If lines L1 and L2 are orthogonal, then lines 1l  and 2l  are also orthogonal, and, 
therefore vectors 1u

G
 and 2u

G
 are orthogonal.  Two vectors are orthogonal if and 

only if their scalar product is equal to zero: 
( ) ( ) 01,1,1 212121 =+=⋅=⋅ mmmmuu

GG
 

From this equation, it follows that  

2
1 m

1m −=                             ■ 
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Orthogonal trajectories Definition 1  (orthogonal curves) 
 
 Two curves are orthogonal at the point of intersection if the tangent lines to the 

curves at this point are orthogonal 
 

               
 
 
        Definition 2  (orthogonal families of curves)  
 
 Two families of curves are called orthogonal families, if the curves from the 

different families are orthogonal at any point of their intersection 

                                                                          
 
Algorithm The following algorithm can be applied for finding the family of curves F2 

orthogonal to the given family of curves F1  (shown with an example): 
 Let 2 2 y

1F :   4 y x 1 ce 0+ + + = ,  c ∈\ .   Find the orthogonal family F2 

 
 1)  Find the slope of the tangent lines to curves from F1 :  

    Differentiate 2 y
1F :   4 y 2x 2cy e 0

x
∂ ′ ′+ + =
∂

 and solve it for   

   y′  (if c appears in the equation, replace it by the solution of   
   equation ( ) 0c,y,xF1 =  for c ,  

    ( )1xy4ec 2y2 ++−= − ) 

 y2ce2
xy

+
−

=′
( ) 22 y 2 2 y

x x
x 4 y 12 e 4 y x 1 e−

−
= =

+ −− + +
 

 
2)  Determine the equation for the orthogonal slope as the negative reciprocals 
to the previous equation: 

   
x
1

x
y4x

x
1y4xy

2

+−−=
−

−+
=′  

 
3)  Solve the differential equation (the general solution will define an orthogonal 
family): 
   Rewrite the equation in the standard form of a linear equation 

   x
x
1y

x
4y −=+′  

   Find the integrating factor  
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   4xln4dx
x
4

xee === ∫µ  
   Then the general solution is: 

   ∫ +−=





 −+=

4
1

6
x

x
kdxx

x
1x

x
1

x
ky

6

4
4

44  

 
4)  Answer: :F1  0ce1xy4 y22 =+++  c ∈\  

   :F2  
4
1

6

2

4
+−=

x
x
ky    k ∈\  

 
Use Maple to sketch the graph of the curves (1-14e01.mws): 
 
> restart; 
> with(plots): 
> F1:={seq(4*y+x^2+1+(i/2)*exp(2*y)=0,i=-8..8)}: 
> p1:=implicitplot(F1,x=-3..3,y=-2..2, 

color=blue,scaling=constrained,numpoints=2000): 
> F2:={seq((j/2)/x^4-x^2/6+1/4=y,j=-8..8)}: 
> p2:=implicitplot(F2,x=-3..3,y=-2..2, 

color=red,scaling=constrained,numpoints=2000): 
> display({p1,p2}); 
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2.2.8   Approximate and Numerical methods for 1st order ODE’s 
 
     
1. Direction field     Consider a first order ODE written in normal form:   

    ( )yxfy ,=′                     (1) 
Suppose that this equation satisfies conditions of Picard’s Theorem in some 
domain 2D ⊂ \ .  Then for any point ( ) DDyx ⊆∈

~,  there exists only one 
solution curve which goes through this point; and equation (1) defines the slope 
of a tangent line to the solution curve at this point: 
So equation (1) gives us a way to determine the direction of tangent lines to 
solution curves even without solving the equation.  We can use it for 
visualization of the solution curves of the differential equation. 
Create a grid in D as a set of points ( )yx, .  At each point of the grid sketch a 
small segment with a slope given by equation (1).  The obtained picture is called 
a direction field (or slope field) of the ODE.  It gives us a general view on the 
qualitative behavior of solution curves of the ODE. 
 
In Maple, the direction field of an ODE is generated by the command DEplot in 
the package DEtools: 

     > de:=diff(y(x),x)=2*y(x)-s*y(x)^2; 

              
 := de  = d

d
x ( )y x  − 2 ( )y x ( )y x 2  

     > DEplot(de,y(x),x=0..5,y=0..4); 

                               
          actual solution curves can be added by specifying the initial conditions: 

 
> DEplot(de,y(x),x=0..5,{[0,0.02],[0,0.5],[0,3.5]},y=0..4); 
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Isoclines Isoclines of equation (1) are curves at each point of which, the slope of the 

solution curves is constant 
    ( )yxfc ,= ,  c ∈\                     (2) 

So, isoclines are curves defined by the implicit equation (2).  In the previous 
example of the logistic equation, the function does not depend on x, and 
isoclines are the straight lines parallel to the x-axis: 

 
The approximate method of solution based on application of the direction field 
is called the method of isoclines.  It consists in the construction of a direction 
field using isoclines and then drawing approximate solution curves following the 
direction segments. 
 

 
2. Euler method The direction field concept helps us to understand the idea of the Euler method, 

in which we use equation (1) to determine the slope of tangent lines to the 
solution curve step by step and construct an approximate solution curve of the 
IVP:  
 
    ( )yxfy ,=′            ( ) 00 yxy =  
 
The solution is calculated at discrete points kx , …,2,1,0k =  
For the grid with step size kh , the nodes are determined by  

k1kk hxx += − ,   …,2,1k =  
 
At the point 0x the solution is given by the initial condition  

( )00 xyy =  
Then we calculate the slope of the tangent line to the solution curve at the point 
( )00 y,x  and draw a tangent line ( )( ) 0000 yxxy,xfy +−= .  If we consider it to 
be an approximate solution for the interval [ ]10 x,x , then at the next point 

1xx = ,  the approximation is given by 
     1y  ( )( ) 00100 yxxy,xf +−=  

    1y  ( )0010 y,xfhy +=  

Now the approximate value 1y  is known, we can calculate the slope of the 
tangent to the solution at the point ( )11 y,x  and draw a tangent 

( )( ) 1111 yxxy,xfy +−=  from which the next approximation  can be 
determined 

     2y  ( )1121 y,xfhy +=  

Continuing this process, we get for point k , that 
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    ky  ( )1k1kk1k y,xfhy −−− +=  

Starting from the point specified by the initial condition ( )00 y,x , we proceed 
following the direction field of the differential equation to get an approximate 
solution curve which is a piece-wise linear curve connecting points ( )kk y,x . 
The algorithm for Euler’s Method can be summarized as follows: 
 
    kx ∈\   
    1kkk xxh −−=  

Euler’s Method 
    ky ( )1k1kk1k y,xfhy −−− +=  
 
    …,2,1k =  
 
The accuracy of Euler’s Method depends on the character of variation of the 
solution curve and the size of steps kh .  It can be shown that when step size kh  
goes to zero, Euler’s approximation approaches the exact solution.  But it can 
easily deviate from the exact solution for coarrse steps.  If we want an accurate 
solution, then step-size should be very small.  It makes the Euler method a time 
consuming one.  Some improvement can be made, in increasing the efficiency of 
approximation.  In the modified Euler’s Method the average slope of the tangent 
line between steps is taken into account: 
 
    kx ∈\   
    1kkk xxh −−=  

Modified Euler’s Method 
    ky~ ( )1k1kk1k y,xfhy −−− +=  

    ky ( ) ( )[ ]kk1k1k
k

1k y~,xfy,xf
2
h

y ++= −−−  

 
    …,2,1k =  
 
 
Further improvement can be obtained by taking into account the slope of the 
tangent line to the solution at the intermidiate points.  Depending on the number 
of intemidiate steps these methods are called Runge-Kutta methods of different 
orders.  The most popular is the Fourth Order Runge-Kutta Method. Its 
algorithm for regular step-size h , is traditionally written in the following form: 
 
 
 
    nx ∈\    1nn xxh −−=   n∀  
   

4th Order Runge-Kutta Method     ( )1n1n1 y,xhfk −−=  

            







++= −− 2

k
y,

2
hxhfk 1

1n1n2  

            







++= −− 2

k
y,

2
hxhfk 2

1n1n3  

            ( )31n1n4 ky,hxhfk ++= −−  
 

            ( )43211nn kk2k2k
6
1yy ++++= −  

 
    …,2,1n =  
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3.  Picard’s Method of Successive Approximations 
 

  ( )yxfy ,=′            ( ) 00 yxy =  
 

  ( )∫ −−+=
x

x
1k1k0k

0

dxy,xfyy  …,2,1k =   

 
4.  Newton’s Method (Taylor series solution) 
 

We assume that the solution of the IVP for the first order differential equation in 
normal form 
  ( )yxfy ,=′             ( ) 00 yxy =  
can be obtained in the form of a Taylor’s series 

  ( ) ( ) ( )( ) ( ) ( ) "+−
′′

+−′+= 2
0

0
000 xx

!2
xy

xxxyxyxy  

For this expansion we need to determine the values of the unknown function and 
its derivatives at the point 0x : 
 
From initial condition   ( ) 00 yxy =  
 
And by substitution 0xx =  and 0yy =  
into the equation and determining the derivative   
    

( ) ( )( ) ( )00000 y,xfxy,xfxy ==′  
 
to obtained values of the higher derivatives. 
Differentiate consecutively the equation as  
an implicit function and substitute  

0xx =  and 0yy =    ( ) ( )000 y,xf
dx
dxy =′′  

       ( ) ( )002

2

0 y,xf
dx
dxy =′′′  

       #  
In the obtained approximate solution, sometimes a Taylor series expansion of  a  
known function can be identified.  Newton’s method can be applied also and for 
higher order equations. 
 
          
 
Example 1  Use Newton’s Method to solve the following IVP  
 
    0yy =+′′  
    ( ) 00 yxy =  
    ( ) 10 yxy =′  
 

The value of the function and first derivative are already 
known. 

    From the differential equation: 
    yy −=′′  ( ) ( ) 000 yxyxy −=−=′′  
   

Differentiate the ODE and substitute 0xx =  and 0yy = : 
yy ′−=′′′  ( ) ( ) 100 yxyxy −=′−=′′′  

yy iv ′′−=  ( ) ( ) 000
iv yxyxy =′′−=  

    #  
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2j2j2 yy −−=  ( ) ( ) 0
j

0
j2 y1xy −=  

1j21j2 yy −+ −=  ( ) ( ) 1
j

0
1j2 y1xy −=+  

 
 
    Then the Taylor’s series can be constructed as 
 

    ( ) ( ) ( ) ( ) "+−+−−−+= 0
02

0
1

010 xx
!3

y
xx

!2
y

xxyyxy  

     ( ) ( )
( ) ( ) ( )

( )∑
∞

=

+













+
−

−+
−

−=
0j

1j2
0j

1

j2
0j

0 !1j2
xx

1y
!j2

xx
1y  

 
Where the Taylor series expansion of trigonometric functions 
can be recognized: 
 

      ( ) ( )0100 xxsinyxxcosy −+−=  
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2.2.9   Equations of reducible order 
     
1. The unknown function does not appear in an equation explicitly   
 

The general form of these equations which are solved for the second derivative 
is:   
      ( )y,xfy ′=′′                   (1) 
   
This equation can be reduced to a 1st order ODE by the change of dependent 
variable 
      yv ′=             (2) 
then      yv ′′=′             (3) 
and substitution into the equation yields a 1st order ODE for the new function v .  
          
 
Example 1  Solve the following 2nd order differential equation 
      xyy =′+′′  

The dependant variable v  is missing in this equation.  Then 
substitutions (2-3) yield 

xvv =+′  
which is a first order linear ODE with constant coefficients. 
The general solution can be obtained by variation of parameter 
(with an integrating factor ( ) xex −=µ ): 

v  xdxeece xxx ∫−− +=  

 ( )xxxx exeece −+= −−  

 1xce x −+= −  
Then substitution into equation (2) yields the first order ODE 
for the unknown function y  

  y ′  1xce x −+= −  
which can be solved by direct integration 

  y  2

2
x

1 cx
2
xec +−+= −  

Solution curves can be sketched with the help of Maple: 
 

> f:={seq(seq(i*exp(-x)+x^2-x+j,i=-2..2),j=-2..2)}: 
> plot(f,x=-2..2,y=-10..10,color=black); 
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This approach can be applied for reduction of order of more general equations.  
Thus, an ODE of order n  

   ( ) ( ) ( )( ) 0y,,y,y,xF k1nn =− …         (4) 
in which the unknown function y  and its first 1k −  derivatives are missing, by 
the change of variable 

   ( )kyv =  

 ( )1kyv +=′  
 #               (5) 
 ( ) ( )nkn yv =−  

        is reduced to an ODE of order kn − : 
             ( ) ( )( ) 0v,,y,v,xF 1knkn =−−− …         (6) 
 
2.  The independent variable does not appear in the equation explicitly (autonomous equation)  
 

The normal form of these equations is:   
     ( )y,yfy ′=′′                          (7) 
Such equations in which the independent variable does not appear explicitly, are 
called autonomous equations. 
These equations can be transformed to 1st order ODE’s by the change of the 
dependent variable to 
     yv ′=              (8) 
and then in the resulting equation consider y  to be the independent variable and 
v  to be the dependent variable.  These transformations of the given ODE works 
as follows: 
1)  express derivatives of y  in terms of a new function v :  
     vy =′  

     ( ) vvv
dy
dv

dx
dy

dy
dvv

dx
dy

dx
dy ′====′=′′  

2)  substitution into equation (7) yields is 1st order ODE 
 
     ( )v,yfvv =′             (9) 
3)  find (if possible) a general solution of equation (9) and write it in the form 
where it is solved for the function v  (the general solution should include one 
parameter 1c ): 
     ( )1c,yFv =           (10) 
4)  using back-substitution (8), set up the equation for the unknown function y  
     ( )1c,yFy =′  
which formally can be solved by separation of variables 

     ( ) dx
c,yF

dy

1

=  

     ( ) 2
1

cx
c,yF

dy
+=∫         (11) 

Equation (11) is an implicit form of the general solution of equation (7).  It also 
can be written as an explicit function ( )yx  with y  as the independent variable: 

     ( ) 2
1

c
c,yF

dyx += ∫  

 
 
Example 2  Solve the following 2nd  order ODE 
      0yy2y =′−′′  
    Substitution (8) yields 
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      0vy2vv =−′  
      ( ) 0y2vv =−′  
    from which we have two equations: 
      0v =  
      0y2v =−′  
    The first equation immediately leads to the solution 
      0y =′  ⇒  cy =   Rc ∈  

The second equation is a 1st order ODE  with the general 
solution 

      1
2 cyv +=  

    Back-substitution gives the equation for y  

      1
2 cyy +=′  

    which is a separable equation 

      dx
cy

dy

1
2

=
+

 

Depending on the sign of the constant 1c , integration yields 
the following solutions: 
 

a)  for  0cc 2
1 >=   2

1 cx
c
ytan

c
1

+=






−  Rc,c 2 ∈  

b)  for  0cc 2
1 <−=  2cx

cy
cy

ln
c2

1
+=

+
−

 Rc,c 2 ∈  

c)  for 0c1 =    2cx
y
1

+=    Rc,c 2 ∈  

recall also the solution 
   
d)      cy =     Rc ∈  
 
It is simpler to sketch the solution curves as explicit functions 
x of y; for each family of solutions they have the following 
form: 
 

Note: x and y coordinates are interchanged                 a)          x  

  
 
 
 
 
 
 
 
 

y
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b)                                       x 

 
c)                                       x 
 

 
d)                                        

 
 

 
Example 3 (outer-space radiator, example from [Siegel&Howell, 

ThermalRadiation Heat Transfer] with different solution) 
Excessive heat from space ships can be released only by radiating it from the 
surfaces exposed to outer-space which is assumed to be at zero absolute 
temperature.  The schematic of one section of a radiator is shown in the Figure. 
Fluid heated inside of the ship to the temperature 0u  enters pipes connected by 
fins of thickness a  and width L2 .  Fins are from material with thermal 
conductivity k  and total surface emissivity ε . 
Determine the steady state temperature distribution in the fin. 
 

Assumptions for the physical and mathematical model describing heat transfer 
in the fins: 

y

y

y
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temperature varies only in the x-direction ( )xuu =  ; 
the ends of the fin attached to the pipes are at temperature 0u ; 
the fin surface is not exposed to direct sun radiation; 
because of the symmetry, there is no heat flux at the middle of the plate: 

0
dx
du

Lx

=
=

 

Energy balance for the control volume ( Wax ××∆ ): 

( ) ( ) 4

xxx

uxW
dx
du

dx
dukaW εσ∆

∆

=







−

+

 

at the limit 0x →∆  yields a governing equation for temperature distribution 
 

4
2

2

bu
dx

ud
=  

ka
2b εσ

=  ( )L,0x ∈  

with boundary conditions: 
 

( ) 0u0u =  

0
dx
du

Lx

=
=

 

The equation is a non-linear 2nd order ODE.  This is an autonomous equation 
which can be reduced to the 1st order equation by the change of variable 

vu =′  
vvu ′=′′  

Then the equation becomes 
4buvv =  where 

du
dvv =′  

Separate variables 
dubuvdv 4=  

and integrate to get a general solution 

1
5

2

cu
5
b

2
v

+=  

Apply the second boundary condition ( )[ ] 0
dx
duLuv

Lx

==
=

 and notation 

( )Luu L =  
for the fin’s midpoint temperature to determine the constant of integration 

1
5

L cu
5
b0 +=  

Then 

( )5
L

2 uu
5
b2v −=  

Because for the interval ( )L,0  temperature of the fin is decreasing and v is in a 
direction of the temperature gradient, then the previous equation yields 

( )5
Luu

5
b2v −−=  

which is followed with the back-substitution to 

( )5
Luu

5
b2

dx
du

−−=  

and after separation of variables 

        
( )

dx
uu

5
b2

du

5
L

=

−

−  

( ) 4
radq W x u∆ εσ=

( )cond ,out
x x

duq aW k
dx ∆+

= −

( )cond ,in
x

duq aW k
dx

= −
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Definite integration of this equation for the change of temperature from 0u  to 
( )0xu  when the space variable changes from 0 to x, yields 

( )

( )

∫
−

−=
xu

u 5
L

0 uu
5
b2

dux                    (☼) 

This is an implicit equation for the value of the temperature at x.  The value of 
the midpoint temperature Lu  can be determined from the solution of the 
equation 

( )
∫

−

−=
L

0

u

u 5
Luu

5
b2

duL  

which can be solved numerically. 
Then for fixed values of the coordinate x temperature values ( )xu  can be found 
from the numerical solution of equation (☼). 
 
Consider the particular case with the following values of parameters: 

                                                       m01.0a = , 8.0=ε ,
Km

W100k
⋅

= , 8
2 4

W5.67 10
m K

σ −= ⋅
⋅

, m5.0L = , 0u 330K=  

 
Then from equation (☼), the following temperature distribution follows with the 
midpoint temperature K9.259uL =  ( Maple file: fin3.mws) 
 

                           
 

3. Reduction of the order of a linear equation if one solution is known 
 

a) If any non-trivial solution ( )xy1  of a linear nth order homogeneous  
differential equation is known 

        ( ) ( ) ( ) ( ) 0xayxayxa n1n
n

0 =+++ −"   
 

then the order of the homogeneous equation can be reduced by one order by the 
change of dependent variable with 

vyy 1=   followed by the change of variable uv =′ . 
These two substitutions can be combined in one change of variable by 

∫= udxyy 1  
which preserves linearity and homogeneity of the equation. 
 
The order of the non-homogeneous equation  

( ) ( ) ( ) ( ) ( )n
0 n 1 na x y a x y a x f x−+ + + ="  

can be reduced by one order by the change of dependent variable with the same 
substitution vyy 1= , but the resulting equation will be non-homogeneous.   
This method was used by Euler for solution of linear ODE’s by systematic 
reduction of order. 
b) Reduction formula for a 2nd order linear ODE: 
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  ( ) ( ) ( )0 1 2a x y a x y a x y 0′′ ′+ + =  
Let ( )xy1  be a non-trivial solution, then it satisfies 
  ( ) ( ) ( )0 1 1 1 n 1a x y a x y a x y 0′′ ′+ + =  
Let   2 1y y u=   then 
  2 1 1y y u y u′ ′ ′= +  

  2 1 1 1y y u 2y u y u′′′ ′′ ′ ′′= + +  
Substitute into the equation and collect terms in the following way 

( ) ( ) ( ) ( ) ( )0 1 0 1 1 1 0 1 1 1 n 1a x y u 2a x y a y u a x y a x y a x y u 0 ′′ ′ ′ ′′ ′ + + + + + =     

The last term is equal to zero because ( )xy1  is a solution of the homogeneous 
equation 

( ) ( )0 1 0 1 1 1a x y u 2a x y a y u 0′′ ′ ′ + + =   
Now this equation does not include the unknown function u explicitly, therefore, 
by substitution u v′ =  it can be reduced to a 1st order equation 
u v′ =  
u v′′ ′=  

( ) ( )0 1 0 1 1 1a x y v 2a x y a y v 0′ ′ + + =   

( )
( )

0 1 1 1

0 1

2a x y a y
v v 0

a x y

′ + ′ + =  

The integrating factor for this equation is 
 

( )
( )

0 1 1 1 1 1 11
1 00 1 01

2a x y a y y a ay2 dxdx dx2 dx
y aa x y aye e e eµ

′ +  ′ ′  + 
 = = =

∫∫ ∫∫  

    
1 1 1

2
0 0 01 1

a a a
dx dx dx

a a a2ln y ln y 2
1e e e e y e= = =∫ ∫ ∫   

then the general solution for v is 
1

0

a
dx

a

1 2
1

ev c
y

−

=
∫

  

Then the formal solution for the function u is 
1

0

a
dx

a

2 1 22
1

eu vdx c c dx c
y

−

= + = +
∫

∫ ∫  

then the second solution can be written as 
1

0

a
dx

a

2 1 1 1 2 12
1

ey y u c y dx c y
y

−

= = +
∫

∫  

Choose arbitrary constants as 1 2c 1,c 0= =  then 
 

                  

1

0

a
dx

a

2 1 2
1

ey y dx
y

−

=
∫

∫  

 
which is called the reduction formula. 
Check if the solutions 1 2y , y  are linearly independent: 

( ) 1 2 1 1
1 2

1 2 1 1 1

y y y y u
W y , y

y y y y u y u
= =

′ ′ ′ ′ ′+
 

2
1y u′=

1

0

a
dx

ae 0
−

= >∫  
Therefore, the solutions are linearly independent and constitute the fundamental 
set for a 2nd order linear ODE. 
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2.3   Theory of Linear ODE 
     
2.3.1. Linear ODE    The general form of linear ODE of the nth order is given by equation 
   

( ) ( ) ( ) ( ) ( )xfyxa
dx
dyxa

dx
ydxa

dx
ydxayL nnn

n

n

n

n =++++≡ −−

−

11

1

10 "       (1) 

 
defined in the domain x D∈ ⊂ \ , where coefficients ( )xai  and ( )xf  are 
continuous functions in D : ( ) ( ) [ ]DCxfxai ∈, . 
If in addition, the leading coefficient ( ) 00 ≠xa for all Dx ∈ , then equation (1) 
is said to be normal. 
  
If ( ) 0≡xf , then equation 0=yLn  is homogeneous or an equation without a 
right hand side; otherwise, the equation ( )xfyLn =  is non-homogeneous or an 
equation with a right hand side. 
 
A solution of equation (1) is n times continuously differentiable in a D function 

( ) [ ]DCxy n∈  which after substitution into equation (1), turns it into an identity 
( in other words, ( )xy  satisfies the differential equation).  
 
A differential operator of nth order nL  is linear in the sense that if we have two n 

times differentiable functions ( ) ( ) [ ]DCxyxy n∈21 , , then application of the 
operator nL  to their linear combination yields a linear combination: 
 

( ) ( )[ ] ( ) ( )xyLxyLxyxyL nnn 2121 βαβα +=+                            (2) 
 
This property for the operator nL  follows from the fact that the operation of 
differentiation is linear. 
 
We should note, that if ( ) ( ) [ ]DCxyxy n∈21 ,  are solutions of the non-
homogeneous equation (1), then it does not necessarily yield that their linear 
combination is also a solution of equation (1): 
 

( ) ( )xfxyLn =1 , ( ) ( )xfxyLn =2  ⇒ ( ) ( )[ ] ( )xfxyxyLn =+ 21 βα   
 

superposition principle  Instead, we use a superposition principle: if functions ( ) ( ) [ ]DCxyxy n∈21 ,  are 
solutions of equations ( )xfyLn 1=  and ( )xfyLn 2=  correspondingly, then their 
linear combination is a solution of the differential equation ( ) ( )xfxfyLn 21 βα +=  
(see Theorem 10 for a more general form): 
 

( ) ( )xfxyLn 11 = , ( ) ( )xfxyLn 22 =  ⇒ ( ) ( )[ ] ( ) ( )xfxfxyxyLn 2121 βαβα +=+  (3)  
 
For a homogeneous linear ODE 0=yLn , the superposition principle reflects in 
full the linearity of the ODE: 
 

( )n 1L y x 0= , ( ) 02 =xyLn  ⇒ ( ) ( )[ ] 021 =+ xyxyLn βα                (4) 
therefore, any linear combination of the solutions of the homogeneous equation 
is also a solution of this equation.  The last property is important for 
understanding the structure of the solution set for the homogeneous equation: if 
some functions are solutions of linear homogeneous ODE’s then their span 
consists completely of solutions of this equation. 
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Initial Value Problem   The initial value problem (IVP) for an nth order ODE is given by: 
 
          Solve    ( )xfyLn =  in x D∈ ⊂ \  
          Subject to  ( ) 10 kxy =   
              ( ) 20 kxy =′                   (5) 
              #  
              ( )( ) n

n kxy =−
0

1  Dx ∈0 , ik ∈\  
 

The setting of the IVP for an ODE is important for the proper modeling of 
physical processes.  Thus, the solution of the IVP should exist, and the 
development of the solution from the initial state should be unique.  The other 
property of the solution should include the continuous dependence of the 
solution on their initial conditions.  If it holds, then the IVP is said to be well-set 
(otherwise, it is said to be an ill-set problem).  The following theorem (given 
here without proof) gives the sufficient condition for existence and uniqueness 
of the solution of the IVP. 

 
     

Existence and uniqueness Theorem1  If a linear ODE ( )xfyLn =  is normal in D, then  
    the IVP (5) has a unique solution in D 
 

 
     
Corollary  If ( )xy  is a solution of the IVP (5) for the homogeneous 

equation 
    nL y 0=  
 with 0,...,0,0 21 === nkkk  , then ( ) 0≡xy .  
 
 Obviously, the trivial solution satisfies these initial conditions 

and because the solution of the IVP is unique, ( )xy  is a zero 
function. 

 
 
2.3.2. Homogeneous linear ODE Further, if there is no special reason otherwise, equations are assumed to be 

normal. Because only a homogeneous linear ODE 0=yLn  possesses the 
property that a linear combination of solutions is also a solution, we will study 
first the solutions of homogeneous equations.   
 
But first we have to recall some concepts of linear algebra concerning vector 
spaces.  Consider a vector space of all n times continuously differentiable  
functions in D: 
 ( ) [ ]DCxf n∈  
and formulate definitions for linear independence of the set of their elements: 

 
 

Linear independent sets   Definition 1   Functions ( ) ( ) ( )xyxyxy n,...,, 21  are linearly independent in  
D, if equation 

( ) ( ) 0...11 =++ xycxyc nn  ic ∈\             (6) 
is valid for all Dx ∈  only if all coefficients 
  0=ic   

 
Definition 2   Functions ( ) ( ) ( )xyxyxy n,...,, 21  are linearly dependent in D, 

if there exist coefficients ic ∈\  not all equal to zero such that 
( ) ( ) 0...11 =++ xycxyc nn   

for all Dx ∈ . 
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        Obviously, if functions  ( ) ( ) ( )xyxyxy n,...,, 21  are not linearly dependent,  

then they are linearly independent. 
Definition 1 provides a unique representation of a zero function by a linear 
combination of linearly independent functions with all coefficients equal to zero.   
Now, if we consider a subspace spanned by a set of linearly independent 
functions: 
   ( ) ( ) ( ) ( ) ( ){ }1 2 n 1 1 n n iV y x , y x ,..., y x c y x ... c y x ,c≡ = + + ∈\ , 
then representation of any function from V by a linear combination of 

( ) ( ) ( )xyxyxy n,...,, 21  is also unique: 
   ( ) ( ) ( )xycxycxf nn++= ...11                  (7) 
Indeed, suppose that we have a linear combination with other coefficients that is 
valid for all Dx ∈ : 
   ( ) ( ) ( )xydxydxf nn++= ...11  
then subtracting it from equation (7) we get 
    ( ) ( ) ( ) ( )xydcxydc nn−++−= 1111 ...0  
this, according to definition 1, yields immediately 
   0,...,011 =−=− nn dcdc  
or 
   nn dcdc == ,...,11  
therefore,  functions  ( ) ( ) ( )xyxyxy n,...,, 21  can serve as a basis for the vector 
space V. 
How is it determined that a set of functions ( ) ( ) ( )xyxyxy n,...,, 21  is linearly 
independent in D?  For this purpose we will use the properties of the 
determinant of a special matrix (called the Wronskian) which is constructed 
from functions ( ) ( ) ( )xyxyxy n,...,, 21  and their derivatives. 
 

 
Wronskian     Definition 3   The Wronskian of ( ) ( ) ( ) [ ]DCxyxyxy n

n ∈,...,, 21  is a  
determinant 

 

            ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 n

1 2 n
1 n

n 1 n 1 n 1
1 2 n

y x y x y x
y x y x y x

W y ,..., y x

y x y x y x− − −

′ ′ ′
=  

"
"

# # % #

"

      (8) 

 
     

           Important properties of the Wronskian are formulated in the following theorems: 
 
        Theorem 2  The set of functions ( ) ( ) ( ) [ ]DCxyxyxy n

n ∈,...,, 21  is linearly  
independent in D, if and only if 

[ ]( ) 0,...,1 ≠xyyW n  for all Dx ∈  
 

        Theorem 3  The set of functions ( ) ( ) ( ) [ ]DCxyxyxy n
n ∈,...,, 21  is linearly  

dependent in D, if and only if 
[ ]( ) 0,...,1 =xyyW n  for all Dx ∈  

 
        Theorem 4  If at some point Dx ∈0 , [ ]( ) 0,..., 01 ≠xyyW n , then 
                [ ]( ) 0,...,1 ≠xyyW n  for all Dx ∈  
 
        Theorem 5  If at some point Dx ∈0 , [ ]( ) 0,..., 01 =xyyW n , then functions  
            ( ) ( ) ( )xyxyxy n,...,, 21  are linearly dependent in D. 
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            Proof of Theorem 2:  
 

( ⇐  sufficient condition) 
Let   ( ) ( ) ( ) [ ]DCxyxyxy n

n ∈,...,, 21   and 
[ ]( ) 0,...,1 ≠xyyW n  for all Dx ∈ . 

Construct a homogeneous system of linear algebraic 
equations: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 

















=




































′′′

−−− 0

0
0

c

c
c

xyxyxy

xyxyxy
xyxyxy

n

2

1

1n
n

1n
2

1n
1

n21

n21

##
"

#%##
"
"

 

For any Dx ∈ , this system has only a trivial solution because 
the determinant of the matrix of coefficients 

[ ]( ) 0,...,1 ≠xyyW n .  Therefore, the linear combination  
  ( ) ( ) 0...11 =++ xycxyc nn  
only if all coefficients ic are equal to zero for all Dx ∈ . 
Then, according to Definition 1, the functions 

( ) ( ) ( )xyxyxy n,...,, 21  are linearly independent in D.              ■ 
 
( ⇒  necessary condition)  
Let the set of functions ( ) ( ) ( ) [ ]DCxyxyxy n

n ∈,...,, 21  be 
linearly independent in D.   Then for all Dx ∈  
  ( ) ( ) 0...11 =++ xycxyc nn  only if all 0=ic  
Differentiate this equation n-1 times and construct a linear 
system of algebraic equations 

  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 

















=




































′′′

−−− 0

0
0

c

c
c

xyxyxy

xyxyxy
xyxyxy

n

2

1

1n
n

1n
2

1n
1

n21

n21

##
"

#%##
"
"

 

If for some Dx0 ∈ , the determinant [ ]( ) 0xy,...,yW 0n1 = ,  
then the linear system at this point has a non-trivial solution, 
and  

              ( ) ( ) 0xyc...xyc 0nn011 =++    where some 0ci ≠  
but that contradicts the theorem’s assumption, therefore  

              [ ]( ) 0,...,1 ≠xyyW n  for all Dx ∈ .                     ■ 
     
 
Solution space of 0=yLn   The next two theorems determine the dimension of the solution space of  a   
        homogeneous linear ODE.  In the first theorem, we constitute that there always  
        exists n linear independent solutions of 0=yLn , and in the second theorem, that 
        there can not be more than n linearly independent solutions.  

 
 

Theorem 6  There exist n linearly independent solutions of 0=yLn  
 
Proof: The existence will be shown by construction of such a set of n 

linearly independent solutions.  
Let Dx ∈0  be an arbitrary point.  The initial value problem for the normal 

equation 0=yLn  subject to conditions ( ) 10 kxy = , ( ) 20 kxy =′  ,..., ( )( ) n
n kxy =−

0
1  

Dx ∈0 , Rki ∈  has a unique solution ( ) Dxy ∈  (Theorem 1).  Denoted by 
vectors 
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

















=

nk

k
k

#
2

1

k and 

( )
( )

( ) ( )
















′

=

− xy

xy
xy

n 1

#
y  , then the initial condition is written in vector form 

as:          ( ) ky =0x  

Choose  


















=

0

0
1

1 #
k ,  then IVP  ( ) 1ky =

=

0

0
x

yLn  has a unique solution  ( )xy1  

Choose  


















=

0

1
0

2 #
k ,  then IVP  ( ) 20

0
ky =

=
x

yLn  has a unique solution  ( )xy2  

#  

Choose  


















=

1

0
0

#nk ,  then IVP  ( ) n

n

x
yL

ky =
=

0

0
 has a unique solution  ( )xyn  

Show that when constructed this way the set of solutions ( ) ( ) ( )xyxyxy n,...,, 21  
is linearly independent in D.  Calculate the Wronskian of these functions 
at Dx ∈0 : 

[ ]( )1 n 0W y ,..., y x   

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 0 2 0 n 0

1 0 2 0 n 0

n 1 n 1 n 1
1 0 2 0 n 1 0

y x y x y x
y x y x y x

y x y x y x− − −
−

′ ′ ′
=

"
"

# # % #

"

 

 

                  1

100

010
001

===

"
#%##

"
"

" n21 kkk  

Then according to theorem 4, the Wronskian is not equal to zero at all x ∈\ ; 
therefore, by theorem 2, functions ( ) ( ) ( )xyxyxy n,...,, 21  are linearly independent 

in D.                         ■ 
 

Theorem 7  Let ( ) ( ) ( )xyxyxy n,...,, 21  be a set of n linearly independent  
solutions of the normal homogeneous linear ODE  
  0=yLn   x D∈ ⊂ \                 (9) 
If the function ( )xy , Dx ∈  is any solution of equation (9), 
then there exists coefficients Rci ∈  such that 
  ( ) ( ) ( )xycxycxy nn++= ...11                  (10) 
for all Dx ∈  

 
        Proof:   Let  ( )xy , Dx ∈  be an arbitrary solution of equation (9) in D.   

Show that we can find coefficients ic ∈\   such that 
    ( ) ( ) ( )xycxycxy nn++= ...11  
Differentiate this equation consequently n-1 times (as the solutions of equation 
(9), ( ) ( ) [ ]DCxyxy n

i ∈, ): 
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    ( ) ( ) ( )xycxycxy nn++= ...11   
    ( ) ( ) ( )xycxycxy nn ′++′=′ ...11   
    #                                 (11) 
    ( ) ( ) ( ) ( ) ( ) ( )xycxycxy n

nn
nn 11

11
1 ... −−− ++=        

And applying this equations at some point Dx ∈0 , write a system of algebraic 
equations: 
    ( ) ( ) ( )00110 ... xycxycxy nn++=   
    ( ) ( ) ( )00110 ... xycxycxy nn ′++′=′   
    #                                 (12) 
    ( ) ( ) ( ) ( ) ( ) ( )0

1
0

1
110

1 ... xycxycxy n
nn

nn −−− ++=   
which in the matrix form can be rewritten as 

    

( )
( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 


































′′′

=


















′

−−−−
n

n
n

nn

n

n

n c

c
c

xyxyxy

xyxyxy
xyxyxy

xy

xy
xy

#
"

#%##
"
"

#
2

1

0
1

0
1

20
1

1

00201

00201

0
1

0

0

 

or in the short form as 
    ( ) Acy =0x                   (13) 
The determinant of matrix A is a Wronskian [ ]( )01 ,..., xyyW n  of functions  

( ) ( ) ( )xyxyxy n,...,, 21  calculated at Dx ∈0 .  Since functions 
( ) ( ) ( )xyxyxy n,...,, 21  are linearly independent in D, [ ]( ) 0,..., 01 ≠xyyW n .  

Therefore, the matrix A is invertable, and the system of algebraic equations (13) 
has a unique solution 

    ( )0xyAc 1−=   

1

2

n

c
c

0

c

 
 
 = ≠
 
 
 

c
#

             (14) 

Using determined coefficients ic  (14), construct a function in D: 
    ( ) ( ) ( )xycxycxz nn++= ...11  Dx ∈             (15) 
As a linear combination of solutions, according to the superposition principle for 
the homogeneous equation, ( )xz  is also a solution of 0=yLn , and, therefore, 

( ) [ ]DCxz n∈ .  Then differentiate equation (15) consequently n-1 times: 
    ( ) ( ) ( )xycxycxz nn++= ...11   
    ( ) ( ) ( )xycxycxz nn ′++′=′ ...11   
    #                                 (16) 
    ( ) ( ) ( ) ( ) ( ) ( )xycxycxz n

nn
nn 11

11
1 ... −−− ++=    

Consider ( ) ( )xzxy − , the function ( ) ( )xzxy −  also is a solution of   0=yLn .  
Calculate   ( ) ( )00 xzxy −  and its derivatives comparing equations (12) and (16): 
    ( ) ( ) 000 =− xzxy  
    ( ) ( ) 000 =′−′ xzxy  
    #  
    ( ) ( ) ( ) ( ) 00

1
0

1 =− −− xzxy nn  
Then, according to the Corollary for Theorem 1, the function  ( ) ( )xzxy −  which 
is a solution of 0=yLn  satisfying zero initial conditions, is identically equal to 
zero: 
     ( ) ( ) 0≡− xzxy  for all Dx ∈  
therefore, 
    ( ) ( ) ( ) ( )xycxycxzxy nn++=≡ ...11    for all Dx ∈  
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where the coefficients ic  are not all equal to zero, are uniquely determined by 

equation (14).                          ■ 
                          
 
Equation 0=yLn  always has n linearly independent solutions, but not more. 
If we have n linearly independent solutions ( ) ( ) ( )xyxyxy n,...,, 21  of 0=yLn ,  
then any other solution is represented by their linear combination.  So, the 
complete solution set of 0=yLn is a vector space spanned by any set of its n 
linearly independent solutions: 
  ( ) ( ) ( ){ }xyxyxyspanS n,...,, 21=                     (17) 
 

solution space     The  set ( ) ( ) ( ){ }1 2 ny x , y x ,..., y x   is a basis for  
the solution space of dimension  n. 

 
 

 
Definition4   Any set of n linearly independent solutions of  0=yLn   

      ( ) ( ) ( ){ }1 2 ny x , y x ,..., y x  
    is called a fundamental set. 
 
 

 
Definition5  If ( ) ( ) ( ){ }1 2 ny x , y x ,..., y x  is a fundamental set of  0=yLn ,  
    then its solution space  
      ( )cy x  ( ) ( ) ( ){ }1 2 nspan y x , y x ,..., y x=  

                 ( ) ( )xycxyc nn++= ...11 , Dx ∈ , ic ∈\   
    is called a complimentary solution. 
 
 
Theorem 8  Let ( ) ( ) ( ){ }1 2 ny x , y x ,..., y x  be a fundamental set of   

    0=yLn , then any solution of 0=yLn belongs to its    
    complementary solution ( ) ( ) ( ) ( ){ }xy,...,xy,xyspanxy n21c = . 
 
That means that any solution of the homogeneous equation  0=yLn  is 
represented by a linear combination ( ) ( )1 1 n ny c y x ... c y x= + + . 
 

 
2.3.3  Non-Homogeneous linear ODE Consider the structure of the solution set of the non-

homogeneous linear ODE 
 
       ( )xfyLn =  Dx ∈                    (18) 
 
 
General solution of ( )xfyLn =  Theorem 9  Let ( ) ( ) ( ){ }1 2 ny x , y x ,..., y x  be a fundamental set of 0=yLn  

              on D, and let py  be any particular solution of the 

    non-homogeneous equation ( )nL y f x=  on D, then the 
    complete solution of the non-homogeneous linear ODE 
      ( )nL y f x=  

is described by a complimentary solution of the homogeneous 
equation translated by a particular solution of the non-
homogeneous equation 



  Chapter 2   Ordinary Differential Equations 
 

( )xy  ( ) ( )xyxy pc +=  
  ( ) ( ) ( )xyxycxyc pnn11 +++= "       Rci ∈          (19) 
 

Proof: Show that any solution ( )xu  of the non-homogeneous 
equation ( )xfuLn ≡  is represented by the sum  

( ) ( ) ( )xyxyxu pc +=  
 
Let   ( )xfuLn =    
  ( )xfyL pn =   
and subtract the second equation from the first equation 
  ( ) 0yuL pn =−  
Therefore, pyu −  is a solution of the homogeneous equation, 
and, according to Theorem 8, is represented by a linear 
combination of the fundamental set 
   ( ) ( )xycxycyu nn11p ++=− "  
The claimed result can be obtained by moving the particular 
solution to the right hand side of the equation 
  ( ) ( )1 1 n n pu c y x c y x y= + + +"                   ■ 
 

 
Superposition principle  Theorem 10   Let ( )xyi  be the particular solutions of ( )xfyL in =      

i 1,...,k=  
               ( )xfyL iin ≡   Dx ∈  

            Then ( )∑
=

k

1i
i xy  is a solution of the equation ( )∑

=

=
k

1i
in xfyL  

               ( )∑∑
==

≡
k

1i
i

1

1i
in xfyL  

This theorem is a simple corollary of the linearity of the 
differential operator nL . 

 
 

It follows that if the fundamental set and any particular solution are known then 
the general solution of the non-homogeneous linear ODE can be constructed.  In 
the next section we will study how they can be obtained for the particular form 
of linear equations. 
 

 
2.3.4.  Fundamental set of linear ODE with constant coefficients 
 

Consider first differential equations of the second order because they are the 
most popular in engineering modeling (for example, dynamical systems with 
forces) : 

2nd order  
    0yayaya 210 =+′+′′     Dx ∈                 (20) 
  
 
Ansatz: look for the solution of equation (20) in the form of an exponential 
function 
    mxey =                         (21) 
with some undetermined parameter m.  Differentiate (21) twice  
    mxmey =′     mx2 emy =′′  
and substitute into equation (20) 

( )nL y f x=
general 
solution of

c

complimentary
solution  y

nL y 0= py

particular
solution 

cy

c py y y= +
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2 mx mx mx
0 1 2a m e a me a e 0+ + =  

( )2 mx
0 1 2a m a m a e 0+ + =

   
factor mxe  

because mxe 0>  for all x, the necessary condition for the trial function mxy e=  
to be a solution is 

2
0 1 2a m a m a 0+ + =  

This equation is called an auxiliary equation. From the auxiliary equation we 
can find the values of the parameter m satisfying this equation 

2
1 1 0 2

1,2
0

a a 4a a
m

2a
− ± −

=                    (22) 

Consider the following cases: 
 
a)  2

1 0 2a 4a a 0− >    There are two distinct roots 1 2m m≠ , then corresponding  
 
solutions of the differential equation (20) are 

1m x
1y e=  and 2m x

2y e=                         (23) 
Use the Wronskian to show that these functions are linearly independent 

( ) ( ) ( ) ( ) ( )
1 2

1 2 1 2 1 21 2

1 2

m x m x
m m x m m x m m xm x m x

2 1 2 1m x m x
1 2

e e
W e ,e m e m e m m e

m e m e
+ + += = − = −  

because 1 2m m≠  and  ( )1 2m m xe 0+ >  for all x, ( )1 2m x m xW e ,e 0≠  for all x, 

therefore, according to Theorem 2, solutions (23) are linearly independent and  
constitute the fundamental set for the homogeneous equation (20): 
 
     { }1 2m x m xe ,e                                                               (24) 

 
b) 2

1 0 2a 4a a 0− =    There is only one repeated root of the auxiliary equation of 

multiplicity two: 1
1 2

0

a
m m m

2a
−

= = = , then there is only one corresponding 

solution of the trial form 

1y  mxe=  
To construct  a second solution, use a reduction formula ( ): 

2y  

1

0

a
dx

a

1 2
1

ey dx
y

−

=
∫

∫   substitute 1

0

a
2m

a
= −  and m

1y e=   

 
2 mdx

mx
2mx

ee dx
e

=
∫

∫   perform integration 

 
2mx

mx
2mx

ee dx
e

= ∫  

 mxe dx= ∫  

 mxxe=  
Use the Wronskian to check if the obtained solutions are linearly independent: 

( )
mx mx

mx mx 2mx 2mx 2mx 2mx
mx mx mx

e xe
W e ,xe e mxe mxe e 0

me e mxe
= = + − = >

+
 

for all x. Therefore, the solutions are linearly independent and the fundamental 
set is 
   { }mx mxe ,xe            (25) 

 
c) 2

1 0 2a 4a a 0− <       There is a conjugate pair of two complex roots 
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    1m a ib= +  1

0

a
a

2a
−

=  

    2m a ib= −  
2

0 2 1

0

4a a a
b

2a
−

=  

and corresponding solutions are 
    ( )a ib x

1y e +=  

    ( )a ib x
2y e −=  

Use the Euler formula (1.xx) for conversion of the solution to trigonometric 
form 
    ( )ax

1y e cos bx i sinbx= +  

    ( )ax
2y e cos bx i sinbx= −  

Any linear combination of solutions of a linear homogeneous equation is also a 
solution, therefore, by adding and subtracting these solutions and neglecting 
constant coefficients, two real valued solutions can be obtained: 
    ax

1y e cos bx=  

    ax
2y e sinbx=  

More formally, the following fact can be proved: 
If a linear homogeneous differential equation (in general, of order n) has a 
complex solution  
    ( ) ( ) ( )y x u x iv x= +  

then each real-valued function ( )u x  and ( )v x  are also the solutions of the same 
homogeneous equation.  It can be shown by direct substitution into the 
differential equation (in exercise). 
Use the Wronskian to check if the obtained solutions are linearly independent: 

( )ax axW e cos bx,e sinbx  
ax ax

ax ax ax ax

e cos bx e sinbx
ae cos bx be sinbx ae sinbx be cos bx

=
− +

 

      
2ax 2ax 2 2ax 2ax 2ae sinbx cos bx be cos bx ae sinbx cos bx be sin bx= + − +  

  ( )2ax 2 2be cos bx sin bx= +  

  2axbe=  

  0≠          for all x   because 
2

0 2 1

0

4a a a
b 0

2a
−

= ≠  

then the fundamental set of the homogeneous differential equation is 

   { }ax axe cos bx,e sinbx                                                   (26) 

 
 
nth order   ( ) ( )n n 1

0 1 n 1 na y a y a y a y 0−
− ′+ + + + ="               Dx ∈           (27) 

 
  
 The same form of the trial solution mxy e=  is used for the nth order 

homogeneous equation.  Its application yields an auxiliary equation  
   n n 1

0 1 n 1 na m a m a m a 0−
−+ + + + ="                (28) 

 which is an nth order algebraic equation for parameter m. According to the 
fundamental theorem of algebra, it has exactly n roots which can be real distinct 
or repeated or complex roots appearing in conjugate pairs (also they can be 
repeated).  Consider the typical cases of the roots of the auxiliary equation: 

  
 a) If the auxiliary equation has a real root m of multiplicity k.  Then there are k 

linearly independent solutions in the fundamental set corresponding to root m: 
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     { }mx mx 2 mx k 1 mxe ,xe ,x e ,...,x e−               (29) 

 b) If the auxiliary equation has a conjugate pair of complex roots 1,2m a ib= ± .  
Then the fundamental set includes two solutions corresponding to these roots 

     { }ax axe cos bx,e sinbx                      (30) 

 If  the complex roots 1,2m a ib= ±  are of multiplicity k, the corresponding 
solutions in the fundamental set are  

 { }ax ax ax ax k 1 ax k 1 axe cos bx,e sinbx,xe cos bx,xe sinbx,...,x e cos bx,x e sinbx− −    (31)  

 
2.3.5.  Particular solution of linear ODE 
 
 In general, the particular solution of a non-homogeneous equation is not easy to 

find.  There are two main methods for finding particular solutions: the variation 
of parameters (called Lagrange’s method, however, published first by L.Euler 
and D.Bernulli , 1740) and the method of undetermined coefficients. 

 
variation of parameter Let the linear differential equation of nth order  

 ( ) ( ) ( ) ( ) ( )xfyxa
dx
dyxa

dx
ydxa

dx
ydxayL nnn

n

n

n

n =++++≡ −−

−

11

1

10 "                (32) 

 be normal and let 
 ( ) ( ) ( ){ }1 2 ny x , y x ,..., y x  
 be its fundamental set (linearly independent solutions of the homogeneous 

equation)  
 We will look for a particular solution of the non-uniform equation (32) in the 

form of a combination of fundamental solutions  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n

p 1 1 2 2 n n i i
i 1

y x u x y x u x y x ... u x y x u x y x
=

= + + + = ∑          (33) 

 where coefficients ( )iu x  are, in general, functions of x (variation of 
coefficients), and we will try to determine them in such a way that equation (32) 
is satisfied.  We will feel free to impose any additional condition on these 
coefficients if it makes our task simpler, because we need just any particular 
solution (the number of such additional conditions can be at least n-1 because 
initially for n unknown coefficients ( )iu x  we required satisfaction only of 
equation (32)). 

 
 Differentiate equation (33) using the product rule 

 ( ) ( ) ( ) ( ) ( )
n n

p i i i i
i 1 i 1

y x u x y x u x y x
= =

′ ′ ′= +∑ ∑  

 For simplification, require the second sum to be equal to zero 

  ( ) ( )
n

i i
i 1

u x y x 0
=

′ =∑   

  then  

 ( ) ( ) ( )
n

p i i
i 1

y x u x y x
=

′ ′= ∑  

 Differentiate the particular solution the second time 

 ( ) ( ) ( ) ( ) ( )
n n

p i i i i
i 1 i 1

y x u x y x u x y x
= =

′′ ′′ ′ ′= +∑ ∑  

 and again simplify it by the condition 

 ( ) ( )
n

i i
i 1

u x y x 0
=

′ ′ =∑  

 then 

 ( ) ( ) ( )
n

p i i
i 1

y x u x y x
=

′′ ′′= ∑  
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 Continue this process until for the ( )thn 1−  derivative we obtain 

 ( ) ( ) ( )
n

n 1
i i

i 1
u x y x 0−

=

′ =∑  

 then 

 ( ) ( ) ( ) ( ) ( )
i

n
n 1n 1

p i
i 1

y x u x y x−−

=

= ∑  

 One more differentiation of particular solution yields 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
p i

n n
n n n 1

i i i
i 1 i 1

y x u x y x u x y x−

= =

′= +∑ ∑  

 and now we can substitute all derivatives into the non-homogeneous equation 
(32): 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
i

n n
n n 1

0 i i i
i 1 i 1

a x u x y x u x y x−

= =

 ′+ 
 
∑ ∑  ( ) ( ) ( ) ( )

i

n
n 1

1 i
i 1

a x u x y x−

=

+ ∑  

           ...+  
       

           ( ) ( ) ( )
n

n 2 i i
i 1

a x u x y x−
=

′′+ ∑  

           ( ) ( ) ( )
n

n 1 i i
i 1

a x u x y x−
=

′+ ∑  

           ( ) ( ) ( )
n

n i i
i 1

a x u x y x
=

+ ∑     ( )f x=  

 Collect terms including coefficients ( )iu x  

     ( ) ( ) ( ) ( )
n

n 1
0 i i

i 1
a x u x y x−

=

′∑  ( ) ( ) ( ) ( )
i

n
n

0 i
i 1

a x u x y x
=

+ ∑  

           ( ) ( ) ( ) ( )
i

n
n 1

1 i
i 1

a x u x y x−

=

+ ∑  

           ...+  
       

           ( ) ( ) ( )
n

n 2 i i
i 1

a x u x y x−
=

′′+ ∑  

           ( ) ( ) ( )
n

n 1 i i
i 1

a x u x y x−
=

′+ ∑  

           ( ) ( ) ( )
n

n i i
i 1

a x u x y x
=

+ ∑     ( )f x=  

 and combine them in a single summation 

 ( ) ( ) ( ) ( )
n

n 1
0 i i

i 1
a x u x y x−

=

′∑   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ii i

n
n n 1

i 0 1 n 1 i n
i 1

u x a x y x a x y x a x y x a x y x−
−

=

 ′+ + + + + ∑ "  

         ( )f x=  

 Since all functions ( )iy x are solutions of the homogeneous equation the second 
term disappears and we have 

 ( ) ( ) ( ) ( )
n

n 1
0 i i

i 1
a x u x y x−

=

′∑  ( )f x=  

 Because the differential equation is normal, we can divide it by the leading 
coefficient ( )0a x : 

 ( ) ( ) ( )
n

n 1
i i

i 1
u x y x−

=

′∑  
( )
( )0

f x
a x

=  
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 Combine now this equation with other additional conditions for ( )iu x′  into a 

system: 

     ( ) ( )
n

i i
i 1

u x y x 0
=

′ =∑  

     ( ) ( )
n

i i
i 1

u x y x 0
=

′ ′ =∑  

     #  

     ( ) ( ) ( )
n

n 2
i i

i 1
u x y x 0−

=

′ =∑  

     ( ) ( ) ( )
n

n 1
i i

i 1
u x y x−

=

′∑
( )
( )0

f x
a x

=  

 
 where unknowns are derivatives of coefficients ( )iu x .  This system can be 

written in the following matrix form 
 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )
( )




















=



















′

′
′


















′′′

−−−
xa
xf

0
0

xu

xu
xu

xyxyxy

xyxyxy
xyxyxy

0
n

2

1

1n
n

1n
2

1n
1

n21

n21

##
"

#%##
"
"

 

 
 Since the determinant of the matrix is a Wronskian of the fundamental set of 

solutions, it never equals zero, therefore, the system of algebraic equations for 
the coefficients ( )iu x  has a unique solution, which using Cramer’s rule can  be 
written as 

 

 ( )xum′  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
















′′′




















′′′

=

−−−

−−−

xyxyxy

xyxyxy
xyxyxy

det

xy
xa
xf

xyxy

xy0xyxy
xy0xyxy

det

1n
n

1n
2

1n
1

n21

n21

1n
n

0

1n
2

1n
1

n21

n21

"
#%##

"
"

""
####

""
""

            n,...,1m =  

 
 Expand the determinant in the numerator over the mth column, and using the 

definition of the Wronskian, the solution can be written in the following way 
   

 ( )xum′  ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( )
( )xa
xf

xy,..,xyW
xy,...,xy,xy,...,xyW

1
0n1

n1m1m1m +−−=             n,...,1m =  

 
Then by integration, the unknown functions can be determined as 
 
 
 

( )xum  ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( )
( )dx
xa
xf

xy,..,xyW
xy,...,xy,xy,...,xyW

1
0n1

n1m1m1m ∫ +−−=       n,...,1m =  

                                                                         (34) 
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2nd order linear ODE For the important case of the second order linear equation, variation of 

parameters yields the following particular solution 
 

 
( ) ( ) ( ) ( ) ( )xyxuxyxuxy 2211p +=  

 

( ) ( )
( )dx
xa
xf

yyyy
y

xu
01221

2
1 ∫ ′−′

−=                          (35) 

( ) ( )
( )dx
xa
xf

yyyy
y

xu
01221

1
2 ∫ ′−′

=  

 
 
This method was derived without any restrictions and should lead to the 
calculation of the particular solution of the non-homogeneous equation provided 
that integration can be performed. 
 

Undetermined Coefficients In many cases of the special form of the function ( )xf  in the right hand side of 
the non-homogeneous equation, the method of undetermined coefficients is 
simpler and more convenient.  In this method, the particular solution is found in 
the form determined by the function ( )xf . It can be generalized to the following 
description:  
If the function ( )xf  is a combination of the exponential, trigonometric 
functions and polynomial in the form 

   ( ) ( ) ( )[ ]bxsinxqbxcosxpexf ji
ax +=                                          (36) 

 where ( )xpi  and ( )xq j  are polynomials of orders i and j, respectively 
 
 1) and iba ± is not a root of the auxiliary equation (28) then look for the  

particular  
solution in the form 
 

( ) ( ) ( )[ ]bxsinxQbxcosxPexy kk
ax

p +=                { }j,imaxk =            (37) 
 
2) and if iba ± is a root of the auxiliary equation (28) of multiplicity s then look 
for the particular solution in the form 
 

( ) ( ) ( )[ ]bxsinxQbxcosxPexxy kk
axs

p +=            { }j,imaxk =            (38) 
 
where    ( ) k1k

1k
1

k
0k AxA...xAxAxP ++++= −

−  

    ( ) k1k
1k

1
k

0k BxB...xBxBxQ ++++= −
−  

are polynomials with unknown coefficients which are determined by 
substitution of the trial solution into the non-homogeneous equation (1) 
 
 
 
Example 1  Find the particular solution of the linear equation 
      x3ey3y =′−′′  
 

The auxiliary equation 0m3m 2 =−  has two roots 0m1 =  
and 3m2 = .  Because the coefficient a in the function in the 
right hand side is equal to one of the roots of the auxiliary 
equation, the particular solution should be determined in the 
form 
  x3

p Axey = ,                    then differentiation yields 
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  x3x3
p Axe3Aey +=′  

  x3x3x3
p Axe9Ae3Ae3y ++=′′  

Substitute it into the equation 
  ( ) x3x3x3x3x3 eAxe3Ae3Axe9Ae6 =+−+  

  x3x3 eAe3 =  

  
3
1A =   

Therefore, the particular solution of the given equation is 

  x3
p xe

3
1y =  

                                                                                                                       
 

Example 2 (application of Maple for the solution of 2nd order linear 
ODE’s) 

       
            Find the general solution of a linear ODE with constant  

coefficients 
              x2ey2y3y =+′+′′  

Use Maple to follow the required steps for construction of the 
solution: the fundamental set and the particular solution of the 
non-homogeneous equation. 

                                                                                                                       
 
        Example 3  (Forced motion of a mass-spring system with damping) 
       
            Consider a spring suspended point mass m vibrating under the   
            external  force ( )f t . The equation of motion for the position  

of mass ( )x t  is       

              
( ) ( )

2
2

2

d x t dx2 x F t
dtdt

λ ω+ + =  

            where 
2m
βλ = , β is a damping coefficient, k

m
ω =  is a  

            circular frequency of vibration, k  is a spring constant,   

            ( ) ( )f t
F t

m
= .   

The equation of motion is a 2nd order linear ODE with 
constant  coefficients.  It describes deflection of the point mass 
from an equilibrium position.  Therefore any 2nd order linear 
ODE can be treated as a model of such a dynamical system. 

 
Consider, for example, damping of the system under a  
periodic  sinusoidal force: 

            
( ) ( )

2

2

d x t dx2 2x sin t
dtdt

+ + =  

            which initially ( t 0= ) was at the point ( )x 0 2=  at rest   

            
t 0

dx 0
dt =

= . 

            The solution with undetermined coefficients yields: 
       
            Auxiliary equation  2m 2m 2 0+ + =  
            Roots     1,2m 1 i= − ±  

( )x t
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        Complimentary solution   t t
c 1 2y c e sin t c e cos t− −= +  

        Ansatz for the particular solution  
                py Asin t B cos t= +  
                py Acos t B sint′ = −  
                py A sin t B cos t′′ = − −  
        Substitute into equation     
        ( )A 2B sint ( 2A B )cos t sin t− + + =  
 
                A 2B 1− =  
                2A B 0+ =  

        Find coefficients     1A
5

=  2B
5

−
=  

        Particular solution    p
1 2x sin t cos t
5 5

= −  

        General solution     

              ( ) t t
1 2

1 2x t c e sin t c e cos t sin t cos t
5 5

− −= + + −  

        From initial conditions    1
11c
5

=  2
12c
5

=  

 
        Solution of initial value problem: 
       

( ) t t11 12 1 2x t e sin t e cos t sin t cos t
5 5 5 5

− −= + + −  

 
 
                                                                                   
                                                                          
                                          
 
       
 
 
 
 
 
 
 
 
 
 
 

The graph of solution of the initial value problem together  
with the graphs of the particular solution and the external  
force are shown in this Figure.  We can see that for this  
periodic case, the solution curve due to damping approaches  
the particular solution (which plays the role of steady state for  
this system).  Steady state follows the trend of the external  
force with some delay. 

 
 
 
 
 
 
 

( )f t

( )x t

( )px t

t
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2.3.6.  Euler-Cauchy Equation A linear differential equation with variable coefficients is called an Euler-

Cauchy (or just Euler equation) if  the coefficients have the form 
   ( ) kn

kk xaxa −=     where Rak ∈  are constants, n,...,1,0k =  
 therefore, an Euler equation has the form 
 

         ( )xfya
dx
dy

xa...
dx

yd
xa

dx
yd

xa n1n1n

1n
1n

1n

n
n

0 =++++ −−

−
−

                 (39)  

    
 

 It can be noticed that the scaling of the x variable in the Euler equation to xα  by 
any non-zero constant α   does not change the form of the equation – that is why 
this equation is also called the equidimensional equation. 

 An equation of the form 

 ( ) ( ) ( ) ( )xfya
dx
dybaxa...

dx
ydbaxa

dx
ydbaxa n1n1n

1n
1n

1n

n
n

0 =+++++++ −−

−
−

    (40) 
 is also called an Euler equation, it can be reduced to the form (39) by the change

  

 of variable ax bξ = + .  
This equation appears in a solution of partial differential equations in cylindrical 
and spherical coordinates by separation of variables. 

 
These type of equations with variable coefficients can be reduced to linear 
differential equations with constant coefficients with the help of a change of 
independent variable 
   zex =          with inverse substitution xlnz =   
 
Derivatives of the unknown function y  are replaced according to the following 

representation (use for convenience the differential operator dD
dz

= ): 

 

dz
dy

x
1

dx
dz

dz
dy

dx
dy

==        ⇒   1y Dy
x

′ =  

2 2

2 2 2 2

d y d 1 dy 1 dy 1 d dy 1 dy d y
dx x dz dz x dx dz dzdx x x dz

 −   = = + = − +    
     

 ⇒   ( )2

1y D D 1 y
x

′′ = −  

3 3 2 3

3 3 3 2 3

d y d d y 1 dy d y d y2 3
dx dzdx dx x dz dz

   
= = − +   

   
    ⇒         ( )( )3

1y D D 1 D 2 y
x

′′′ = − −  

…  
then, noticing the pattern, assume that for the nth derivative 

n n

n n n

d y 1 d y...
dx x dz

 
= + 

 
       ⇒         ( ) ( )( ) ( )n

n

1y D D 1 D 2 D n 1 y
x

 = − − − − "  

 
For mathematical induction, show the validity of this equation for n 1+ : 

n 1

n 1

d y
dx

+

+   
n

n

d d y
dx dx

 
=  

 
 

 
n

n

d d y dz
dz dxdx

 
=  

 
  

 
n

n

d d y 1
dz xdx

 
=  

 
 

 ( )( ) ( )n

d 1 1D D 1 D 2 D n 1 y
dz xx

  = − − − −   
"    



  Chapter 2   Ordinary Differential Equations 
 

     Use the product rule and n 1 n 1 z n 1 ln x n 1
n n

d 1 dx nnx nx e nx e nx x
dz dzx x

− − − − − − − − −  = − = − = − − = 
 

 

     ( )( ) ( ) ( )( ) ( )n n

n 1 1D D 1 D 2 D n 1 y DD D 1 D 2 D n 1 y
xx x

−    = − − − − + − − − −     
" "  

     ( ) ( )( ) ( )n

1 1n D D D 1 D 2 D n 1 y
xx

−  = − + − − − − "  

     ( )( ) ( ) ( )n 1

1 D D 1 D 2 D n 1 D n y
x +

 = − − − − − "  

   
        From these formulas it is obvious that their substitution into equation (39) yields 
        a differential equation with constant coefficients. Thus, for 2nd order and 3rd   
        order ODE’s the results are 
 

2nd order       ( ) ( )
2

z
0 1 0 22

d y dya a a a y f e
dzdz

+ − + =  

 

3rd order       ( ) ( ) ( )
3 2

z
0 1 0 0 1 2 33 2

d y d y dya a 3a 2a a a a y f e
dzdz dz

+ − + − + + =  

     
 
Example 4  (ODE/Euler.mws) 
    Find the solution of the linear equation 

            2x y 3xy y ln x′′ ′+ + =  
            This is a 2nd order non-homogeneous Euler equation.  Solve it  
            with the substitution zex =  which yields a linear ODE with  
            constant coefficients 

            
2

2

d y dy2 y z
dzdz

+ + =  

            The general solution of this linear ODE is  
            ( ) z z

1 2y z c e c ze z 2− −= + + −  

            then replacing z ln x= , we obtain a general solution of   
            the original problem 
            ( ) ln x ln x

1 2y z c e c ln x e ln x 2− −= + + −  

            ( ) 1
2

c
y x c x ln x ln x 2

x
= + + −  

            Solution curves have the following form 
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        Example 5    Consider a viscous flow around a long circular cylinder of  
            radius 0r  rotating around its axis with angular velocity ω .   
                           
       
 
 
 
 
 
 
 

The fluid angular velocity component ( )v r  is defined by   
 the differential equation               

            2r v rv v 0′′ ′+ − =  
            with the boundary condition: 
            ( )0 0v r rω=    (non-slip condition). 
            It is reasonable to assume that the steady state velocity profile  

is developed in the initially stagnant fluid, therefore, the  
velocity of the fluid when radial coordinates approach  
infinity is zero 

            ( )
r

v r 0
→∞

=         (is still at rest). 

            Find the steady radial dependence of angular velocity ( )v r . 
 
        Solution:  The differential equation is the 2nd order homogeneous Euler  
            equation.  The auxiliary equation is 
            ( )2m 1 1 m 1 0+ + − − =  

            2m 1=                        the two real roots are 1,2m 1= ± . 
            Then the general solution of Euler equation is 

            ( ) 1 2
1v r c r c
r

= +  

            To satisfy the condition ( )
r

v r 0
→∞

= , we have to demand that 

            the constant of integration 1c 0= . 
            Then the boundary condition at 0r r=  yields 

            ( ) 2 0
0

1v 0 c r
r

ω= =   ⇒  2
2 oc rω=  

            and the solution of the problem is 

            ( )
2

0rv r
r

ω
=  

            This field is exactly like the potential vortex driven by the  
            viscous no-slip condition. 
    

 
        Example 6  Consider steady state conduction in the long cylindrical region 
            between two isothermal surfaces 1r r=  at temperature 1u and  
            2r r=  at temperature 2u .  The radial temperature distribution  
            under assumption of angular symmetry in the absence of   
            volumetric heat generation is described by the differential   
            equation 

               
2

2

d u dur 0
drdr

+ =         

            Find the temperature distribution ( )u r , ( )1 2r r ,r∈ .  
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2.4 Power Series Solutions

2.4.1 Introduction

In the previous chapter, we have developed and studied solution techniques for spe-
cial kinds of ordinary linear differential equations, namely those which had constant
coefficients or those which were of “Cauchy-Euler type”, so-called “equi-dimensional
equations”. We will now consider a more general class of linear differential equations.
Again we will confine ourselves to equations of order 2, although the methods can also
be applied to higher order equations.

We will consider differential equations of the form

a0(x)y′′ + a1(x)y′ + a2(x)y = 0, (2.1)

y(x0) = y0 (2.2)

y′(x0) = y1 (2.3)

where the coeffient functionsaj : I0 → R are “analytic” on the open intervalI0,
x0 ∈ I0 and a0(x0) 6= 0. Equation (2.1) is called thegeneral formof the linear
ordinary differential equation (of order 2).

We will see, that under the specified assumptions on the coefficient functions, every
solution of the differential equation (2.1) is analytic and has a “power series” represen-
tation

y(x) =
∞∑

n=0

cn(x− x0)n

at x0, whose “radius of convergence”R is at least as great as the distance fromx0

to the nearest (not necessarily real!) “singular” point of (2.1). The coefficientscn of
the solution series can be easily computed using a procedure called thepower-series
methodor themethod of undetermined coefficientsfor power series.

Before we present this solution technique, we will introduce some terminology and
review some well-known(!) facts on power series etc.
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2.4.2 Basic Definitions and Results

Ordinary Points

The equation (2.1) can be rewritten as

y′′ + p(x)y′ + q(x)y = 0, (2.4)

which is called thenormal formor thestandard formof the general linear differential
equation. Here, clearly

p(x) =
a1(x)
a0(x)

(2.5)

and

q(x) =
a2(x)
a0(x)

(2.6)

for x ∈ I0.
In this chapter, we will consider the special and pleasant case, were the solutions

of (2.1) are centered at a pointx0 ∈ I0 for which a0(x0) 6= 0. Those points ofI0 are
calledordinary pointsof the differential equation (2.1). In the next chapter, we will
consider the more general situation, were we are looking for solutions around points
x0 ∈ I0, for whicha0(x0) = 0, so-calledsingular pointsof the equation (2.1). Note
that in this case, the coefficient functionsp and q of the normal form (2.4) of our
differential equation have “singularities” (poles) at the pointx0.

Binomial Coefficients, etc.

Recall that the factorial of a numbern ∈ N0 := {0, 1, 2, 3, . . .}, can be defined recur-
sively by

0! := 1 and n! := n ·
(
(n− 1)!

)
(2.7)

The numbern! = 1·2·. . .·n, is called n-factorialand counts the number of permutations
of n objects along a line. For numbersn ∈ N, we define the numbers(

n

k

)
:=

k∏
j=1

n− j + 1
j

=
n(n− 1) · . . . · (n− k + 1)

k!
,

which are calledbinomial coefficients, since they occur in the binomial theorem. Recall
that

(
n
k

)
counts the number of ways in which we can choosek objects out of a set ofn

objects. Then we can prove the

Theorem 2.1
Suppose n, k ∈ N, then

1.
(

n

k

)
= 0 if k > n.
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2.
(

n

k

)
=

n!
k!(n− k)!

=
(

n

n− k

)
for 0 ≤ k ≤ n.

3.
(

n

k

)
=
(

n− 1
k − 1

)
+
(

n− 1
k

)
for 1 ≤ k ≤ n.

4. For x, y ∈ R and n ∈ N0, we have

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk

which is called the “Binomial Theorem”.

If we setx = y = 1 andx = 1 andy = −1, respectively, in the Binomial Theorem,
we obtain from Theorem 2.1 equations (1) and (2) of the following corollary. Equation
(3), follows by subtracting equation (2) from equation (1) and dividing the difference
by 2.

Corollary 2.1
For all n ∈ N we have

1.
n∑

k=0

(
n

k

)
= 2n.

2.
n∑

k=0

(−1)k

(
n

k

)
= 0.

3.
m∑

j=0

(
2m + 1
2j + 1

)
= 22m

Some Basic Facts on Power Series

Recall that a series of the form

∞∑
k=0

ak(x− x0)k

is called apower seriesin x − x0. The pointx0 is called theexpansion pointof the
power series,ak its coefficients.

Example 2.1
The well-knowngeometric series

∞∑
k=0

xk
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is a power series with expansion pointx0 = 0 and coefficientsaj = 1 for all k ∈
N0 := {0, 1, 2, . . . , }. It converges, as we have seen in calculus, for allx ∈ R with
|x| < 1, i.e. for allx ∈ (−1, 1) and represents there the function

1
1− x

=
∞∑

k=0

xk for all x ∈ (−1, 1).

It diverges for allx ≥ 1 although the function1/(1− x) is defined for allx ∈ R \ {1}.

The following “maple worksheet” gives some visualizations:

> restart:n:=4;m:=51;

n := 4
m := 51

the n-th partial sum

> p[n](x):=sum(xˆk,k=0..n);p(x):=Sum(xˆk,k=0..infinity)
> ;p[m](x):=sum(xˆk,k=0..m):

p4(x) := 1 + x + x2 + x3 + x4

p(x) :=
∞∑

k=0

xk

the limit function

> f(x):=1/(1-x);

f(x) :=
1

1− x

The graphs of p[n], p[m] and f, note that the interval of the power series p is (-1,1)
and that p has a pole at 1!

> plot( {p[n](x),p[m](x),f(x)
> },x=-5..5,y=-3..10,color=[red,blue,gold]);
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p [ m ]
p [ n ]
f

 

– 2

0

2

4

6

8

1 0

y

– 4– 22 4
x

Let C denote the set of all numbersx ∈ R for which the power series
∑∞

k=0 ak(x−
x0)k converges. Since

∑∞
k=0 ak(x0 − x0)k =

∑∞
k=0 ak · 0 = 0 clearly converges, we

know thatC 6= ∅ is not empty. The number

R := sup
x∈C

|x− x0| (0 ≤ R ≤ ∞)

is called theradius of convergenceof the power series
∑∞

k=0 ak(x − x0)k, the open
interval

(x0 −R, x0 + R),

the intervalof convergence of the power series (which becomes(−∞,∞) if R = ∞).
The association

x 7→
∞∑

k=0

ak(x− x0)k

defines a functionf : (x0 − R, x0 + R) → R which is called thelimit function of
the power series, or the function represented by the power series

∑∞
k=0 ak(x − x0)k.

In the previous example, the radius of convergenceR is 1, i.e.R = 1, its interval of
convergence is(−1, 1) and the limit function is1/(1 − x). The following theorem
describes the “quality” of the convergence of a power series.

Theorem 2.2 (Convergence)
Suppose the power series

∑∞
k=0 ak(x− x0)k has radius of convergence R > 0. Then,∑∞

k=0 ak(x − x0)k converges absolutely on its interval of convergence I := (x0 −
R, x0 + R) and uniformly on each compact subinterval of I .
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Recall that a series
∑∞

k=0 bk convergesabsolutelyif the associated series
∑∞

k=0 |bk|
converges. A sequence(fn : I → R)n∈N convergesuniformlytowards the (limit) func-
tion f : I → R if for any ε > 0 there exists an0 ∈ N such that

|f(x)− fn(x)| < ε for all n ≥ n0 and allx ∈ I.

Intuitively, this condition means that the sequence(fn(x)) (note the free parameter
x !) converges towardsf(x) at the same rate for all pointsx ∈ I. In the case of
Theorem 2.2, the functionsfn are the partial sumsfn(x) :=

∑n
k=0 ak(x − x0)k or

(nth Taylor polynomials) of the infinite seriesf(x) =
∑∞

k=0 ak(x − x0)k at x0. In
Example 2.1, the functionsfn are given by

fn(x) =
n∑

k=0

xk =
1− xn+1

1− x
for x ∈ I := (−1, 1).

Recall that an absolutely convergent series can be rearranged in any order or re-
grouped in any way without affecting the convergence and the sum of the series. In
contrast a conditionally convergent series (convergent but not absolutely convergent
series) can be rearranged so that it converges to any given limitS between−∞ and∞
(Riemann Rearrangement Theorem). Since power series converge absolutely on their
interval of convergence, they can be arbitrarily rearranged.

The following theorem gives some efficient formulae to determine the radius of
convergence of a given power series:

Theorem 2.3 (Radius of Convergence)
Given a power series

∑∞
k=0 ak(x − x0)k, its radius of convergence can be computed

using the

1. formula of Cauchy–Hadamard

R =
1

lim
k→∞

k
√
|ak|

2. or, if ak 6= 0 for all k ∈ N0

R = lim
k→∞

|ak|
|ak+1|

.

Example 2.2
We would like to revisit the geometric series

∞∑
k=0

xk,

and recompute its radius of convergenceR. Note thatak = 1 for all k ∈ N0. We first
try the root test:

R =
1

lim
k→∞

k
√
|ak|

=
1

lim
k→∞

k
√

1
=

1
1

= 1.
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We will now use the quotient test and again obtain

R = lim
k→∞

|ak|
|ak+1|

= lim
k→∞

1
1

= 1,

as claimed above.

Example 2.3
Find the radius of convergence of the power series

∞∑
k=0

k2

2k
(x− 1)k.

Clearly,ak = k2/2k. We will use the root test and obtain

R =
1

lim
k→∞

k
√
|ak|

=
1

lim
k→∞

k

√
k2

2k

=
1

lim
k→∞

k
√

k2

k
√

2k

=
1

lim
k→∞

(
k
√

k
)2

2

and by the limit theorem of calculus

=
1

1
2

(
lim

k→∞

k
√

k
)2 =

2
12

= 2,

sincelimk→∞
k
√

k = 1.

Power series behave very much like polynomials:

Theorem 2.4 (Differentiation and Integration)
Suppose

∑∞
k=0 ak(x− x0)k is a power series with interval of convergence I := (x0−

R, x0 + R), R > 0, representing the function f : I → R as limit function, i.e.
f(x) =

∑∞
k=0 ak(x− x0)k for all x ∈ I . Then

1. f is differentiable on I and its derivative f ′ has a power series representation
with the same radius of convergence, which can be obtained from the power
series for f by termwise differentiation:

f ′(x) =
∞∑

k=1

kak(x− x0)k−1 for all x ∈ I.

2. f is integrable on I and its integral
∫

f(x) dx has a power series representation
with the same radius of convergence, which can be obtained from the power
series for f by termwise integration:∫

f(x) dx =
∞∑

k=0

ak

k + 1
(x− x0)k+1 + C for all x ∈ I.
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Through repeated application of Theorem 2.4, we obtain the following corollary

Corollary 2.2
Suppose f(x) =

∑∞
k=0 ak(x−x0)k for x ∈ (x0−R, x0+R), R > 0, then f possesses

derivatives of any order, which can be obtained by repeated termwise differentiation of
the power series. In particular, we have

ak =
f (k)(x0)

k!
for all n ∈ N0.

Theorem 2.4 is a very useful tool for computing new power series expansion from
old ones. We demonstrate this technique by some examples and add a list of funda-
mental expansions, which can be obtained by Taylor’s theorem.

Example 2.4
Expand the functionf given by

f(x) :=
1

1 + x2

as a power series in terms ofx. Then find a power series representation ofarctan.

The given functionf has the form of the limit function of the geometric series
studied above. Therefore, we obtain

f(x) =
1

1 + x2
=

1
1− (−x2)

=
∞∑

k=0

(
−x2

)k =
∞∑

k=0

(−1)kx2k.

Since the geometric series has radius of convergenceR = 1, we conclude that|−x2| <
1 = R, which is equivalent to|x| < 1. Hence, the power series

∑∞
k=0(−1)kx2k

representing the functionf has radius of convergenceR = 1, too.

We will now determine the power series expansion forarctan. Recall that

arctan′(x) =
1

1 + x2
.

Therefore, we can conclude that

arctan′(x) =
1

1 + x2
=

∞∑
k=0

(−1)kx2k. (2.8)

for all |x| < 1 and apply Theorem 2.4(2) and integrate equation 2.8 in order to obtain a
series representation forarctan(x) + C =

∫
arctan′(x) dx, which will have the same
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radius of convergence, namelyR = 1. Hence

arctan(x) =
∫

arctan′(x), dx− C (2.9)

=
∫ ( ∞∑

k=0

(−1)kx2k

)
dx− C (2.10)

=
∞∑

k=0

∫ (
(−1)kx2k

)
dx− C (2.11)

=
∞∑

k=0

(−1)k 1
2k + 1

x2k+1 − C. (2.12)

By evaluating botharctan(x) and the power series 2.12 atx = 0, we find thatC = 0.
Thus

arctan(x) =
∞∑

k=0

(−1)k 1
2k + 1

x2k+1.

Theorem 2.5 (Fundamental Power Series Expansions)
Here are some fundamental power series expansions and their radius of convergence:

1.
1

1− x
=

∞∑
k=0

xk, |x| < 1 (Geometric Series).

2. (1 + x)α =
∞∑

k=0

(
α

k

)
xk, |x| < 1 (Binomial Series).

3. ex =
∞∑

k=0

xk

k!
, |x| < ∞.

4. sinx =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!
, |x| < ∞.

5. cos x =
∞∑

k=0

(−1)k x2k

(2k)!
, |x| < ∞

6. sinhx =
∞∑

k=0

x2k+1

(2k + 1)!
, |x| < ∞.

7. coshx =
∞∑

k=0

x2k

(2k)!
, |x| < ∞

8. ln(x + 1) =
∞∑

k=0

(−1)k xk+1

k + 1
, |x| < 1.
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9. arctan(x) =
∞∑

k=0

(−1)k x2k+1

2k + 1
, |x| < 1.

A power series is uniquely determined by its coefficients. In other word, if two
power series with common expansion pointx0 have the same values on a neighborhood
of x0 then they are identical. In fact, this result follows even under weaker assumptions:

Theorem 2.6 (Identity Theorem)
Suppose x0 is limit point of the set S which is contained in the interval of convergence
of both of the power series below. If

∞∑
k=0

ak(x− x0)k =
∞∑

k=0

bk(x− x0)k

for all x ∈ S (note that S could be a tiny neighborhood of the point x0) then ak = bk

for all k ∈ N0.

Recall that a pointx0 ∈ R is called alimit point of the setS ⊂ R if any neighbor-
hood ofx0 contains at least one point ofS distinct fromx0.

The assertion of Theorem 2.6 is fundamental for the “power series method” for
solving linear differential equations, which we will study below. Also crucial for this
solution method is a working knowledge of the algebraic operations which can be per-
formed with power series. Given two functionsf andg which are representated atx0

by the power series
∑∞

k=0 ak(x−x0)k and
∑∞

k=0 bk(x−x0)k on some open subinter-
val (x0− r, x0 + r) r > 0 of their intervals of convergence, respectively, the following
theorem indicates, that the functionsf + g, αf andfg can also be represented by a
power series atx0 and how their power series can be obtained from the power series of
f andg:

Theorem 2.7 (Algebraic Operations)
Given two power series f(x) =

∑∞
k=0 ak(x − x0)k and g(x) =

∑∞
k=0 bk(x − x0)k

with common expansion point x0 and positive radius of convergence. Let r > 0 be
chosen such that both power series converge for all |x− x0| < r (for example, could r
be chosen to be the smaller of the two radii of convergence). Then

1. f(x) + g(x) =
∞∑

k=0

(
ak + bk

)
(x− x0)k.

2. (αf)(x) =
∞∑

k=0

(αak)(x− x0)k.

3. f(x) · g(x) =
∞∑

k=0

 k∑
j=0

ajbk−j

 (x− x0)k. (Cauchy Product)

Keep in mind that polynomials are special power series, namely power series, for
which “almost all” coefficients are zero. “Almost all” is just short for “all but finitely
many”.
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Example 2.5
Supposef(x) = a0 + a1x + a2x

2 + a3x
3 andg(x) = b0 + b1x + b2x

2 + b3x
3 +

b4x
4 are two polynomials. Sincef andg coincide with the polynomials representing

them everywhere, they are just called polynomials. We will compute their product
and see that the Cauchy product is just a natural extension of the common polynomial
multiplication to absolutely convergent series.

f(x) · g(x) = (a0 + a1x + a2x
2 + a3x

3) · (b0 + b1x + b2x
2)

= (a0b0) + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2

+ (a0b3 + a1b2 + a2b0)x3 + (a0b4 + a1b3 + a2b2 + a3b1)x4.

Example 2.6
Suposef(x) = x3 and the functiong(x) = 1/(1 − x), which can be represented by
the power series

∑∞
k=0 xk on the open interval(−1, 1). Then, with

δij :=

{
1 if i = j

0 else

denoting the Kronecker-delta, we obtain

f(x) · g(x) = x3 · 1
1− x

= x3 ·
∞∑

k=0

xk

=
(
0 + 0x + 0x2 + 1x3 + 0x4 + 0x5 + · · ·

)
·
∞∑

k=0

xk

=

( ∞∑
k=0

δ3,kxk

)
·

( ∞∑
k=0

xk

)
=

∞∑
k=0

 k∑
j=0

δ3,j · 1

xk =
∞∑

k=3

xk

which is the same as

=
∞∑

k=0

xk+3.

Example 2.7
Supposef(x) = xn0 andg(x) =

∑∞
k=0 akxk, then, as above, we obtain

f(x) · g(x) =
(
0 + 0x + · · · 0xn0−1 + 1xn0 + 0xn0+1 + · · ·

)
·
∞∑

k=0

akxk

=

( ∞∑
k=0

δn0,kxk

)
·

( ∞∑
k=0

akxk

)
=

∞∑
k=0

 k∑
j=0

δn0,j · ak−j

xk
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and, sinceδn0,j is only different from0 if j = n0 (in which case it assumes the value
1), this expression is

=
∞∑

k=n0

ak−n0x
k =

∞∑
k=0

akxk+n0 .

We can therefore conclude that multiplying a power series in(x − x0) by the binom
(x− x0)n0 yields

(x− x0)n0 ·
∞∑

k=0

ak(x− x0)k =
∞∑

k=0

ak(x− x0)n0+k.

Example 2.8

ex · ex =

( ∞∑
k=0

xk

k!

)
·

( ∞∑
k=0

xk

k!

)
=

∞∑
k=0

 k∑
j=0

1
j!
· 1
(k − j)!

xk

=
∞∑

k=0

 k∑
j=0

k!
j!(k − j)!k!

xk =
∞∑

k=0

 k∑
j=0

k!
j!(k − j)!

 xk

k!

=
∞∑

k=0

 k∑
j=0

(
k

j

) xk

k!
=

∞∑
k=0

2k xk

k!
=

∞∑
k=0

(2x)k

k!
= e2x.

Definition 2.1 (Real-Analytic Functions)
SupposeI is an open interval andx0 ∈ I. Then the functionf : I → R is called
analyticatx0, if there exists a neighborhood ofx0, in which it can be represented by a
power series. The function is calledanalyticon I if it is analytic at each pointx0 ∈ I.

Example 2.9
Clearly, every polynomial is analytic onR.

Example 2.10
The functionf given by the expression

f(x) :=
1
x

for all x ∈ (0,∞),

is analytic atx0 = 1 (actually it is analytic on(0,∞). The following computation can
be easily extended to a general proof:

f(x) =
1
x

=
1

1 + (x− 1)
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and, using the geometric series

=
∞∑

k=0

(
−(1− x)

)k

for all | − (x− 1)| < 1.

Hence,

f(x) =
∞∑

k=0

(−1)k(1− x)k for all |x− 1| < 1,

or in other words, for allx ∈ (0, 2). In this example, the neighborhood mentioned in
Definition 2.1, is the open interval(0, 2) containing the pointx0 = 1. Note that the
power series

∑∞
k=0(−1)k(1 − x)k representsf only on this neighborhood, outside it

does not even converge.

Theorem 2.8
Suppose the functions f and g are analytic on the open interval I . Then f + g and fg
are analytic on I . If g(x) 6= 0 for all x ∈ I , then also 1/g is analytic on I .

2.4.3 The Power-Series Method

Existence and Uniqueness of Solutions

Recall the following theorem, which guarantees the existence ofn linear independent
solutions of a “normal” linear differential equation of ordern.

Theorem 2.9 (Existence)
Suppose the functions aj (j = 0, 1, . . . , n) are continuous on the open interval I0 and
a0(x) 6= 0 for all x ∈ I0. Moreover, suppose kj ∈ R for j = 0, . . . , n−1 and x0 ∈ I0.
Then there exists exactly one solution y : I0 → R of the linear differential equation

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an−1(x)y′ + an(x)y = 0

satisfying the initial conditions y(x0) = k0, y
′(x0) = k1, . . . , y

(n−1)(x0) = kn−1.

We confine ourselves again to the special but for applications most important case
of linear differential equations of order 2. Here, it can be shown that under the stronger
assumptions requiring that the coefficient functionsaj are not just continuous onI0 but
analytic onI0 then the solutions are analytic atx0.

Theorem 2.10 (Analyticity of the Solutions)
Suppose the functions a2, a1 and a2 are analytic on the open interval I0 and suppose
that x0 ∈ I0 is an ordinary point of the differential equation

a0(x)y′′ + a1(x)y′ + a2(x)y = 0. (2.13)

Then every solution of (2.13) has a power series representation whose radius of con-
vergence R is a least as great as the distance from x0 to the nearest singular point of
(2.13).
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Determining Solutions

We will now demonstrate by an example, how the solutions of a linear differential
equation can be obtained using the “power series method”.

Example 2.11
We would like to solve the linear differential equation

y′′ − x2y = 0

whose coefficientsa0(x) = 1, a1(x) = 0 anda2(x) = −x2 are polynomials and as
such analytic onI0 = R. We are looking for solutions around the origin, i.e.x0 = 0,
which is an ordinary point of the equation.

By Theorem 2.9 and Theorem 2.10, the differential equation possesses two linearly
independent solutions and every solution is analytic atx0. Therefore, we can assume a
solution of the form

y(x) =
∞∑

n=0

cnxn.

We determine its first two derivatives using Theorem 2.4 and obtain

y′(x) =
∞∑

n=1

ncnxn−1,

y′′(x) =
∞∑

n=2

n(n− 1)cnxn−2.

Substituting these expressions into the original differential equation yields

0 =
∞∑

n=2

n(n− 1)cnxn−2 − x2
∞∑

n=0

cnxn

which by Example 2.7 equals

=
∞∑

n=2

n(n− 1)cnxn−2 −
∞∑

n=0

cnxn+2

and applying the index substitutionm = n − 2 to the first and the index substitution
m = n + 2 to the second power series, we obtain

=
∞∑

m=0

(m + 2)(m + 1)cm+2x
m −

∞∑
m=2

cm−2x
m

rewriting the sums such that they have the same starting index yields

= 2 · 1 · c2 + 3 · 2 · c3 · x+

+
∞∑

m=2

(m + 2)(m + 1)cm+2x
m −

∞∑
m=2

cm−2x
m
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using Theorem 2.7 we can combine the two power series and obtain the power series

= 2c2 + 6c3x +
∞∑

m=2

(
(m + 2)(m + 1)cm+2 − cm−2

)
xm.

Thus, summarizing, we have obtained the following identity

0 = 2c2 + 6c3x +
∞∑

m=2

(
(m + 2)(m + 1)cm+2 − cm−2

)
xm

for all x ∈ (−R,R), whereR denotes the radius of convergence of the power series.
Thus, by Theorem 2.6, we can conclude that

2c2 = 0, 6c3 = 0

and

(m + 2)(m + 1)cm+2 − cm−2 = 0 for all m ≥ 2.

Hence, the coefficientscm satisfy the following recursion formula:

c0 = arbitrary

c1 = arbitrary

c2 = 0
c3 = 0

and for allm ≥ 2

cm+2 =
1

(m + 1)(m + 2)
· cm−2.
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Thus, we can compute the first values ofcm:

c4 =
1

3 · 4
· c0

c5 =
1

4 · 5
· c1

c6 =
1

5 · 6
· c2 = 0

c7 =
1

6 · 7
· c3 = 0

c8 =
1

7 · 8
· c4 =

1
3 · 4

· 1
7 · 8

· c0

c9 =
1

8 · 9
· c5 =

1
4 · 5

· 1
8 · 9

· c1

c10 =
1

9 · 10
· c6 = 0

c11 =
1

10 · 11
· c7 = 0

c12 =
1

11 · 12
· c8 =

1
3 · 4

· 1
7 · 8

· 1
11 · 12

· c0

c13 =
1

12 · 13
· c9 =

1
4 · 5

· 1
8 · 9

· 1
12 · 13

· c1.

By induction, we obtain

c0 = arbitrary

c1 = arbitrary

c2 = 0
c3 = 0

c4k =
c0∏k

j=1(4j − 1)4j
=

c0

4kk!
∏n

j=1(4j − 1)

c4k+1 =
c1∏k

j=1 4j(4j + 1)
=

c1

4kk!
∏k

j=1(4j + 1)

c4k+2 = 0
c4k+3 = 0

for all k ≥ 1. Hence, we obtain the following solution, which still contains the free
parametersc0 andc1

y(x) =
∞∑

k=1

(
c4kx4k + c4k+1x

4k+1
)
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which can be rearranged, since power series converge absolutely on their interval of
convergence

= c0

( ∞∑
k=0

1

4kk!
∏k

j=1(4j − 1)
x4k

)
+ c1

( ∞∑
k=0

1

4kk!
∏k

j=1(4j + 1)
x4k+1

)

since the empty products
∏0

k=1(4j − 1) and
∏0

k=1(4k + 1) (by definition) equal 1,
also recall that40 = 1 and0! = 1; hencey(x) = c0y0(x) + c1y1(x), wherey0(x)
andy1(x) stand for the first and second power series, respectively, which are clearly
linearly independent. Since the equationy′′ − x2y = 0 does not have any singular
points, by Theorem 2.10, the radius of convergence of the solutionsy0 andy1 clearly
is R = ∞.

HOMEWORK SET 2.1
1. Prove that for1 ≤ k ≤ n(

n

k

)
+
(

n

k − 1

)
=
(

n + 1
k

)
.

2. Evaluate
n∑

k=0

(
2n

2k

)
−

n−1∑
k=0

(
2n

2k + 1

)

3. Using power series and Cauchy products to verify the “First Pythagorean Iden-
tity” cos2 x + sin2 x = 1. HINT: Use the identity established in the previous
exercise!

4. Give the power series expansions ofx/(x−1) and1/(x−1) in x and determine
their radius of convergence.

5. Show that the Cauchy product of the two power series inx representing1/(1+x)
and1/(1− x) reduces to the power series expansion of1/(1− x2).

6. Find the radius of convergence of the power series

(a)
∞∑

n=0

xn

(n + 3)2
(b)

∞∑
n=0

n2

2n
(x− 1)n (c)

∞∑
n=0

n!
nn

xn

7. Using the power series method, find complete solutions around the origin for the
following differential equations

(a) y′ − λy = 0 (b) y′′ − λ2y = 0 (c) y′′ + xy′ + 2y = 0
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2.5 The Method of Frobenius

2.5.1 Introduction

Recall that any solution of the ordinary linear differential equation

a0(x)y′′ + a1(x)y′ + a2(x)y = 0 (2.14)

whose coefficient functionsa0, a1, a2 are analytic atx0 and for whicha0(x0) 6= 0, is
analytic atx0 and therefore has the form

y(x) =
∞∑

n=0

cn(x− x0)n (2.15)

The radius of convergence ofy is at least as large as the distance fromx0 to the nearest
singular point of (2.14) (including complex zeroes ofa0 !). As we have seen in the
previous chapter, the power series method allowed us to find a complete solution of
(2.14).

However, in applications, for instance the “separation of variable method for the
classical partial differential equation, we are often lead to linear differential equations,
which need to be solved around so-called “regular” singular points. We just mention
the Bessel and Legendre differential equations as examples.

To address this need, we will study an extension to the power series method, called
“Frobenious method”, which will allow us to also develop series representations of
solutions of (2.14) around regular singular points.

2.5.2 Singular Points

We will rewrite equation (2.14) in “normal form”

y′′ + p(x)y′ + q(x)y = 0 (2.16)

where

p(x) :=
a1(x)
a0(x)

, q(x) :=
a2(x)
a0(x)

, (2.17)

x0 ∈ I0 andI0 ⊆ R is an open interval containing the pointx0.

Definition 2.2 ((Ir)regular singular point)
Supposex0 ∈ I0 with a0(x0) = 0. Then the pointx0 is called a

1. regular singular pointof the equation (2.16) if(x− x0)p(x) and(x− x0)2q(x)
are both analytic atx0, i.e. if there exists power series

∑∞
j=0 pj(x − x0)j and∑∞

j=0 qj(x − x0)j with positive radii of convergenceRp, Rq > 0, respectively,
such that

(x− x0)p(x) =
∞∑

j=0

pj(x− x0)j (2.18)
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and

(x− x0)2q(x) =
∞∑

j=0

qj(x− x0)j (2.19)

for all x of their common domain(x0 −Rp, x0 + Rp) ∩ (x0 −Rq, x0 + Rq).

2. Otherwise the pointx0 is called anirregular singular pointof (2.16).

Example 2.12
The linear differential equation

x(x− 1)2y′′ − 3y′ + 5y = 0

has normal form

y′′ +
−3

x(x− 1)2︸ ︷︷ ︸
p(x)

y′ +
5

x(x− 1)2︸ ︷︷ ︸
q(x)

y = 0.

We will classify the singular pointsx0 = 0 andx1 = 1 of this equation by applying
Definition 2.2:

1. We will first considerx0 = 0:

(x− x0)p(x) = (x− 0)
−3

x(x− 1)2
=

−3
(x− 1)2

(x− x0)2q(x) = (x− 0)2
5

x(x− 1)2
=

5x

(x− 1)2

which are both analytic atx0 = 0. Hence,x0 = 0 is a regular singular point of
the given equation.

2. We will next checkx1 = 1:

(x− x1)p(x) = (x− 1)
−3

x(x− 1)2
=

−3
x(x− 1)

(x− x1)2q(x) = (x− 1)2
5

x(x− 1)2
=

5
x

where the first quotient isnot analtyic atx1 = 1. Hence,x1 = 1 is an irregular
singular point of the given equation.

Remark 2.1 (Necessary Condition for Analyticity)
The following list contains two useful necessary—but not sufficient—conditions for a
function to be analytic at a point x0 derived from its associated power series represen-
tation:
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1. limx→x0 f(x) exists (it equals the constant term of the power series representa-
tion of f at x0 !)

2. f possess derivatives of any order at x0 (since a power series possess derivative
of any order !)

Example 2.13
In the equation

y′′ +
√

x y = 0,

which is already in normal form, the functionsp(x) = 0 and q(x) =
√

x for all
x ∈ [0,∞) . Clearly, bothp andq are analytic for allx0 > 0. However,q is not
analytic atx0 = 0, since(x − x0)2q(x) = (x − 0)2

√
x = x5/2 is not analytic at

x0 = 0 because its third derivative does not exist atx0 = 0 as can be easily verified.

HOMEWORK SET 2.2
1. Find the singular points of the equations

(a) y′′ + 2xy′ + y = 0

(b) 2x2y′′ − 3λ2y = 0

(c) (1− x2)y′′ + y′ − y = 0

(d) x2y′′ − y′ + xy = 0

2. Show that(x − 1)p(x) = 2(x − 1)/x is analytic atx0 = 1 by computing its
Taylor series expansion inx− 1.

3. Show thatx2q(x) = 3x/(x− 1)3 is analytic atx0 = 0 by computing its Taylor
series expansion inx.

2.5.3 The Solution Method

Supposex0 ∈ I0 is a regular singular point of the equation

y′′ + p(x)y′ + q(x)y = 0, x ∈ I0. (2.20)

For convenience, we assume thatx0 = 0 (otherwise shift using the substitutionξ :=
x− x0 !) andI0 := (0, a) for somea > 0. We multiply the equation byx2 and obtain

x2y′′ + x
(
xp(x)

)
y′ +

(
x2q(x)

)
y = 0. (2.21)

Since, by assumption,x0 = 0 is a regular singular point of (2.20), there exist two
power series

∑∞
j=0 pjx

j and
∑∞

j=0 qjx
j such that

xp(x) =
∞∑

j=0

pjx
j , |x| < Rp (2.22)

x2q(x) =
∞∑

j=0

qjx
j , |x| < Rq. (2.23)
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Remark 2.2
In a small neighborhood of the point x0 = 0, equation (2.21) can be “approximated”—
using just the 0th term of the power series (2.22, 2.23)—by the equation

x2y′′ + p0xy′ + q0y = 0, (2.24)

which is a Cauchy-Euler equation. As we have seen, the solutions of (2.24) have the
form

y(x) = xrf(x) (2.25)

for some r ∈ R and f(x) = 1 or f(x) = lnx.

In view of Remark 2.2, it is natural to expect that the solutions of equation (2.20)
have the form

y(x) = xr
∞∑

n=0

cnxn. (2.26)

We will first demonstrate the solution technique in general to make transparent
steps where the method has the potential of failing and provide remedies. Afterwards,
we will study examples.

Suppose

y(x) = xr
∞∑

j=0

cjx
j =

∞∑
j=0

cjx
j+r, c0 6= 0, r ∈ R (2.27)

is a solution of the the equation

x2y′′ + x

 ∞∑
j=0

pjx
j

 y′ +

 ∞∑
j=0

qjx
j

 y = 0, 0 < x < min(Rp, Rq). (2.28)

Then since,

x2y′′ = x2
∞∑

j=0

(j + r)(j + r − 1)cjx
j+r−2 (2.29)

=
∞∑

j=0

(j + r)(j + r − 1)cjx
j+r (2.30)

and

xy′ = x
∞∑

j=0

(j + r)cjx
j+r−1 (2.31)

=
∞∑

j=0

(j + r)cjx
j+r, (2.32)
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we obtain

0 =
∞∑

j=0

(j + r)(j + r − 1)cjx
j+r (2.33)

+

 ∞∑
j=0

pjx
j

 ∞∑
j=0

(j + r)cjx
j+r

+

 ∞∑
j=0

qjx
j

 ∞∑
j=0

cjx
j+r

 (2.34)

=
∞∑

j=0

(j + r)(j + r − 1)cjx
j+r (2.35)

+
∞∑

n=0

(
n∑

k=0

pn−k(k + r)ck

)
xn+r +

∞∑
n=0

(
n∑

k=0

qn−kck

)
xn+r (2.36)

= xr

[ ∞∑
n=0

(
(n + r)(n + r − 1)cn +

n∑
k=0

(
pn−k(k + r) + qn−k

)
ck

)
xn

]
.

(2.37)

Division byxr (notex > 0) yields

0 =
∞∑

n=0

(
(n + r)(n + r − 1)cn +

n∑
k=0

(
pn−k(k + r) + qn−k

)
ck

)
xn, (2.38)

which implies by the Identity Theorem that

(n + r)(n + r − 1)cn +
n∑

k=0

(
pn−k(k + r) + qn−k

)
ck = 0 (2.39)

for all n ∈ N0. Forn = 0, we obtain(
r(r − 1) + p0r + q0

)
c0 = 0, (2.40)

which implies, since we chosec0 6= 0 that

r(r − 1) + p0r + q0 = 0 (2.41)

and therefore

h(r) := r2 + (p0 − 1)r + q0 = 0. (2.42)

Equation (2.42) is called theindicial equationof (2.20).

Remark 2.3
We mention that the coefficients p0 and q0 occuring in the indicial equation (2.42)
and which are the constant terms of the power series expansions of xp(x) and x2q(x),
respectively, can be easily obtained by computing the limits

p0 = lim
x→0

xp(x), q0 = lim
x→0

x2q(x). (2.43)
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We summerize: If (2.27) is a solution of the differential equation (2.20), then the
parameterr has to satisfy the indicial equation (2.42).

We will now study the conditions which the coefficientscn have to satisfy if (2.27)
is a solution of the differential equation (2.20). To this we first rewrite equation (2.39)
collecting the terms containingcn on the left side:

[
(n + r)(n + r − 1)︸ ︷︷ ︸

(n+r)2−(n+r)

+
(
p0(n + r) + q0

)]
︸ ︷︷ ︸

h(n+r)

cn +
n−1∑
k=0

(
pn−k(k + r) + qn−k

)
ck = 0,

(2.44)
noting that the coefficient ofcn coincides withh(n + r), i.e.:

h(n + r)cn = −
n−1∑
k=0

(
pn−k(k + r) + qn−k

)
ck (2.45)

for all n ∈ N.

First solutiony1

We will now use the recurrence relation (2.45) to determine the coefficientscn of
the first solutiony1 of (2.20) . In order to facilitate the computation, we introduce the
convention that the solutionsr1, r2 ∈ C of the indicial equation (2.42) are indexed
such that Re(r1) ≥ Re(r2). Then, if we start our computation with the “larger” zero
r1 of the indicial equation, then

h(n + r1) 6= 0 for all n ∈ N, (2.46)

(otherwisen + r1 would be a larger zero ofh, sincen > 0 !) and we can divide the
recurrence (2.45) byh(n + r1) solving forcn for all n ∈ N and obtain

cn = − 1
h(n + r1)

n−1∑
k=0

(
pn−k(k + r1) + qn−k

)
ck for all n ∈ N, (2.47)

which uniquely determines the sequence of coefficientscn oncec0 has been chosen.
Thus we obtain the first solution

y1(x) := |x|r1

∞∑
n=0

cnxn for all 0 < |x| < R1, (2.48)

with free parameterc0.

Second solutiony2

We will now compute the second solutiony2 of (2.20) and consider the second zero
r2 of the indicial equation (2.42). Renaming the coefficientscn in the recurrence (2.45)
to dn and replacingr by r2 we obtain the recursion

h(n + r2)dn = −
n−1∑
k=0

(
pn−k(k + r2) + qn−k

)
dk (2.49)

for all n ∈ N. However, since by assumption Re(r1) ≥ Re(r2), it might happen that
r2 + n = r1 for somen ∈ N. Therefore, we have to distinguish the following three
settings:
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1. r1 − r2 6∈ Z: Then, since Re(r1) ≥ Re(r2), n + r2 6= r1 for all n ∈ N, i.e.
h(n + r2) 6= 0 for all n ∈ N, we can solve fordn by diving equation (2.49) by
h(n + r2) and obtain the recurrence

dn = − 1
h(n + r2)

n−1∑
k=0

(
pn−k(k + r2) + qn−k

)
dk (2.50)

for all n ∈ N, which yields the second solution

y2(x) := |x|r2

∞∑
n=0

dnxn for all 0 < |x| < R2 (2.51)

with free parameterd0.

2. r1 − r2 ∈ N: Thenr2 + n0 = r1 for somen0 ∈ N. In this case, we can com-
pute the coefficientsd1, d2, . . . , dn0−1. However, ifn = n0 then the recurrence
(refeq:recurrencet) yields the identity

h(n0 + r2)︸ ︷︷ ︸
=0 !!!

dn0 = −
n0−1∑
k=0

(
pn0−k(k + r2) + qn0−k

)
dk. (2.52)

If the right side of equation (2.52) is also zero forn = n0, thendn0 can be
chosen arbitrarily and we obtain the second solution

y2(x) := |x|r2

∞∑
n=0

dnxn for all 0 < |x| < R2 (2.53)

with the free parametersd0 anddn0 . If the right side of equation (2.52) is not
zero forn = n0, then the solution method has to be modified or the method of
“Reduction of Order” can be applied to obtain a second solution.

3. r1 − r2 = 0: In this case this method only yields one solution. To obtain a
second solution this method has to be modified or “Reduction of Order” has to
be used.

The general result is formulated in the following

Theorem 2.11
If the equation y′′ + p(x)y′ + q(x)y = 0 has a regular singular point at x0 = 0
and if xp(x) =

∑∞
j=0 pjx

j and x2q(x) =
∑∞

j=0 qjx
j for |x| < Rp and |x| < Rq,

respectively, and if r1, r2 ∈ C are the solutions of the indicial equation r2 + (p0 −
1)r + q0 = 0 indexed such that Re(r1) ≥ Re(r2), then the differential equation has a
complete solution

y(x) = ay1(x) + by2(x), a, b ∈ R (2.54)

on a “deleted neighborhood” 0 < |x| < R where R ≥ min{Rp, Rq} and the functions
y1 and y2 have the form
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1. If r1 − r2 6∈ Z, then

y1(x) = |x|r1

∞∑
n=0

cnxn, c0 6= 0 (2.55)

y2(x) = |x|r2

∞∑
n=0

dnxn, d0 6= 0. (2.56)

2. If r1 − r2 ∈ N, then

y1(x) = |x|r1

∞∑
n=0

cnxn, c0 6= 0 (2.57)

y2(x) = |x|r2

∞∑
n=0

dnxn + cy1(x) ln |x|, d0 6= 0 (2.58)

where c ∈ R (can be zero!).

3. If r1 − r2 = 0, then

y1(x) = |x|r1

∞∑
n=0

cnxn, c0 6= 0 (2.59)

y2(x) = |x|r1

∞∑
n=1

dnxn + y1(x) ln |x|. (2.60)

Example 2.14 (Case 1:r1 − r2 6∈ Z)
We consider the differential equation

2x2y′′ + (x2 − x)y′ + y = 0 (2.61)

which has normal form

y′′ +
x2 − x

2x2
y′ +

1
2x2

y = 0. (2.62)

We are seeking a solution near the pointx0 = 0, which is a regular singular point of
equation (2.61), since

xp(x) = 1
2x − 1

2︸︷︷︸
p0

and x2q(x) = 1
2︸︷︷︸
q0

. (2.63)

1. The indicial equation of (2.61) is given by

h(r) = r2 + (p0 − 1)r + q0 = r2 − 3
2r + 1

2 = 0, (2.64)

which is equivalent to

2h(r) = 2r2 − 3r + 1 = (2r − 1)(r − 1) = 0 (2.65)

and implies thatr1 = 1 andr2 = 1
2 . Sincer1 − r2 = 1− 1

2 = 1
2 6∈ Z, we are in

case 1.
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2. We will now determine the recurrence relations for computing the solutions. We
are seeking solutions of the form

y(x) = xr
∞∑

j=0

cjx
j =

∞∑
j=0

cjx
j+r (2.66)

where we assume thatc0 6= 0 andx > 0. Its derivatives are

y′(x) =
∞∑

j=0

(j + r)cjx
j+r−1 (2.67)

y′′(x) =
∞∑

j=0

(j + r − 1)(j + r)cjx
j+r−2. (2.68)

Substituting these functions into the equation (2.61) yields

0 =
∞∑

j=0

2(j + r − 1)(j + r)cjx
j+r

+
∞∑

j=0

(j + r)cjx
j+r+1

︸ ︷︷ ︸
sub:`:=j+1

−
∞∑

j=0

(j + r)cjx
j+r +

∞∑
j=0

cjx
j+r

=
∞∑

j=0

[
2(j + r − 1)(j + r)− (j + r) + 1

]
cjx

j+r

+
∞∑

`=1

(`− 1 + r)c`−1x
`+r

=
[
2(r − 1)r − r + 1︸ ︷︷ ︸

2h(r)=2r2−3r+1

]
c0x

r

+
∞∑

j=1

[
2(j + r − 1)(j + r)− (j + r) + 1︸ ︷︷ ︸

2h(j+r)=2(j+r)2−3(j+r)+1

]
cjx

j+r

+
∞∑

`=1

(`− 1 + r)c`−1x
`+r.

Division byxr yields

0 =
[
(r − 1)(2r − 1)

]
c0

+
∞∑

j=1

{[
(j + r − 1)

(
2(j + r)− 1

)]
cj + (j + r − 1)cj−1

}
xj ,

from which, by the “Identity Theorem”, follows that[
(r − 1)(2r − 1)

]
c0 = 0



and [
(j + r − 1)

(
2(j + r)− 1

)]
cj + (j + r − 1)cj−1 = 0 for all j ∈ N.

Since, by assumption,c0 6= 0, it follows that(r − 1)(2r − 1) = 0 which is the
“indicial equation” of (2.61). We thus obtain the recurrence relation[

(j + r − 1)
(
2(j + r)− 1

)]︸ ︷︷ ︸
2h(j+r)

cj = −(j + r − 1)cj−1 for all j ∈ N. (2.69)

3. We will now use the recurrence (2.69) to compute the two linearly independent
solutions of equation (2.61). We start with the larger solutionr1 = 1 and substi-
tute it into the recursion (2.69) and obtain (note thath(j + 1) 6= 0 for all j ∈ N,
sincer1 = 1 is the smallest root of the equationh(r) = 0.)

cj =
−cj−1

2j + 1
for all j ∈ N. (2.70)

With c0 ∈ R arbitrary, we then compute

c1 =
−c0

3
(2.71)

c2 =
−c1

5
=

(−1)2c0

3 · 5
(2.72)

c3 =
−c2

7
=

(−1)3c0

3 · 5 · 7
(2.73)

and thus

cj =
(−1)jc0∏j

k=1(2k + 1)
=

(−1)jj!2jc0

(2j + 1)!
. (2.74)

for all j ∈ N. For convenience, we setc0 := 1. Then

y1(x) = x1
∞∑

j=0

(−1)jj! 2j

(2j + 1)!
xj =

∞∑
j=0

(−1)jj! 2j

(2j + 1)!
xj+1 (2.75)

is the first solution of the equation (2.61).

The following maple worksheet computes the 10th partial sum ofy1 and plots this
function:

> restart:c[0]:=1;
c0 := 1

> for j from 1 to 10 do c[j]:=(-1)ˆj*j!/((2*j+1)!) od;

c1 :=
−1
6
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c2 :=
1
60

c3 :=
−1
840

c4 :=
1

15120

c5 :=
−1

332640

c6 :=
1

8648640

c7 :=
−1

259459200

c8 :=
1

8821612800

c9 :=
−1

335221286400

c10 :=
1

14079294028800
> p(x):=sum(c[k]*xˆ(k+1),k=0..10);

p(x) := x− 1
6 x2 + 1

60 x3 − 1
840 x4 + 1

15120 x5

− 1
332640 x6 + 1

8648640 x7 − 1
259459200 x8

+ 1
8821612800 x9 − 1

335221286400 x10 + 1
14079294028800 x11

> plot(p(x),x=-5..5);

–12

–10

–8

–6

–4

–2

0

2

–4 –2 2 4
x
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HOMEWORK SET 2.3
1. Determine the second solution for Example 2.14.

2. Find two linearly independent solutions near the origin for the differential equa-
tion 2x2y′′ + (2x2 + x)y′ − y = 0.

Example 2.15 (Case 2:r1 − r2 ∈ N)
We will now consider the differential equation

9x2y′′ + 3xy′ + 2(x− 4)y = 0 (2.76)

or in normal form

y′′ +
1
3x

y′ +
2(x− 4)

9x2
y = 0. (2.77)

We are seeking a solution near the pointx0 = 0, which is a regular singular point of
equation (2.76), since

xp(x) = − 1
3︸︷︷︸

p0

and x2q(x) = 2
9x − 8

9︸︷︷︸
q0

. (2.78)

1. The indicial equation of (2.76) is given by

h(x) = r2 + (p0 − 1)r + q0 = r2 − 2
3r − 8

9 = 0, (2.79)

which is equivalent to

9r2 − 6r − 8 = (3r − 4)(3r + 2) = 0 (2.80)

and implies thatr1 = 4
3 andr2 = − 2

3 . Sincer1 − r2 = 4
3 + 2

3 = 2 ∈ N, we are
in case 2.

2. We will now determine the recurrence relations for computing the solutions. We
are seeking solutions of the form

y(x) = xr
∞∑

j=0

cjx
j =

∞∑
j=0

cjx
j+r (2.81)

where we assume thatc0 6= 0 andx > 0. Its derivatives are

y′(x) =
∞∑

j=0

(j + r)cjx
j+r−1 (2.82)

y′′(x) =
∞∑

j=0

(j + r − 1)(j + r)cjx
j+r−2. (2.83)
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Substituting these functions into the equation (2.76) yields

0 =
∞∑

j=0

9(j + r − 1)(j + r)cjx
j+r

+
∞∑

j=0

3(j + r)cjx
j+r +

∞∑
j=0

2cjx
j+r+1

︸ ︷︷ ︸
sub:`:=n+1︸ ︷︷ ︸

∞∑
`=1

2c`−1x
`+r

−
∞∑

j=0

8cjx
j+r

=
[
9r(r − 1) + 3r − 8

]
c0x

r

+
∞∑

j=1

([
9(j + r)(j + r − 1) + 3(j + r)− 8

]
cj + 2cj−1

)
xj+r

Division byxr yields

0 =
[
(r − 1)(2r − 1)

]
c0

+
∞∑

j=1

{[
2(j + r − 1)

(
2(j + r)− 1

)]
cj + (j + r − 1)cj−1

}
xj ,

from which, by the “Identity Theorem”, follows that[
(r − 1)(2r − 1)

]
c0 = 0

and[
2(j + r − 1)

(
2(j + r)− 1

)]
cj + (j + r − 1)cj−1 = 0 for all j ∈ N.

2.5.4 The Bessel Functions

Introduction

Before we construct the Bessel functions, we would like to recall that several important
functions can be defined through differential equations. We illustrate this by some
simple and well-known examples.

Example 2.16 (The Exponential Function)
Consider the homogenius first order linear differential equation

y′ − y = 0. (2.84)

To illustrate the similarity to the case of the Bessel functions, we will use the power
series method and seek a solution of the form

y(x) =
∞∑

n=0

cnxn.
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Substituting the series and its derivative into (2.84), we obtain

0 =
∞∑

n=1

ncnxn−1 −
∞∑

n=0

cnxn

and with the index substitutionsk = n in the first andk = n + 1 in the second sum

=
∞∑

k=1

kcnxk−1 −
∞∑

k=1

ck−1x
k−1 =

∞∑
k=1

(
kck − ck−1

)
xk−1,

from which follows by the Identity Theorem thatkck − ck−1 = 0 for all k ∈ N and
thus

ck =
1
k

ck−1 =
1
k
· 1
k − 1

· ck−2 = · · · = 1
k!
· c0.

Hence, if we setc0 := 1, we obtain the particular solution

y(x) =
∞∑

k=0

xk

k!
,

of the equation (2.84) which is called the (natural) exponential function and usually
denoted denoted byexp(x) or simply byex. As the differential equation does not have
any singular points, by the theorem on the analyticity of the solution from the previous
lecture, we can conclude that the series converges forx ∈ R. Thus the general solution
of (2.84) is given byy(x) = c · ex for c ∈ R.

Example 2.17 (The Trigonmetric Functions Sine And Cosine)
Consider the homogenius linear second order constant coefficients equation

y′′ + y = 0. (2.85)

Again, for the purpose of illustration, we seek solutions of the form

y(x) =
∞∑

k=0

cnxn.

Substituting the series and its secon derivative into the equation (2.85), we obtain

0 =
∞∑

n=2

n(n− 2)cnxn−2 +
∞∑

n=0

cnxn

from which follows using the index substitutionk = n in the first andk = n + 2 in the
second sum

=
∞∑

k=2

k(k − 2)ckxk−2 +
∑
k=2

ck−2x
k−2
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and

=
∞∑

k=2

(
k(k − 2)ck + ck−2

)
xk−2,

and by the Identity theorem finally the recurrence relationk(k − 2)ck + ck−2 = 2 or,
solved forck,

ck =
−1

k(k − 2)
· ck−2 for all k ≥ 2.

Therefore,

c0 = arbitrary

c1 = arbitrary

c2 =
−1
2 · 1

c0

c3 =
−1
3 · 2

c1

c4 =
−1
4 · 3

c2 =
(−1)2

4 · 3 · 2 · 1
c0

c5 =
−1
5 · 4

c1 =
(−1)2

5 · 4 · 3 · 2
c1

and

c2k = (−1)k 1
(2k)!

c0

c2k+1 = (−1)k 1
(2k + 1)!

c1

for all k ∈ N0. Hence,

y(x) =
∞∑

k=0

(
(−1)kc0

(2k)!
x2k +

(−1)kc1

(2k + 1)!
x2k+1

)

= c0

∞∑
k=0

(−1)k x2k

(2k)!
+ c1

∞∑
k=0

(−1)k x2k+1

(2k + 1)!
.

The series solution

y1(x) =
∞∑

k=0

(−1)k x2k

(2k)!

is commonly abbreviatedcos x, while the solution

y2(x) =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!

is usually denoted bysinx.



2.5. THE METHOD OF FROBENIUS

The Bessel Equation of orderν

The second equation
x2y′′ + xy′ + (λ2x2 − ν2)y = 0 (2.86)

is called theBessel equationof orderν with parameterλ. This equation arises in a
great variety of problems, including almost all application involving partial differential
equations like the wave equation, heat equation in regions with circular symmetry.

The substitutiont := λx reduces equation (2.86) using

dy

dx
= λ

dy

dt
and

dy2

dx2
= λ2 d2y

dt2

to the form

t2
d2y

dt2
+ t

dy

dt
+ (t2 − ν2)y = 0, (2.87)

which is called theBessel equationof orderν. We will solve this form of the equation,
but choose the simpler formulation

t2y′′ + ty′ + (t2 − ν2)y = 0,

or in normal form

y′′ +
1
t
y′ +

t2 − ν2

t2
y = 0.

Note thattp(t) = 1 andt2q(t) = −ν2 + t2, which implies thatp0 = 1 andq0 = −ν2.
Therefore,t0 = 0 is a regular singular point of equation (2.87) and its only singular
point. We will systematically solve equation (2.87) using the Frobenius method.

(a) Indicial equation:

h(r) = r2 + (p0 − 1)r + q0

= r2 + (1− 1)r + (−ν2)

= r2 − ν2 = 0.

Hence,r1 = ν where we chooseν ≥ 0, andr2 = −ν.

(b) Recurrence relation:
We are seeking a solution of the form

y(t) = tr
∞∑

n=0

cntn =
∞∑

n=0

cntn+r, t > 0.

Substitution its derivatives

y′(y) =
∞∑

n=0

(n + r)cntn+r−1
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and

y′′(y) =
∞∑

n=0

(n + r − 1)(n + r)cntn+r−2

into equation (2.87) yields

0 =
∞∑

n=0

(n + r − 1)(n + r)cntn+r +
∞∑

n=0

(n + r)cntn+r+

+
∞∑

n=0

cntn+r+2 +
∞∑

n=0

(−ν2)cntn+r

=
∞∑

n=0

(
(n + r − 1)(n + r) + (n + r)− ν2

)
cntn+r

+
∞∑

n=0

cntn+r+2

and with the index substitutionk = n in the first andk = n + 2 in the second
sum and simplfying the coefficient ofcn we obtain

=
∞∑

k=0

(
(k + r)2 − ν2

)
cktk+r +

∞∑
k=2

ck−2t
k+r

= tr

(
(r2 − ν2)c0 +

(
(r + 1)2 − ν2

)
c1t +

+
∞∑

k=2

[(
(k + r)2 − ν2

)
ck + ck−2

]
tk

)
.

Using the Identity theorem, we conclude that

(r2 − ν2)c0 = 0,
(
(r + 1)2 − ν2

)
c1 = 0

and (
(k + r)2 − ν2

)
ck + ck−2 = 0 for all k ≥ 2.

Since by definitionc0, we obtain (a second time) the indicial equation

h(r) := r2 − ν2 = 0

and the recurrence relation

h(k + r)ck + ck−2 = 0 for all k ≥ 2.

Note that our assumptionν ≥ 0 implies thatc1 = 0. Thus we obtain the recur-
rence

c0 6= 0, c1 = 0

and
h(k + r)ck + ck−2 = 0 (2.88)
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(c) Using the recurrence relation to determine the coefficients of the first solutiony1:

We setr := r1 = ν ≥ 0 which is the “greater” of the two solutions of the indicial
equationh(r) = r2 − ν2 = 0. Therefore,h(k + ν) 6= 0 for all k > 0, since
r1 = ν ≥ −ν = r2. Hence we can solve equation (2.88) forck by dividing the
equation byh(k + ν) = k(k + 2ν) yielding

ck = − 1
h(k + ν)

ck−2 = − 1
k(k + 2ν)

ck−2 for k = 2, 3, . . . (2.89)

Thus we obtain

c0 = arbitrary but6= 0
c1 = 0

c2 = − 1
2(2 + 2ν)

c0

c3 = − 1
3(3 + 2ν)

c1 = 0

c4 = − 1
4(4 + 2ν)

c2 =
−1

4(4 + 2ν)
· −1
2(2 + 2ν)

c0

c5 = − 1
5(5 + 2ν)

c3 = 0

c6 = − 1
6(6 + 2ν)

c4 =
−1

6(6 + 2ν)
· −1
4(4 + 2ν)

· −1
2(2 + 2ν)

c0

=
(−1)3(

3 · 2 · 2(3 + ν)
)(

2 · 2 · 2(2 + ν)
)(

1 · 2 · 2(1 + ν)
) c0,

and finally

c2m =
(−1)m c0

22mm!
∏m

j=1(j + ν)
for all m ∈ N.

To emphasize the fact thatc2m is the coefficient oft2m+ν we rewrite the expres-
sion above

c2m =
(−1)m (2νc0)

22m+νm!
∏m

j=1(j + ν)

which in turn can be rewitten using the Gamma function notation as

c2m =
(−1)m (2νc0) Γ(ν + 1)

22m+νm! Γ(ν + 1)
∏m

j=1(j + ν)

which using the properties of the Gamma function simplifies to

c2m =
(−1)m [2νΓ(ν + 1) c0]

22m+ν m! Γ(m + ν + 1)
for all m ∈ N.
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If we chosec0 to be

c0 :=
1

2νΓ(ν + 1)
,

the formula for the coefficientsc2m simplifies to

c2m =
(−1)m

22m+ν m! Γ(m + 1 + ν)
for all m ∈ N.

The solution

y1(t) = Jν(t) :=
∞∑

m=0

(−1)m

22m+ν m! Γ(m + 1 + ν)
t2m+ν (2.90)

of the equation (2.87) is called aBessel function of the first kind and orderν.
Sincet0 = 0 is the only singular point of the Bessel equation, we can conclude
that the radius of convergenceR of this Frobenius series isR = ∞, i.e. it con-
verges for anyx ∈ R. Recall thatR ≥ min{Rp, Rq} andRp = Rq = ∞, since
tp(x) = 1 andt2q(t) = −ν2 + t2 are polynomials int.

(d) Finding the second solutiony2:

We will now consider the caser2 = −ν, where we might encounter “overlap-
ping” series. Clearly,r1 − r2 = ν − (−ν) = 2ν ∈ N0 := {0, 1, 2, . . .} if and
only if ν = k · 1

2 for somek ∈ N0, i.e. if ν is a non-negative multiple of12 .
Summarizing, ifν is not an integer then,h(k + (−ν) = 0 if and only if 0 = 0 or

We begin with the special caseν ∈ R \Z, i.e. the case, whereν is not an integer.
Note that this assumption includes the caseν = (2` + 1) · 1

2 for some` ∈ N0,
i.e. the case, whereν is an odd non-negative multiple of12 and wherer1 − r2

differ by a positive integer (case 2 in the textbook). However, we will see that
we are in the “fortunate” situation where in the recurrence equation (2.88) the
term h

(
k + (−ν)

)
= 0 at the same time whenck−2 = 0, namely for all odd

subscripts.

We first rewrite the recurrence relation (2.88) exchangingck with dk andck−2

with dk−2 and obtain
d0 6= 0, d1 = 0

and
h(k + r)dk + dk−2 = 0 for k > 1. (2.91)

Clearly, as mentioned above,h
(
k+(−ν)

)
= k2−2kν+ν2−ν2 = k(k−2ν) = 0

if and only if k = 0 or k = 2ν, which implies that2ν ∈ N0 i.e. thatν is
a multiple of 1

2 . Since, by assumption,ν is not an integer,ν = (2` + 1) · 1
2

for some` ∈ N0 and thusk = 2ν = 2(2` + 1) 1
2 = 2` + 1. Thus, under the

assumption thatν is not an integer,h
(
k+(−ν)

)
6= 0 for all even integersk > 1.

For odd integersk = 2` + 1, the recurrence (2.91) in conjunction with the initial
valued1 = 0 yields that

h
(
2` + 1) + (−ν)

)
d2`+1 = (−1)d2`−1 = · · · = (−1)`d1 = 0.
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Hence, we can setdk = 0 for all oddk ∈ N. For evenk ∈ N, we can solve for
dk as in the caser1 = ν and obtain

dk =

−
1

k
(
k + 2(−ν)

) dk−2 if k is even

0 if k is odd

which coincides with (2.89) if we replaceν by −ν. Hence, since we have the
same start values as in the previous case, the second solution can be obtained
from the first by replacingν by−ν yielding

y2(t) = J−ν(t) :=
∞∑

m=0

(−1)m

22m−ν m! Γ(m + 1− ν)
t2m−ν . (2.92)

Thus
y(y) := c1Jν(t) + c2J−ν(t)

constitutes a complete solution of the Bessel equation of orderν.

(e) Modifications of the basis function of the complete solution of the Bessel equa-
tion:

(i) For anyν ∈ R \ Z (any real number that is not an integer), we can define
the function

Yν(t) :=
cos(νπ)Jν(t)− J−ν(t)

sin(νπ)
,

which is called theBessel function of the second kind of orderν. As a linear
combination ofJν andJ−ν , Yν is also a solution of the Bessel equation and

y(y) := c1Jν(t) + c2Yν(t)

also constitutes a complete solution of the Bessel equation (2.87).

(ii) For ν ∈ R \ Z, the complex valued functions

H(1)
ν (t) := Jν(t) + iYν(t)

and

H(2)
ν (t) := Jν(t)− iYν(t)

are called theHankel functionsor theBessel functions of the third kind of
order ν. Again as linear combination of solutions of the Bessel equation
they are also solutions and

y(y) = c1H
(1)
ν (t) + c2H

(2)
ν (t)

constitutes a complete solution of the Bessel equation (2.87).
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Some Basic Facts On The Gamma Function

The improper integral ∫ ∞

0

e−ξξx−1dξ

converges for allx > 0 and defines a function

Γ(x) :=
∫ ∞

0

e−ξξx−1dξ,

which is calledEuler’s Gamma functionand which is positiv for allx > 0.
Clearly,

Γ(1) =
∫ ∞

0

e−ξdξ = [−e−ξ]∞0 = 1.

Partial integration forx > 0 yields

Γ(x + 1) :=
∫ ∞

0

e−ξξxdξ = [−e−ξξx]∞0 + x

∫ ∞

0

e−ξξx−1dξ,

which, considering that

[−e−ξξx]∞0 = lim
ξ→∞

(e−ξξx)− lim
ξ→0+

(e−ξξx) = 0− 0,

implies that
Γ(x + 1) = xΓ(x).

For natural numbersn ∈ N, it can be shown using mathematical induction that

Γ(n + 1) = n!

The Gamma function possesses derivatives of any order, which can be obtained
by differentiation under the integral sign:

Γ(n)(x) =
∫ ∞

0

(
ln ξ
)n

e−ξξx−1dξ.

Thus, the Gamma function can be considered as a differential extension of the
factorial.
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Chapter 2      Ordinary Differential Equations     Exercises: 
          
2.1 Basics      1.  Give an example of a differential equation (simple or sophisticated) used for  
        modeling in engineering.  Describe briefly what process is governed by this   
        equation.  What assumptions and conditions are applied? 
 

2.  Describe each of the following differential equations, giving its order and 
telling whether it is ordinary or partial, its order, whether it is linear or 
nonlinear, and homogeneous or non-homogeneous: 

a)  x
dx
dy

x sin2 =        (example: ODE, 1st order, linear, non-homogeneous) 

b)  tsincbxxax =++   
 
c)  ( ) bavv =+′ 2  
 
d)  02 =+′′ XX λ  
 

e)  
2

2

4

4
2

t
y

x
ya

∂
∂

−=
∂
∂  

 
f)  yxyy sin=+′′  

g)  xsiny4y6y 2=−′−′′  

h)  xyxy 2 =+′′′  
i)  0yyy =′+′′  

j)  ( ) ( ) ( )








∂
∂

∂
∂

=
∂

∂
x

t,xuuk
xt

t,xu  

k)  0
dx
du

dx
ud 1

2

2

=





+

−

 

 
3.  Find the values of m  for which mxy =  is a solution of the differential 

equation 0y2yx2yxyx3 23 =−′+′′−′′′  
 
4.  Solve the following differential equation 

x3xey =′  subject to the initial condition ( ) 00y =  
 

5.  Find a complete solution of the differential equation 3
1

x4y =′  and sketch the 
solution curve through the point ( )2,3 . 
 

6.  Find a complete solution of the differential equation 
2x

2y xe
−

′ =  and sketch 

the solution curve through the point 








e
1,1 . 

 
7.  Find the integral of the differential equation 0yy9x4 =′+ ; sketch the 
integral curve through the point ( )4,3 − . 
 
8.  Sometimes it is necessary to find a differential equation which has a given 
general solution.  Usually, it can be found by differentiation of the given 
solution and elimination of the parameters by algebraic manipulations. 
Find a second order differential equation which has a general solution given by 
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xsincecy 2
x

1 += − , where 1c  and 2c  are arbitrary constants. 
9.  Find a solution of the initial value problem ( ) y2y1x =′+  subject to 
( ) 01y =−  and state whether or not it is unique.  

 
10.  The homogeneous spherical wall (inner radius 1r  and outer radius 2r ) with 
thermal conductivity k  is in a steady state with temperature of the inner surface 

1T  and of the outer surface 2T , respectively. Assuming that due to conservation 
of energy, in steady state the same rate of heat transfer Q is passing through a 
spherical surface of any radius, find the temperature ( )rT  at an arbitrary radius 

21 rrr ≤≤ .  Derive the differential equation using Fourier’s Law and relation 

sqAQ = , where sA  is the surface area.  Sketch the graph of solution for 

2r5r 12 ==  and C80T4T o
21 == , 5.0k = , and determine the rate of heat 

transfer Q . 
 
2.2.1-2 1st order ODE   1)  Solve the following differential equations and sketch the solution    
        curves: 
        a)  ( ) ( ) 0dy3yxdx1yx 2 =+−+++  

        b)  ( ) ( ) 0dyyxdxxxy2 223 =+++  

        c)  0dy
y
1xlndx

x
y

e x =







++







 +  

        d)  ( ) ( ) 0dyxxyydxyyxx 3232 =+++++  
        e)  ( ) 0y2yx2y3 =+′−  

        f)  ( ) 0dyycose2yydxsine xx =−−  
        g)  0xylnyyyx =++′  
   
        2)  Prove Theorem 2. 
 

3)  a) Determine an equation for the multiplication factor if it is a function of x   
only. 
b) Determine an equation for the multiplication factor if it is a function of y  
only. 

 
2.2.3-4 Separable    1.  Solve the differential equation and sketch the solution curves: 

a)  ( ) ( ) 0dyx1ydxy1x 22 =+−+  
b)  x2xy2yy +=′  
c)  yyx2yxy2 =′+′  
 
2.  Solve the differential equation and sketch the solution curves: 
a)  ( ) 0yyx2yxxy2 4343 =−+′−  
b)  ( ) ( ) 0dyxydxyx =−−+  
c)  ( ) ( ) 0dyxydxyx =−+−  
d)  xyyx2 −=′  

e)  
x
y

x
y

secy +






=′    subject to ( ) π=2y  

3.  Solve the differential equation by conversion to polar coordinates and sketch 
the solution curves: 

a)  
yx
yxy

−
+

=′  
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4.  a)  Show that the equation ( )byaxfy +=′  where a,b∈  can be 
transformed to a separable differential equation with the help of a change of the 
dependent variable by the substitution byaxz += . 
b)  Solve the differential equation and sketch the solution curves: 

i)   yx2y +=′  

ii)  1
yx

1y +
−

=′  

2.2.5  Linear 1st order    1.  Solve the differential equation and sketch the solution curves: 
 
        a)  ( ) xeyx1yx −=++′  

        b)  xsine4yy 2x+=′    subject to ( ) 100y =  

        c)  2x
x
y

y =−′  

 
2.2.6  Special 1.  Show that if ( )xu  is a particular solution of the Ricatti equation 

 ( ) ( ) ( )xRyxQyxPy ++=′ 2  
Then the substitution 

1y u
z

= +  

reduces the Ricatti equation to a Bernulli equation 
( ) 2PuuPz2Qu ++=′  

 
2.  Solve the differential equation and sketch the solution curves: 
a) 2xyyy =+′  

b) ( ) 1xyx21xyy 2 −+−+=′  (particular solution u 1= ) 

c) yeyxy ′−′=  
 

2.2.7  Applications    1. Find a family of orthogonal curves defined by the equation: 
   cy3x 22 =+  
  and sketch the graph of curves 

 
2.2.8  Numerical      A skier is skiing down a hill with a constant slope θ .  The dependence of his  
        speed v  on time t  is described by the equation: 

θµθ
ρ

cosmgsinmgv
2

AC
dt
dvm 2D −+−=  

with the initial condition ( ) 0v0v = . 
Solve this IVP by: 
 a) exact methods, 
 b) as  a special equation, 
 c) the Euler method, 
 d) the modified Euler, 
 e) the Runge-Kutta, and 
 f) Newton’s method. 
Use the following values of parameters: 

1=ρ  

DC 0.9=  
4.0A =  

80m =  
82.9g =  

o30=θ  
1.0=µ  

0v 2=   Make some observations. 
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2.2.9  Reducible     Solve by reduction of order     
        xy xy y 0′′ ′− + =   (hint: 1y x=  is a solution)  
 
2.3  Linear ODE 
        1) Solve the following equations and sketch solution curves: 
     
        a) y y sec x′′ + =  
        b) y y 4x cos x′′ + =  
        c) y y cos t′′′ − =  

        d) 2 xy 5 y 6 y 2e′′ ′− + =  

        e) ( )ivy y 0+ =  

        f) ( )vy y 0+ =  

        g) ( )viy y 0+ =  

        h) x3ey3y =′−′′  

        i) 2 xy 3y 4 y e′′′ ′′+ − =  

        k) 3 2x y 3x y 6 xy 6 y 20x′′′ ′′ ′− + − =  
 
        2. Let 1 2y , y  be two linearly independent solutions of the normal linear ODE 
        ( ) ( ) ( )0 1 2a x y a x y a x y 0′′ ′+ + =  
        Show that any solution of this equation can be written as a linear combination  
        ( ) ( ) ( )1 1 2 2y x c y x c y x= +  
 
        3.  Show that any solution of ( )nL y f x=  is represented by c py y y= +   
 
 

4.  Consider steady state conduction in the spherical region between two 
isothermal surfaces 1r r=  at temperature 1u and  2r r= at temperature 2u .   
Radial temperature distribution under assumption of angular symmetry in the 
absence of volumetric heat generation is described by the differential equation 

        
2

2

d u dur 2 0
drdr

+ =  

        Find the temperature distribution ( )u r , ( )1 2r r ,r∈  
 
 
 
        5.  Conjugate problem for multilayer region.  
        [modification from Transport Phenomena] Fixed-bed flow reactor 
 
        Assume that flow enters a three zone fixed-bed flow reactor at x = −∞  at initial  
        temperature 0T .  Zones I ( )x 0−∞ < <  and III ( )1 x< < ∞  are filled with inert  

        pellets, and zone II [ ]0 x 1≤ ≤  is filled with catalyst pellets, respectively.   

        Temperature distribution is described by the function ( )iT x  where the index i  
        denotes the corresponding zone of reactor, i I ,II ,III= , and has to satisfy the  
        following differential equations with corresponding boundary conditions:   
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Zone:       Equation:             Boundary and Conjugate Condition: 
 
 
                1 0x

T T
→−∞

=  

I ( )x 0−∞ < <   
( ) ( )2

1 1
2

d T x dT x1 0
b dxdx

− =    

                1 2x 0 x 0
T T

= =
=  

 

                1 2

x 0 x 0

dT dT
dx dx= =

=  

II ( )0 x 1≤ ≤     
( ) ( ) ( )

2
2 2

22

d T x dT x1 aT x 0
b dxdx

− + =   

                2 3x 1 x 1
T T

= =
=  

 

                32

x 1 x 1

dTdT
dx dx= =

=  

III ( )1 x< < ∞      
( ) ( )2

3 3
2

d T x dT x1 0
b dxdx

− =   

                3 x
T           bounded

→∞
 

 
  
 
    
 
                                 entrance zone                 zone where heat is produced           exit zone 
                                                    by chemical reaction 
                                    I                                                       II                                                   III 
 
flow enters 
at x = −∞                inert pellets                       catalyst pellets        inert pellets 

with initial   ⇒              ( )1T x              ( )2T x                                            ( )3T x  
temperature  
     0T                                                                              x 
                                                                                    x=0                                                                         x=1 
 
a  and b  are physical parameters of the reactor  ( a 0,b 0> > ) and the fluid with the following properties:  
a  is bigger for a longer reactor, lower flow rate, and faster reaction; 
b  is bigger for a longer reactor, higher flow rate, and smaller conduction between zones. 
Conditions between zones provide continuity of temperature and heat flux. 
 
Find the temperature distribution ( )iT x  for all zones and investigate the influence of the parameters a  and b .   
Sketch the graph. 
 
     
 

6.  Solve problem in the Example 6 of section 2.3.6. 
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2.4-5  Power Series Solution  1.  Evaluate 
n n 1

k 0 k 0

2n 2n
2k 2k 1

−

= =

   
−   +   

∑ ∑  

 
        2.  Using power series and Cauchy product , verify the “First Pythagorean   
        Identity” 2 2sin x cos x 1+ =  (Hint: use the identity established in the previous  
        exercise). 
     

        3.  Give the power series expansions of x
x 1−

 and 1
x 1−

 in x and determine  

        their radius of convergence. 
     
        4.  Find the radius of convergence of the power series: 

        a)  
( )

n

2
n 0

x
n 3

∞

= +
∑  

        b)  ( )
2

n
n

n 0

n x 1
2

∞

=

−∑  

        c)  
n

n
n 0

n! x
n

∞

=
∑  

 
        5.  Find the singular points of the equations 
 
        a)  y 2xy y 0′′ ′+ + =    c)  ( )21 x y y y 0′′ ′− + − =   

        b)  2 22x y 3 y 0λ′′ − =     d)  2x y y xy 0′′ ′− + =  
     

6.  Show that 
( )2 x 1

x
−

 is analytic at 0x 1=  by computing its Taylor series 

expansion in terms of x 1− . 
 

        7.  Show that 
( )3

3x
x 1−

 is analytic at 0x 0=  by computing its Taylor    

        series expansion in x . 
 
        8.  Using the power series method, find complete solutions for the following  
        differential equations: 

        a)  y y 0λ′ − =       f)  3y y 2y 0
x

′′ ′+ − =  

        b)  2y y 0λ′′ − =       g)  ( )22x y x x 1 y y 0′′ ′− − − =  
        c)  y xy 2y 0′′ ′+ + =      h)  xy y xy 0′′ ′+ − =  

        d)  3y x y 0′′ − =       i)   2 2 1x y xy x y 0
4

 ′′ ′+ + − = 
 

 

        e)  y xy 0′′ − =   ( ) ( )y 0 1; y 0 0′= =   k)  ( )2 22x y 2x x y y 0′′ ′+ + − =  

 
        9.  Determine the second solution for Example 73  (p. 99). 
 
        10.  Consider the differential equation ( )x 1 y xy y 0′′ ′− − + =  
        a) find the general solution of the given ODE in the form of power series about  
        the point 0x 0= ; 
        b) What is the radius of convergence of the obtained power series solution? 
        c) Sketch the solution curves. 
        d)  Find the solution subject to the initial conditions: ( ) ( )y 0 2; y 0 6′= − = .  
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