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2.1 Basic concepts, definitions, notations and classification

Differential equation

Engineering design focuses on the use of models in developing predictions of
natural phenomena. These models are developed by determining relationships
between key parameters of the problem. Usually, it is difficult to find
immediately the functional dependence between needed quantities in the model;
at the same time, often, it is easy to establish relationships for the rates of
change of these quantities using empirical laws. For example, in heat transfer,
directional heat flux is proportional to the temperature gradient (Fourier’s Law)

9=k dx
where the coefficient of proportionality is called the coefficient of conductivity.
Also, during light propagation in the absorbing media, the rate of change of
intensity / with distance is proportional to itself (Lambert’s Law)

@y

ds
where the coefficient of proportionality is called the absorptivity of the media.

In another example, if we are asked to derive the path x(t) of a particle of mass
m moving under a given time-dependent force f (t), it is not easy to find it

directly, however, Newton’s second law (acceleration is proportional to the
force) gives a differential equation describing this motion.
d*x(t)
m———>= f(¢
The solution of which gives an opportunity to establish the dependence of path
on the acting force.

The basic approach to deriving models is to apply conservation laws and
empirical relations for control volumes. In most cases, the governing equation
for a physical model can be derived in the form of a differential equation. The
governing equations with one independent variable are called ordinary
differential equations. Because of this, we will study the methods of solution of
differential equations.

Definition 1 A differential equation is an equation, which includes at least
one derivative of an unknown function.

X

Example I: a) dy_(x) + 2xy(x) =e

dx
b) y(y") +y =sinx
0 82u()§,y)+62u()§,y):0
Ox oy
d) F(x,y,y',...,y(")):O

o) 62u(326,t) _y du(x,z) _0
ox Ox

If a differential equation (DE) only contains unknown functions of one variable
and, consequently, only the ordinary derivatives of unknown functions, then this
equation is said to be an ordinary differential equation (ODE); in a case where
other variables are included in the differential equation, but not the derivatives
with respect to these variables, the equation can again be treated as an ordinary
differential equation in which other variables are considered to be parameters.
Equations with partial derivatives are called partial differential equations
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Differential operator D

Order of DE

Linear operator

Linear and non-linear DE

(PDE). In Example 1, equations a),b) and d) are ODE’s, and equation ¢) is a
PDE; equation e) can be considered an ordinary differential equation with the
parameter f .

It is often convenient to use a special notation when dealing with differential
equations. This notation called differential operators, transforms

functions into the associated derivatives. Consecutive application of the
operator D transforms a differentiable function f(x) into its derivatives of

different orders:

w@:%@ D:f—>f'
D2f00=9i£¥9 D> f - f"

A single operator notation D can be used for application of combinations of
operators; for example, the operator

D=aD" +bD
implies

Df(x)= aD"f(x)+bDf(x): a d;j:fx)+b df:{ix)

The order of DE is the order of the highest derivative in the DE. It can be
reflected as an index in the notation of the differential operator as

D, =aD* +bD+c
Then a differential equation of second order with this operator can be written in
the compact form

D,y=F (x)
A differential operator D, is linear if its application to a linear combination of
n times differentiable functions f(x) and g(x) yields a linear combination

D,(of +/&)=aD,f+/D,g. a.feR
The most general form of a linear operator of n” order may be written as
L =a, (x)D” +a, (x)D”'1 +ta, (x)D +a, (x)

where the coefficients 4, (x) e C(R) are continuous functions.

A DE is said to be linear, if the differential operator defining this equation is
linear. This occurs when unknown functions and their derivatives appear as
DE’s of the first degree and not as products of functions combinations of other

functions. A linear DE does not include terms, for example, like the following:
2

r\3 '
v, 0, w', In(y), ete.
If they do, they are referred to as non-linear DE’s.

A linear ODE of the 7 order has the form
L,y(x)= ay (x)y " () +a, (" @)+ a (1) (6) +a, ()ylx) = F(x)
where the coefficients a,(x) and function F(x) are, usually, continuous

functions. The most general form of an n” order non-linear ODE can be
formally written as

Fle,yo v y)=0
which does not necessarily explicitly include the variable x and unknown
function y with all its derivatives of order less than 7.

A homogeneous linear ODE includes only terms with unknown functions:

L, y(x) =0
A non-homogeneous linear ODE involves a free term (in general, a function of
an independent variable):
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Solution of DE

L,y(x)=F(x)
A normal form of an n” order ODE is written explicitly for the n” derivative:

y(n) - f(X, y,y',..-,y(’kl))

Definition 2 Any n times differentiable function y(x) which satisfies a DE

F(x, y,y',...,y(”)): 0
is called a solution of the DE, i.e. substitution of function
y(x) into the DE yields an identity.

“Satisfies” means that substitution of the solution into the equation turns it into
an identity. This definition is constructive — we can use it as a trial method for
finding a solution (guess a form of a solution (which in modern mathematics is
often called ansatz), substitute it into the equation and force the equation to be
an identity).

Example 2: Consider the ODE y'+y=0 on xel= (— %0,00)

Look for a solution in the form y =e®
Substitution into the equation yields
ae™ +e" =0
(@+1)e™ =0  divide by ™ >0
a+1=0 = a=-1
Therefore, the solutionis y=¢ .

But this solution is not necessarily a unique solution of the
ODE.

The Solution of the ODE may be given by an explicit expression like in example
2 called the explicit solution; or by an implicit function (called the implicit
solution integral of the differential equation)

glx,y)=0
If the solution is given by a zero function y(x)=0, then it is called to be a
trivial solution. Note, that the ODE in example 2 posses also a trivial solution.

The complete solution of a DE is a set of all its solutions.

The general solution of an ODE is a solution which includes parameters, and
variation of these parameters yields a complete solution.

Thus, {y =ce ", ce R} is a complete solution of the ODE in example 2.

The general solution of an #n™ order ODE includes 7 independent parameters and
symbolically can be written as

g(x,y, Clyeeer C) )= 0
The particular solution is any individual solution of the ODE. It can be
obtained from a general solution with particular values of parameters. For

X

example, e " is a particular solution of the ODE in example 2 with ¢ =1.

A solution curve is a graph of an explicit particular solution. An integral
curve is defined by an implicit particular solution.

Example 3: The differential equation
w'=1
has a general solution
2

L —xie
2

The integral curves are implicit graphs of the general solution for different
values of the parameter ¢
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Initial Value Problem

Boundary Value Problem

Types of Boundary Conditions
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To get a particular solution which describes the specified engineering model, the
initial or boundary conditions for the differential equation should be set.

An initial value problem (IVP) is a requirement to find a solution of n” order
ODE

F(x,y,y',...,y(”)): 0 for xel/cR
subject to 7 conditions on the solution y(x) and its derivatives up to order n-1
specified at one point x, €/ :

Y (xo ) =Y

Y ’(xo ) =M

y("’l) (xo ): Y
where y,,y,,...,v,_, €R.

In a boundary value problem (BVP), the values of the unknown function and/or
its derivatives are specified at the boundaries of the domain (end points of the
interval (possibly o0 )).

For example, find the solution of y"+y=x” on x e [a,b]
satisfying boundary conditions:
va)=y,
)’(b ) =W

where y,,», e R

The solution of IVP’s or BVP’s consists of determining parameters in the
general solution of a DE for which the particular solution satisfies specified
initial or boundary conditions.

1) a boundary condition of the I* kind (Dirichlet boundary condition) specifies
the value of the unknown function at the boundary x=L:

=/
x=L
II) a boundary condition of the " kind (Neumann boundary condition)

specifies the value of the derivative of the unknown function at the boundary
x =L (flux):

u

du
dx x=L - f
IIT) a boundary condition of the III" kind (Robin boundary condition or mixed
boundary condition) specifies the value of the combination of the unknown

function with its derivative at the boundary x =L (a convective type boundary

condition)
{k du + hu}
dx

Ird

=/

x=L
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Uniqueness of solution

Boundary value problems can be well-posed or ill-posed.

The solution of an ODE is unique at the point (xo, yo), if for all values of

parameters in the general solution, there is only one integral curve which goes
through this point. Such a point where the solution is not unique or does not
exist is called a singular point.

The question of the existence and uniqueness of the solution of an ODE is very
important for mathematical modeling in engineering. In some cases, it is
possible to give a general answer to this question (as in the case of the first order
ODE in the next section.)

Example 4: a) The general solution of the ODE in Example 2 is
{y =ce ",ce R}

There exists a unique solution at any point in the plane

i

b) Consider the ODE xy'—2y =0
The general solution of this equation is { y=cx’,ce R}

(0,0) is a singular point for this ODE
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2.2 First order ODE

normal form

standard differential form

Initial Value Problem

Picard’s Theorem

In this section we will consider the first order ODE, the general form of which
is given by

F(x,3,5)=0
This equation may be linear or non-linear, but we restrict ourselves mostly to
equations which can be written in normal form (solved with respect to the
derivative of the unknown function):

y'=f(x,y)
or in the standard differential form:
M (x, y)dx + N(x, y)dy =0

Note that the equation in standard form can be easily transformed to normal
form and vice versa. If the equation initially was given in general form, then
during transformation to normal or standard form operations (like division or
root extraction) can eliminate some solutions, which are called suppressed
solutions. Therefore, later we need to check for suppressed solutions.

In an initial value problem (IVP) for a first order ODE, it is required to find a
solution of
F(x,y,y')=0 for xelcR

subject to the initial condition at x, € :
J’(xo):)%s Yy €R
Boundary value problems will differ only by fixing x, at the boundary of the

region 1.

The question of existence and uniqueness of the solution of an IVP for the first
order ODE can be given in the form of sufficient conditions for equations in
normal form by Picard’s Theorem:

Theorem (existence and uniqueness of the solution of IVP)
Let the domain R be a closed rectangle centered at the point

(xo, yo)e R* :
R= {(er’) eR’ .'|x—x0| < a’|y_J’0| < b}
and let the function f'(x, ) be continuous and continuously
differentiable in terms of the y function in the domain R:
flx.y)eClr]
f, (x,y) € C[R]
and let the function f(x,y) be bounded in R:
|f(x,yl <M for (x,y)e R.
Then the initial value problem
V= fxy)
Y (xo ) =Y
has a unique solution y(x) in the interval

e —minla, >
I—{x.|x x0|Sh}, where h—mln{a,M}

The proof of Picard’s theorem will be given in the following chapters; it also can
be found in Hartmann [ ], Perco [ ] etc. and it is based on Picard’s successful
approximations to the solution of IVP which we will consider later. This
theorem guarantees that under given conditions there exists a unique solution of
the IVP, but it does not claim that the solution does not exist if conditions of the
theorem are violated. Now we will consider the most important methods of
solution of the first order ODE
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2.2.1 Exact ODE

Consider a first order ODE written in the standard differential form:

M(x,y)dx+N(x,y)dy =0, (x,y)e DR’ (1)
If there exists a differentiable function f (x, y) such that
of (x,
fgx ») — M(x, ) )
(5.0
o x,y
=N(x,y 3)
) ()

for all (x,y)e D, then the left hand side of the equation is an exact differential
of this function, namely

exact differential df = Zldx + Zldy = M(x, y)dx + N(x, y)dy
29 4

and the function f (x, y) satisfying conditions (2) and (3) is said to be a

potential function for equation (1). The equation in this case is called to be an
exact differential equation, which can be written as

df(x,7)=0 @)

direct integration of which yields a general solution of equation (1):

fley)=c (5)

where ¢ € R is a constant of integration. The solution given implicitly defines
integral curves of the ODE or the level curves of function f/(x, y).

Example 1 The First order ODE 3x’dx+2ydy =0 is an exact equation
with the general solution f(x,y)=x’+y’=c. Then the

integral curves of this equation are

To recognize that a differential equation is an exact equation we can use a test
given by the following theorem:

Test on exact differential Theorem I (Euler, 1739)
Let functions M(x, y) and N(x,y) be continuously

differentiable on D — R?, then the differential form
M (x, y)dx + N(x, y)dy (6)
is an exact differential if and only if

au _ov

ay —a— in DCRZ (7)
X

Proof: 1) Suppose that the differential form is exact. According to definition, it
means that there exists a function f(x,y) such that M =M(x,y) and

Ox
M =N (x, y). Then differentiating the first of these equations with respect

oy
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Ofry)_aM(xy)

to y and the second one with respect to x, we get
Ox0y oy

0 f(x,y) _ oN(x,y)

. Since the left hand sides of these equations are the same,

Ox0y Ox
it follows thataﬂ = 8_N
oy  Ox
2) Suppose now that the condition %—M:%—N holds for all (x, y)cD.
y x

To show that there exists a function f° (x, y) which produces an exact differential
of the form (6), we will construct such a function. The same approach is used
for finding a solution of an exact equation.

We are looking for a function f (x, y), the differential form (6) of which is

an exact differential. Then this function should satisfy conditions (2) and (3).
Take the first of these conditions:

M:M(x,J’)

Ox
and integrate it formally over variable x, treating y as a constant, then
S y)= [ M(x,y)x + k(y) ®)

where the constant of integration depends on y. Differentiate this equation with
respect to y and set it equal to condition (3):

6fg;,y)= % [M(x, y)dx+%yy) = N(x,y)

Rearrange the equation as shown

%yy): N(x,y)—%.[M(x,y)dx

Then integration over the variable y yields:
0
KO)=]| M) [t b

Substitute this result into equation (8) instead of k(y)

fley)= J'M(x, y)dx + I|:N(x, y)- %jM(x, y)dx}dy +¢ 9

To show that this function satisfies conditions (2) and (3), differentiate it with
respect to x and y and use condition (7). Therefore, differential form (6) is an
exact differential of the function f (x, y) constructed in equation (9).

The other form of the function f(x,y) can be obtained if we start first with
condition (3) instead of condition (2):

705)= [N by | o) 2 Vs shis e, o)

Note, that condition (7) was not used for construction of functions (9) or (10),
we applied it only to show that form (6) is an exact differential of these
functions. |

Then according to equation (5), a general solution of exact equation is given by
an implicit equations:

f(x,y) = JM(x,y)dx+J.[N(x,y)—%IM(x,y)dx}dy =c (1D

or f(x,y):J.N(x,y)dy+J.{M(x,y)—8—i.|.N(x,y)dx}dx:c (12)
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The other form of the general solution can be obtained by constructing a
function with help of a definite integration involving an arbitrary point (xo, yo)

in the region D c R’ :

f(x,y):TM(t,y)dt+jiN(x0,t t=c (13)
f(x,y):JEM(t,yo)dt+er(x,t)dt:c (14)

Formulas (1) and (12) or (13) and (14) are equivalent — they should produce the
same solution set of differential equation (1), but actual integration may be more
convenient for one of them.

Example 2 Find a complete solution of the following equation
By +x)dx+ (v +3x)dy =0
Test for exactness:
M ON Lo
oM =3 —=3 = the equation is exact
Oy Ox
We can apply eqns. 11-14, but in practice, usually, it is more convenient to use
the same steps to find the function f (x, y) as in the derivation of the solution.

Start with one of the conditions for the exact differential

%:M(x,y)=(3y+x)

Integrate it over x, treating y as a parameter (this produces a constant of

integration k() dependingon y)

2
X
f(xy)= 3yx+7+k(y)
Use the second condition for the exact differential

of (x,
—f(a);y) =N(x,y) =3x+y

=3x+y

neglecting the constant of integration. The function is completely determined
and the solution of the ODE is given by

2 2

f(x,y)ESyx+x7+y7:c

or we can rewrite it as a general solution given by the implicit equation:
General solution:

x4+ 6xy+y =0
Solution curves:
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Note that at the point (0,0) the solution is not unique.

Where also conditions of Picard’s theorem are violated?
The solution with help from equation 13:
Choose x, =0, y, =0, then

f(xy) =E(3y+t)dt+i(0+t)dt =c

cl (2T
{3yt+—} +{—} =c
2 0 2 0

2 2

y
3yx+—+—=c
AT

This is the same solution as in the first approach.

2.2.2 Equations Reducible to Exact - Integrating Factor

Integrating factor

In general, non-exact equations, which possess a solution, can be transformed to
exact equations after multiplication by some nonzero function ,u(x, y) , which is

called an integrating factor (existence of the integral factor was proved by
Euler).

Theorem 2 The function (x, y) is an integrating factor of the differential
equation M (x, y)dx+ N(x,y)dy =0 if and only if ,u(x, )
satisfies the partial differential equation

w01 o [8N an

ox Oy

_NZE -
oy ox

Proof: as an exercise |

But it is not always easy to find this integrating factor. There are several special
cases for which the integrating factor can be determined:

1) M _oN =0 The test for exactness. The integrating factor
oy Ox
,u(x, y) =1
oM _oN
oy Ox . . .
2) N f(x) The test for exactness fails but the given

ratio is a function of x only. Then the
integrating factor is

'u(x) _ eJ‘f(x)dX
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oM ON
RS
3) yT = g(y) The test for exactness fails but the given
ratio is a function of y only. Then the
integrating factor is
g(v)dy
()=
am_an
o o _ h(xy) The test for exactness fails but the given
yN —xM
ratio is a function of the product of x and
y . Then the integrating factor is
plx, y)= [ h(xy) (xy)
[aM . aNj
0 Ox
5) i _yips The test for exactness fails but the given
xM + yN x
ratio is a function of the ratio — . Then the
y
integrating factor is
Y Y
oI
x) \x
M M
6) (/?.x /1y) = (x, b4 ) The functions M and N are homogeneous
N(ax,2y)  N(xy)

functions of the same degree (see section).
Then the integrating factor is

1
“e)= G

providing xM + yN # 0.

Example 3 Find a complete solution of the following equation
(x+y2)dx—2xydy =0
Test for exactness:
oM ON .
— =2y —=-2y = equation 1S not exact
oy Ox

test for integrating factor:
oM ON

Q ox  2y—(-2y) -2
N —2xy x

=f (X) = int.factor by Eq. 2
,U(x): eJ‘f(X)dx _ e*ZJ‘édx _ e*Zlnx _ elnxil _ L

de—gdy:0

2

8 2 [ 2 2
i=x+2y =+ o pemp-Ek
Oox X X x X

o __ 2y, Ok _2y
oy x Oy x

k=c
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Solution with Maple:

General solution:

‘ ~

_y_+[n|x|:c = cx=e*~
X

Is x =0 a suppressed solution: (x +y’ )%— 2xy =0 (yes)
Ly

[lustration of this problem with Maple:

>restart;

>with (plots):
>f'={seq(log(abs(x))—y"2/x=i i=-10..10)}:
>implicitplot(f,x=1..1,y=2..2,numpoints=6000) ;

> restart;
>with (DEtools) :
>DE:=diff (y(t),t) *2*y (t) *t=y (t) *2+t;

DE =2 (;y(t)j y(t)t=y(t)* +1¢

>s:=dsolve (DE,y(t)) ;

s=y(t)=y/tIn(t)+t_CI,y(t)=—tIn(t)+t_CI

>restart;
>q:={seq(y(t)*2=t*1ln(abs(t))+t*i/4,i=-8..8)}:
>with (plots):
>implicitplot(q,t=-10..10,y=2..2,numpoints=5000) ;
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Supressed solutions If the given differential equation is reduced to standard differential form
M(x, y)dx + N(x, y)dy =0
with some algebraic operations, then zeros of the expressions involved in
division can be solutions of the differential equation not included in the general
solution. Such lost solutions are called suppressed solutions. If such
operations were applied for the transformation of the differential equation, then
the equation has to be checked for suppressed solutions.

To check if y =a is a suppressed solution of Eq. 1, reduce the differential
equation to normal form with y as a dependent variable

dy _-M(x.y)

dx  N(x,y)
and substitute y=a.

To check if x =b is a suppressed solution of Eq. 1, reduce the differential

equation to normal form with x as a dependent variable
dx —-N (x, y)
dv - Mlx.y)

and substitute x =b.

Then the suppressed solutions should be added to the general solution.
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Solid Geometry
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2.2.3 Separable equations

Separable equation Definition 1 A differential equation of the first order is called separable if
it can be written in the following standard differential form:

M, ()M, (y)dx+ N, (x)N, (y)dy = 0 (1)

where M, (x), N,(x) are functions of the variable x only and

M, (y), N, (y) are functions of the variable y only.

Assuming that N,(x)#0 and M,(y)=0 for all x and y in the range, variables

in equation (1) can be separated by division with M, (y)N,(x):
MI(X)dX'FNZ(y)dy:O (2)
N, (x ) M, (y )

Then equation (2) can be formally integrated to obtain a general solution:

I i ®

where ¢ € R is an arbitrary constant.
Note, that separated equation (2) is exact - it can be obtained from equation (1)
1

N, (M, (v)

by multiplication by the integrating factor u= ; the potential

function for this equation

5 Ly

Which yields the same general solution f (x, y) =c.

dy

Because of division by M,(y)N,(x), some solutions can be lost; therefore,
equations should be checked for suppressed solutions. If x =x,, where x, € R
belongs to the domain and is a root of N,(x)=0, then the function x=x, is
obviously a solution of differential equation (1). Similarly, if y =y, is a real
root of M, (y)zO, then the function y =y, is also a solution. They both
should be added to the general solution (3).

Example I: Find a general solution of the following ODE:
xyy’+(y2+1)lnx:O, x>0
xydy + (y2 + l)ln xdx =0
In x y

—dx+—
x yo+1

dy=0

(ln x)2 + ln(y2 + 1): c no suppressed solutions
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Example 6

Solution:

Find a solution of the following ODE:
(xz —4)y'—xcoty =0

Separate variables:

xdx
—tan ydy =0
e yay

Integrate:

ln(cos y)2 +ln|x2 —4| =lnc

General solution:

(x2 —4)cos2 y=c

Check for suppressed solutions:

V4 .
y= > +nrx are suppressed solutions.

x ==2 are solutions of (xz - 4)-1— (x tan y)? =0
Ly

if independent and dependent variables are reversed.

Then the family of solution curves is represented by
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2.2.4 Homogeneous Equations
In this section, we will study a type of equations which can be reduced to a

separable equation or to an exact equation.

Homogeneous function Definition 1 Function M (x, y) is homogeneous of degree 7, if

M(Ax, Ay)=A"M(x,y) forany AeR, 1>0

It means that after replacing x by Ax and y by Ay in the function M (x, y),

the parameter A" can be factored from the expression.

Examples 1.
a) Homogeneous function of degree zero.

Let M(x,y)= % , then

Ax-Ay  x-y
Ax+Ay  x+y

M(Jx, ly)z = lOM(x,y): M(x,y) for A>0

Therefore, M (x, y) is homogeneous of degree zero.
If we divide the numerator and the denominator by x, then

;Y
M(x,y)=—2=
1+

X

and we see that the function M (x, y) depends on a single variable 2
x

It appears to be a fact for zero degree homogeneous functions:
the function M (x, y) is homogeneous of degree zero if and only if it depends

on a single variable z [Goode, p.62]:
X

M(x,y)=f(lj

X

b) A more general fact: homogeneous functions of degree  can be written as

M (s, y):f(lj or

X
X
V'M(x,y =g[—J
(v2)=4|
i x>0
X

To show it, choose parameters of the form A =

— x<0
X

¢) Consider M(x,y)=+/y’ —x’y . Test on homogeneity yields

M(ax, ) =~/() =(x) Ay = 27y =x?y = AP M(x, y)

Therefore, the given function is homogeneous of degree 3/2 .
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Homogeneous equation

Reduction to separable

Definition 2 A Differential equation written in standard differential form

M (x, y)dx+N(x, y)dy =0
is called a homogeneous differential equation if functions
M (x, y) and N (x, y) are homogeneous of the same degree r.

If the equation written in standard differential form

M(x, y)dx + N(x, y)dy =0
is homogeneous, then it can be reduced to a separable differential equation by
the change of variable:

y=ux dy = xdu +udx
or

x=vy dx =vdy + ydv
Both approaches are equivalent, just because in standard differential form the
variables are equivalent. But actual integration of the equation may be more
convenient with one of them.
Justification: First apply the substitution to the differential equation y = ux

M (x, ux )dx + N(x, ux)xdu + N(x, ux udx = 0
and divide it formally by N (x,wx )dx

M

)

N (x, ux) dx
If the differential equation is homogeneous then the functions M (x, y) and
N (x, y) are homogeneous of the same degree r and, according to Example 1b),
can be written as

M(x,y)=x" fj(fj:x"fz(u)

r y r
N(x,y)=x fz(;):x 1 (u)
Substitute them into the previous equation, then

f](u)+xﬂ+u:0

/> (”) dx

Now variables can be separated
dx du

fz(”)

Formally this equation can be integrated to a general solution

du
ln|x|+JW:c
folw) ™

where c is a constant of integration. The solution of the original equation can be

obtained by back substitution u = Ry
X

Example 2: Solve the differential equation
(yz +2x° )dx+xydy =0

M and N are homogeneous functions of degree 2.
Use change of variable:
y=ux dy = xdu + udx

(u2x2 +2x2)dx+xux(xdu+udx)= 0
(uzxz +2x7 +u2x2)dx+ux3du =0

2x2(u2+1 x+ux’du =0 separable
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2ﬂ+ uclu =0

x ul+l
2@4.1@:0

x 2 ul+l
Inx’ + ln(u ! ) =lnc general solution

x* (u ‘4] ) =c backsubstitution

x=0 is also a solution

>f:={seq(x"2* (y*"2+x~2)=1/8,1=0..12) }:
>implicitplot(f,x=-2..2,y=-5..5);

w =
i -
.-5’;-’.-"-':.;_."7}/ - f'-".-"d
.f’:;:“.fr.-".-’: Sy .
"'\\
RN

\

\

by

&.ﬁ l". _,!4 J
i

Reduction of homogeneous differential equation to a separable equation by
transition to polar coordinates. This method is convenient when the solution is
represented by complicated transcendental functions which are more suitable for
representation in polar coordinates (ellipses, spirals, etc).

Conversion formulas from Cartesian to polar coordinates:

2 2 2
x=rcos@ x"+y =r

y=rsind L~ tano

X
dx =@dr+ﬁd6 = cos 6dr —r sin 6d 0
or 00
dy :a—ydr+2d0 =sin@dr +r cos 646
or o
Example 3: Solve the differential equation

(x—2y)dy = (2x = y)dx=0

It is a homogeneous equation of order /.
Reduce it to a separable equation by transition to polar
coordinates:

(y—2x)dx+(x=2y)dy =0



Chapter 2 Ordinary Differential Equations

(r sin @ — 2r cos 6\ cos 6dr — r sin 8d6)+(r cos 6 — 2r sin O \sin @dr + r cos Gd60) = 0

2(sin 0 cos @ — 1)dr + r(cos >0 -sin’ H)a’H =0 separable equation
29 a2
Zﬂ+!cos 6 —sin 6!d9=0
r sin@cos @ —1
2£+ d(1-sin @ cos 0) -0
r 1—sin6cos @
In" + ln|] —sin @ cos 49| =lnc general solution
c . L
= ——— equation of ellipse in

VI1—sinfcos @

polar coordinates

>f:={seq(i/sqrt(l-sin(r) *cos(r)) ,i=0..4)}:
>polarplot(f,r=0..2*Pi,y=-5..5);

-

)

Homogeneous functions in R"  Definition 3 A real valued function f (x) :R" > R defined in R”

is called homogeneous of degree r, if
fx)=2"f(x) 1eR, 21>0

Theorem 1 (Euler)
Suppose U cR" is a region in R" and the function
f :U — R homogeneous of degree r, then

x-VfEx]af—(x)—i----+xn ag_(x):rf(x)
X

X

n

Proof: Consider an identity following from the definition of the
homogeneous function of degree r

S x)
X)=—=
Sx)==2
Differentiate it with respect to the parameter A, using the
chain rule

0=—rA"" f(Ar)+ 27" x-Vf(Ax)
Choose A =1, then
0=—rf(r)+x-Vf(x)

from which follows the claimed result. [ |
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2.2.5 Linear 1* order ODE

Standard form

Initial value problem

General solution

The properties of a linear ODE of an arbitrary order will be established later.

The general form of the first order linear differential equation is given by:
LlyEaO(x)y’-'_al(x)y:f(x) xeDcR (1

We can rewrite this equation in the standard form, if we divide it by a,(x)

Lal) ) ()0

Then for simplicity, coefficients may be renamed, and the equation becomes

y’+P(x)y = Q(x) where P(x): Z; 83 and Q(x): ;; ((’;)) )

For the first order o.d.c., an initial value problem (IVP) is formulated in the
following way:

Solve the equation y'+ P(x)y = O(x)
subject to the condition y(x,)=v,, x,€D

In other words, we need to find a particular solution of differential equation (2)
which goes through the given point(x(,, Vo ) € R’. Picard’s Theorem established

conditions for existence and uniqueness of the solution of the IVP.
We will try to find a solution of the linear equation with a help from the methods

which we have already studied (integrating factor) and to do that, we transform
equation (2) into standard differential form

[P(x)y = Q(x)ldx +dy =0 3)
from which we can identify the coefficients of the standard differential form as
M(x,y)=P(x)y - O(x) and N(x,y)=1

Check this equation for exactness:

¢=——-——=P(x), if P(x)#0 then the equation is not exact.
dy Ox
From the test for an integrating factor

¢

W:P(x) (function of x only), it follows that the integrating factor is

determined by the equation

P(x)dx
ulx)=el )
Multiplication of our equation by the integrating factor y(x) transforms it to an
exact equation

plaP(x)y ~ Olx)ldx + u(x)dy = 0 (5)

Following the known procedure, we can find a function f (x,y) for which
differential form (5) is an exact differential:
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general solution

Solution of IVP

2—]; =ulx)Px)y-0kx)] = f= J.,u(x)[P(x)y —O(x)x + k(y)

g:ij ()[P(x)y Q( )}1)“‘]"()’):#(95)

oy Oy

Iu x)dﬂk(y) wlx)
jﬂ(x)p )i
j,u(x ydx
f =Iﬂ [P )y = O(x)lix + k()
/= I ple [ P(x)y = O )b + px)y — [ pa()P(x)yedx
—f,u (x)0(x
X)y - I#(X)Q(X)dx =c

Solving this equation with respect to y, we end up with the following general
solution (division by ,u(x) is permitted because ,u(x) is an exponential function

and never equals zero):

v =cu (x)+ 57 (x)] plx)o(hx ©)

We see that the solution of a first order linear differential equation is given
explicitly and may be obtained with this formula provided that integration can
be performed.

The same result may be obtained, if we show first that the differential equation
multiplied by the integrating factor may be written in the form

d

—— ()= uQ

dx

then after direct integration (from inspection, wy is a function of x only) we end

up with the same general solution.

In a case of an equation with constant coefficients, the integrating factor may be
evaluated explicitly

'u(x) _ eJ‘P(x)obc _ eJ‘adx _ e“X

And the solution becomes

y=ce “ + e"”je‘”‘Q(xﬁx @)

Using initial condition y(xo): ¥, » we can determine the constant of integration

directly from the general solution.
In another more formal approach, we can check by inspection that

y = youle)u () 1 ()] )l ®)

is a solution satisfying the initial condition.
For an equation with constant coefficients, the solution of the IVP is given by

y=y,e “"Ie ©)

X
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Example 1

Solution:

First order linear o.d.e. with variable coefficients

Find a general solution of equation
' +(cot x)y = sin 2x
and sketch the solution curves.

The integrating factor for this equation is

J.cotxdx Insin x| :
—e =sinx

plx)=e

then a general solution is

= 4 ! J.sin(x)sin(Zx)dx

sinx Sinx

c
= . + .
sinx  sinx

jsin(x)sin(x)cos(x)dx

=< 4 2 Isinz(x)fsin(x)

sinx sinx

¢ 2sin’x
+

sinx 3

In Maple, create a sequence of particular solutions by varying the
constant ¢, and then plot the graph of solution curves:

>y (x) :=2*sin(x)*2/3+c/sin(x) ;

=2 Gn(x)?
y(x) = 3 sin(x)” + sin(x)
> f:={seq(subs(c=i/4,y(x)) ,1i=-20..20)}:

>plot (f,x=-2%Pi..2*Pi,y=-5..5);

5

a

b e sl 4

X =
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Example 2 An Initial value problem for an equation with constant coefficients
Solve the equation

y'+y=sinx  subject to the initial condition:
Wo)=1

Solution: Applying equation (9), we obtain the solution of the IVP:

X

y = yoeu(x—x(,) +e® .[eaxQ(x)dx

Xo

X
=e' + efxvfex sin(x)dx
0

X

N A I .
=e'+e | —+—e'sinx——e cosx
2 2 2

SinX —Cos x
+—

2

Use Maple to sketch the graph of the solution:
>y := exp(x)+exp(-x)/2+(sin(x)-cos(x))/2;

R N D |
yi=e +2e +2sm(x) 2cos(x)

>plot(y,x=-1..1,color=black);
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2.2.6 Special Equations

1. Bernoulli Equation

Some first order non-linear ODE’s which do not fall into one of the
abovementioned types can be solved with the help of special substitution.
These equations arise as a mathematical model of specific physical phenomena,
and they carry the names of mathematicians who first investigated these
problems.

Definition 1 The differential equation which can be written in the form

v+ P(x)y = O(x)y" (1)

where n € R is a real number is called a Bernoulli equation.

If n=0 or n=I, then the equation is linear and it can be solved by a
corresponding method, otherwise the Bernoulli equation is a non-linear
differential equation.
By the change of dependent variable

1

y=z @
The non-linear Bernoulli equation (7 # / ) can be reduced to a linear first order
ODE. Indeed, the derivative of the function y can be expressed as

1 1 n
Q:i ZI—n — ] ZI—n Iéz ] Z[—nZI (3)
dx dx I-n dx I-n

Substitution of (2) and (3) into equation (1) yields

n 1 n
! g+ P(x)zE = Q(x)zE
I1—-n

Dividing this equation by z and multiplying by /—n, we end up with

2+ (1= n)Plx)z = (1-n)O(x) )

Equation (4) is a linear ODE, the general solution of which can be found with a
known method (see section 4). Then solution of the Bernoulli equation is
determined by back substitution

Z:ylfn (5)
It is easy to see that the Bernoulli equation possesses also a trivial solution
y =0 when n is positive.

Example 1 Bernoulli equation

Find a general solution of the equation
2
V'+y=xy’
1

1-2/3

1
Solution: Use a change of variable y =z!™" =z =z’ which yields a linear

equation
, 1 X
Z+—z=—
3
.

The integrating factor for this equation is u = e?, and then the general solution
is
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2. Ricatti equation

oo Xy -
z=ce’ +e’ Je3§dx =ce? +x-3
Back substitution results in the general solution of the initial equation
1 —X
z=y3=ce? +x-3
or in explicit form, the general solution is determined by the following equation

I 3
y:(ce3+x—3J

One more solution of the given equation is a trivial solution y =0 .

Use Maple to sketch the solution curves:

>y (x) :=(c*exp (-x/3)+x-3) *3;
3
—1/3x)
y(x) ::(ce( ! +x-3)
> f:={seq(subs(c=i/4,y(x)) ,i=-16..16)}:
>plot(f,x=-5..6,y=-5..10,color=black) ;

Definition 2 A differential equation which can be written in the form

y'=P(x)y* + O(x)y + R(x) (6)

is called a Ricatti equation.

If one particular solution of Ricatti equation is known, then as it was first shown
by Euler, it can be reduced to a first order linear ODE:

Theorem 1 Suppose that P(x), Q(x), R(x) €C[D], DeR are continuous
functions on D. Then if the function u(x) , x€ D is asolution
of the Ricatti equation (6) in D, then the substitution

1
y(x):u(x)+m (7)

for all xeD for which z(x)#0 transforms the Ricatti
equation (6) into the first order ODE:

2/ +[2P(xu(x)+ O(x)lz + P(x)=0 (8)

Proof: Suppose the function u(x): D — R solves the Ricatti
equation, then
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and, substituting the expression on the right into the Ricatti equation, we first
obtain

w(x)- ((S)) _ p(x){u(xpfx)}z +Q(x){u(x)+fx)}+ze(x)

:p(x){uz(x)+zu(x)ﬁv;(x)}+Q(x)u(x)+g(x)$+ze(x)

which, using the fact that (because u(x) is a solution of (6))
u'(x)= Pl ()= O(xu(x) - R(x) = 0
simplifies to
0 =u ’((x))— P (x)= O(xu(x)- R(x)
_z'x+ X Julx)+ xL+ x;
- S RPb ) o+ P

Multiplication of this equation by z* (x), finally yields the claimed linear first

2/ +[2P(xu(x)+ O(x)lz + P(x)=0

order equation

Remarks: - It does not matter how simple the particular solution u(x)is;

- For an equation with constant coefficients, this particular
solution can be found as a constant (steady state solution).

By the other substitution, the Ricatti equation can be reduced to a linear ODE of
the second order:

Theorem 2 Suppose that P(x), O(x), R(x)e C[D], DeR are continuous
functions on D. Then the substitution
PO m—C ©)

Px)w(x)
forall xe D for which P(x)#0 and w(x)# 0 transforms the
Ricatti equation (4) into a second order ODE:

w'— { Plx) + Q(x)}w’ +R(x)P(x)w=0 (10)
P(x)
Proof: Differentiate equation (9)
_WW ’
' __ 7 P/ P '
y PW+(PW)2( w+ w)

B —w" Pw . (W/)2
Pw  Pw Pw’
and substitute it together with equation (9) into the Riccati
equation (4). It yields the linear equation (10)
|

Example 2 Riccati equation with a known particular solution

Find a general solution of the equation
y'=y'-2y-3

Solution: Given that the equation has two obvious particular solutions:
y=-1 and y=3
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3. Clairaut equation

Choose the first one of them for substitution (7):

y=l—1
z
Identify coefficients of the Riccati equation:
P=1
0=-1
R=-3
Then the corresponding linear equation (8) is
z'—4z=-1

The general solution of this first order linear ODE is
c 1
z=ce”™ +e”* I e (= 1)dx = ce™ +Z

Then the solution of the given Riccati equation becomes
1 1

z
ce’ + =

Use Maple to sketch the solution curves:

>p:={seq(l/(i*exp(4*x)/2+1/4)-1,i=-20..20) }:
>plot(p,x=-2..1,y=-4..8,color=black,discont=true) ;

|I||III|I @
|:':IIII:|I
y=3
2 1
y=-1
t4
Special case of Riccati equation [Walas, p.13]
Definition 3 A differential equation which can be written in the form
y=x'+ 1) (1)

is called a Clairaut equation.

The general solution of a Clairaut equation is given by:

y:cx+f(c) (12)

This can be confirmed by a direct substitution into the Clairaut equation.

The Clairaut equation additionally may include a particular solution given in
parametric form:

x==/"(t)
y=r0)-1"0) (13)
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4. Lagrange equation

Example 3

Solve

y=x'-()

This equation belongs to the Clairaut type. Therefore, the
general solution of the equation is given by the one-parameter
family

2
y=cx—c

Check if the parametric solution (13) is also a solution of this
equation:

x=2t

y=—t'+2t° =t

Which can be reduced to an explicit equation by the solution
of the first equation for ¢ and substitution into the second
equation:

2
X

—
This solution defines a (limiting curve) for the family of

curves from the general solution:

>p:={seq(c*x-c*2,c=-20..20)}:

>gl:
>g2:

=plot(p,x=-10..10,y=-10..20,color=red) :
=plot (x*2/4,x=-10..10,y=10..20,color=blue):

>display({gl,g2});

Definition 4

A differential equation which can be written in the form

y=xg(y)+ () (14)

is called a Lagrange equation.

Note, that the Clairaut equation is a particular case of a
Lagrange equation when g(y')=y" .

Apply the substitution ~ v=y’
YZXg(V)+f(v) (15)
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Differentiate the equation w.r.tx  y'=v= g(v)—i— xg'(v)%+ f'(v)ﬂ

dx
Solve this equation for & v __ v-g (V)
dx dx  xg'(v)+f'(v)
Invert the variables: dx _ xg (v)+/'(v)
dv V- g(v)

This equation is a linear equation for x(v) as a function of an independent
variable v

& _gb) )

dv v—glv)" v-glv)
The general solution can be obtained by integration to determine

x=F(v,c), ceR (16)
To determine a general solution of the Lagrange equation (14), use equation (15)
to eliminate v (if possible) from equation (16) to get

o(x,v,¢)=0 (17)
Othervise, the variable v can be used as a parameter in the parametric solution

organized from equation (16) and equation (15) which is replaced from
equation (16):

x=F(v,c) ceR
y= F(v, c)g(v)+f(v) veZ (18)

Example 5 Lagrange equation

2
Find a general solution of y= Zxd—y— (ﬂj
dx \dx

General solution:
(7xy -3¢) = y(2y +14x° )— 2x(7xy - 3c)(2y +14x° )

Plot the solution curves with Maple:

>p:={seq((7T*x*y-3*i/2)"2=y* (2*y+14*x"2) -2*x* (T*x*y-
3%i/2) * (2*y+14*x*2) i=-4..4)}:
>implicitplot(p,x=-2..2,y=-3..3,numpoints=10000,color=black) ;
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5. Equations solvable for y y=f (x, y’) (19)

This type of equations is a further generalization of Clairaut and Lagrange
equations.

’

Apply the substitution v=y
y=flx,v)

differentiate with respect to x

y'= qo[x v ﬂ) or
2 > dx
_ dv
V= w('x’ v, Ej

. . d d. .
this equation may be solvable for d_v or d_x to get a general solution
X 14

F (x, v, c) =0
Then if from the two equations

Y

Flx,v,¢)=0 (20)
v can be eliminated, then it yields an explicit general solution

y=ylxc)
and if v cannot be eliminated, then the system of equations (20) can be

considered as a parametric solution of equation (19) with parameter v for fixed
values of the constant of integration c.

Additional reading :

History of special equations: [D.Richards, p.629]
Tricky substitutions, Lagrange equation: [J.Davis, p.71]

Euler equations [Birkhoff, p.17] (1 -x’ )y’z =1-y°

(solution curves are conics)
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2.2.7 Applications of first order ODE’s

1. Orthogonal trajectories

Family of trajectories

Slope of tangent line

Orthogonal lines

There are many mathematical models of engineering processes where families
of orthogonal curves appear. The most typical are: isotherms (curves of
constant temperature) and adiabats (heat flow curves) in planar heat transfer
systems; streamlines (lines tangent to the velocity vector) and potential lines of
the incompressible flow of irrotational fluid; magnetic field ... ; level curves
and lines of steepest descent; ...

A one-parameter family of planar curves is defined, in general, by the implicit
equation

F(x,y,c)zO x,yeR’ ceR (1)
For each value of the parameter ¢, there corresponds one particular curve (a
trajectory). For example, equation

2 +xy+3y’ =¢

describes the family of ellipses shown in the figure

>g:={seq(2*x"2+x*y+3*y*2=i,i=-10..10) }:
>implicitplot(g,x=-3..3,y=-3..3,numpoints=2000,
scaling=constrained,view=[-3..3,-3.

At each point of the curve, we can define a slope or tangent line to the curve by
differentiation of equation (1) w.r.t. x and solving it for its derivative

aiF(x,y,c):O = y':f(x,y,c) )
X

Lemma (slope of orthogonal lines)

Let two lines L; and L, be defined by equations
L y=mx+b, m, #0

Ly y=m,x+b, m,#0

Then line L, is orthogonal to line L, if and only if m,=—— 3)

Proof:
Deﬁr{e two lines /, and /, which are parallel to lines L; and L, but go through
the origin, and define vectors on these lines:

l: y=mx ftl:(l,ml)

L: y=myx 52:(1’m2)

If lines L, and L, are orthogonal, then lines /, and /, are also orthogonal, and,
therefore vectors u, and u, are orthogonal. Two vectors are orthogonal if and
only if their scalar product is equal to zero:

U, U, = (l,ml )~(l,m2)= 1+mm, =0

From this equation, it follows that

1
m, = —— n
m,
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Orthogonal trajectories

Algorithm

Definition 1 (orthogonal curves)

Two curves are orthogonal at the point of intersection if the tangent lines to the
curves at this point are orthogonal

Definition 2 (orthogonal families of curves)

Two families of curves are called orthogonal families, if the curves from the
different families are orthogonal at any point of their intersection

The following algorithm can be applied for finding the family of curves F,
orthogonal to the given family of curves F; (shown with an example):

Let F,: 4y+x’+1+ce”” =0, ceR. Find the orthogonal family F,

1) Find the slope of the tangent lines to curves from F; :
Differentiate ;F] : 4y +2x+2cy'e” =0 and solve it for
X

y" (if ¢ appears in the equation, replace it by the solution of
equation E(x, y,c): 0 for c,
c= —e’z”(4y +x7+ 1))
;=X —X 3 X
22— (4y+x2 +])ezy S +4y-1

2+ce?

2) Determine the equation for the orthogonal slope as the negative reciprocals
to the previous equation:
2
+4y-1 4y 1
Xyl 4y 1

- X X X

3) Solve the differential equation (the general solution will define an orthogonal
family):

Rewrite the equation in the standard form of a linear equation
, 4 1
yt+—y=—-x
x X

Find the integrating factor
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4
—dx
1 :eJ.x — e4lnx — x4

Then the general solution is:
6

k1 1 ko x° 1
y=X—4+7IX4(;—dex=—4—?+z

x
4) Answer: F,:  4dy+x’+1+ce”’ =0 ceR
kox* 1
Feo oy=r 1 keR
YT T

Use Maple to sketch the graph of the curves (1-14e01.mws):

>restart;
>with (plots) :
>Fl:={seq(4*y+x"2+1+(i/2) *exp (2*y)=0,i=-8..8) }:
>pl:=implicitplot(Fl,x=-3..3,y=-2..2,

color=blue, scaling=constrained, numpoints=2000) :
>F2:={seq((j/2)/x"4-x"2/6+1/4=y,j=-8..8)}:
>p2:=implicitplot(F2,x=-3..3,y=-2..2,

color=red, scaling=constrained,numpoints=2000) :
>display ({pl,p2});
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2.2.8 Approximate and Numerical methods for 1* order ODE’s

1. Direction field

Consider a first order ODE written in normal form:

y'=rx) (1)
Suppose that this equation satisfies conditions of Picard’s Theorem in some
domain DcR’. Then for any point (x, y)ef)gD there exists only one
solution curve which goes through this point; and equation (1) defines the slope
of a tangent line to the solution curve at this point:
So equation (1) gives us a way to determine the direction of tangent lines to
solution curves even without solving the equation. We can use it for
visualization of the solution curves of the differential equation.
Create a grid in D as a set of points (x, y). At each point of the grid sketch a
small segment with a slope given by equation (1). The obtained picture is called
a direction field (or slope field) of the ODE. It gives us a general view on the
qualitative behavior of solution curves of the ODE.

In Maple, the direction field of an ODE is generated by the command DEplot in
the package DEtools:
>de:=diff (y(x) ,x)=2*y(x)-s*y(x)*2;

de = y(x)=2 y(x) - y(x)?

>DEplot(de,y(x) ,x=0..5,y=0..4);

o
e
e
e e e
e e
e e
S e e e
S e e
et
f e e
/ e e e
g
;/ e e
e e
S e e e
e e e
S e e
S e e e e
e
e

actual solution curves can be added by specifying the initial conditions:

>DEplot (de,y (x) ,x=0..5,{[0,0.02],[0,0.5],[0,3.5]},y=0..4);
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Isoclines

2. Euler method

- Y= £l y)(x-x)4y,

9= Do o))+,

)

exact solufon

Isoclines of equation (1) are curves at each point of which, the slope of the
solution curves is constant

c:f(x,y), ceR 2)
So, isoclines are curves defined by the implicit equation (2). In the previous
example of the logistic equation, the function does not depend on x, and
isoclines are the straight lines parallel to the x-axis:

The approximate method of solution based on application of the direction field
is called the method of isoclines. It consists in the construction of a direction
field using isoclines and then drawing approximate solution curves following the
direction segments.

The direction field concept helps us to understand the idea of the Euler method,
in which we use equation (1) to determine the slope of tangent lines to the
solution curve step by step and construct an approximate solution curve of the
IVP:

y'=flxy) y(x,)=y,

The solution is calculated at discrete points x,, k =0,1,2,...
For the grid with step size 7, , the nodes are determined by
X, =x,_,+h,, k=12,..

At the point x,the solution is given by the initial condition

Yo=Y (xo)
Then we calculate the slope of the tangent line to the solution curve at the point
(xo , yo) and draw a tangent line y = f(xo Vo )(x —x, )+, . If we consider it to

be an approximate solution for the interval [xo,x ,], then at the next point
x =x,, the approximation is given by

Vi =f(x0,y0)(x, —x0)+y0

Yi =Y ""hzf(xo:J/O)

Now the approximate value y, is known, we can calculate the slope of the
tangent to the solution at the point (x,,y ,) and draw a tangent
y=f (x,, y,)(x—x1)+ y, from which the next approximation can be
determined

Y, =V ""hzf(xz))ﬁ)

Continuing this process, we get for point &, that
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Euler’s Method

Modified Euler’s Method

4™ Order Runge-Kutta Method

Yi =V +hkf(xk—11yk—1)

Starting from the point specified by the initial condition (x(,, y(,), we proceed
following the direction field of the differential equation to get an approximate
solution curve which is a piece-wise linear curve connecting points (x o Vi ) .
The algorithm for Euler’s Method can be summarized as follows:

x, R
hy =x, —x;,

Vi = Vi1 +hkf(xk—11yk—1)

k=12,...

The accuracy of Euler’s Method depends on the character of variation of the
solution curve and the size of steps %, . It can be shown that when step size 4,

goes to zero, Euler’s approximation approaches the exact solution. But it can
easily deviate from the exact solution for coarrse steps. If we want an accurate
solution, then step-size should be very small. It makes the Euler method a time
consuming one. Some improvement can be made, in increasing the efficiency of
approximation. In the modified Euler’s Method the average slope of the tangent
line between steps is taken into account:

x, R

hy =x, —x;,

.)71{ = V-1 +hkf(xk—1’yk—1)

h_k[f(xkq’J’kq)"'f(xk’;k )]

Ye=Yia t >

k=12,...

Further improvement can be obtained by taking into account the slope of the
tangent line to the solution at the intermidiate points. Depending on the number
of intemidiate steps these methods are called Runge-Kutta methods of different
orders. The most popular is the Fourth Order Runge-Kutta Method. Its
algorithm for regular step-size 4, is traditionally written in the following form:

x,eR h= Vn

xn _xnfl

k, = hf( n— I’ynl

h k,
k,=h , +—
2 f(x 2 Vo1 2J

h k,
k3=hf£xnl ’yn1+2J
k4:hf(xn1+hyn]+k)

1

Yo = Va1 +g(k1 +2k, + 2k; +k4)

n=12,...
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3. Picard’s Method of Successive Approximations

y'=f(xy) y(x) =y,

v =+ [ Sl v A k=12,

4. Newton’s Method (Taylor series solution)

We assume that the solution of the IVP for the first order differential equation in

normal form
ylzf(x:J’) y(x0)=y0
can be obtained in the form of a Taylor’s series

)’"(xo )

) T

For this expansion we need to determine the values of the unknown function and
its derivatives at the point x,:

()

From initial condition y(x,)=,

And by substitution x=x, and y=y,
into the equation and determining the derivative

y’(xo):f(x()rJ’(xo)):f(xo’J’o)

to obtained values of the higher derivatives.
Differentiate consecutively the equation as
an implicit function and substitute

" d
x=x,and y=y, y(xo)zaf(x(w)ﬁ))

2

d
y'"(x0)=dx—2f(x0,yo)

In the obtained approximate solution, sometimes a Taylor series expansion of a
known function can be identified. Newton’s method can be applied also and for
higher order equations.

Example 1 Use Newton’s Method to solve the following I[VP

Y'+y=0
J/(xo):)/o
y,(xo):)ﬁ

The value of the function and first derivative are already
known.
From the differential equation:

"

y'=-y y"(xy)==(x,) ==y,

Differentiate the ODE and substitute x =x, and y=y,:
y'==y' ym(xo):_yl(xo):_%

iv

Y=y Y (x,)==y"(x,)=y,
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2j 2j-2

y =yt (x,)=(-1)y,
e S G O EICI Y

Then the Taylor’s series can be constructed as

y(x)ZJ’U +YI(x_x0)_£( _xo)z +%(x—x,,)+~~
2j+1

= i Vo (_ ])/' (x_x'o')zj +y1(_ ])j (x—xo)

(2j+1)

Where the Taylor series expansion of trigonometric functions
can be recognized:

=y cos(x—x0)+y1 sin(x—x,,)
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2.2.9 Equations of reducible order

1. The unknown function does not appear in an equation explicitly

The general form of these equations which are solved for the second derivative
is:

y'=fxy) ©)
This equation can be reduced to a 1* order ODE by the change of dependent
variable

v=y' 2
then vi=y" 3)

and substitution into the equation yields a 1* order ODE for the new function v .

Example 1 Solve the following 2™ order differential equation

y'+y'=x
The dependant variable v is missing in this equation. Then
substitutions (2-3) yield

vi+v=x
which is a first order linear ODE with constant coefficients.
The general solution can be obtained by variation of parameter
(with an integrating factor y(x) =e )

v =ce” +ef“‘J.eXxdx

=ce " +e" (xex —e" )

=ce " +x—1
Then substitution into equation (2) yields the first order ODE
for the unknown function y

’

y' =cet+x-1

which can be solved by direct integration
2

X
v :cjex+7—x+cz

Solution curves can be sketched with the help of Maple:

> f:={seq(seq(i*exp (-x)+x*2-x+j,i=-2..2) ,3j=-2..2) }:
>plot(f,x=-2..2,y=-10..10,color=black) ;
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This approach can be applied for reduction of order of more general equations.
Thus, an ODE of order n

F(x,y(”),y(”_l) ..... y(")):0 4
in which the unknown function y and its first k£ —/ derivatives are missing, by

the change of variable
(k)

v=y
V= y(k+1)
: ()
Y=k y(n)
is reduced to an ODE of order n—k :
F(x,v(”’k),y("’k’l),...,v):0 (6)

2. The independent variable does not appear in the equation explicitly (autonomous equation)

The normal form of these equations is:

y'=fy) @
Such equations in which the independent variable does not appear explicitly, are
called autonomous equations.
These equations can be transformed to 1* order ODE’s by the change of the
dependent variable to

v=y' (®)
and then in the resulting equation consider y to be the independent variable and
v to be the dependent variable. These transformations of the given ODE works
as follows:
1) express derivatives of y in terms of a new function v:

y'=v

d
oL, vy _dv

dx dx dy dx dy

2) substitution into equation (7) yields is 1* order ODE

y

w' :f(y,v) 9
3) find (if possible) a general solution of equation (9) and write it in the form
where it is solved for the function v (the general solution should include one

parameter c,):
v:F(y,c]) (10)
4) using back-substitution (8), set up the equation for the unknown function y
y'=F(y.ec,)
which formally can be solved by separation of variables
dy
F (y € )
dy
=x+c (11)
TRy
Equation (11) is an implicit form of the general solution of equation (7). It also
can be written as an explicit function x(y) with y as the independent variable:

=dx

dy
x= +c
F ey
Example 2 Solve the following 2™ order ODE
y” _ Zyy/ — 0

Substitution (8) yields
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w'=2vy=0
v(v'=2y)=0
from which we have two equations:
v=_0
vi=2y=0
The first equation immediately leads to the solution
y'=0 = y=c ceR
The second equation is a 1* order ODE with the general
solution
v=y’+c,
Back-substitution gives the equation for y
y'=yl+c I
which is a separable equation
Zdy =dx
yote

Depending on the sign of the constant c,, integration yields
the following solutions:

1

a) for ¢, =c’>0 —tan'l(lj=x+cz c,c, €R
c c

2 1, |y=

b) for ¢, =-c" <0 —In =x+c, c¢c,€R
2c¢ |y+c

c) for ¢, =0 —=Xx+c, c,c, €R
y

recall also the solution

d) y=c ceER

It is simpler to sketch the solution curves as explicit functions
x of y; for each family of solutions they have the following
form:

Note: x and y coordinates are interchanged a) x




Chapter 2 Ordinary Differential Equations

08 6 4 292 4,6 5 10

Example 3 (outer-space  radiator, example from [Siegel&Howell,
ThermalRadiation Heat Transfer] with different solution)
Excessive heat from space ships can be released only by radiating it from the
surfaces exposed to outer-space which is assumed to be at zero absolute
temperature. The schematic of one section of a radiator is shown in the Figure.
Fluid heated inside of the ship to the temperature u, enters pipes connected by
fins of thickness a and width 2L . Fins are from material with thermal
conductivity £ and total surface emissivity ¢ .
Determine the steady state temperature distribution in the fin.

Assumptions for the physical and mathematical model describing heat transfer
in the fins:
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temperature varies only in the x-direction u = u(x) ;
the ends of the fin attached to the pipes are at temperature u,,;

the fin surface is not exposed to direct sun radiation;
because of the symmetry, there is no heat flux at the middle of the plate:

du|
dx
Energy balance for the control volume ( AxxaxW ):

(aw)k[ﬂ _du

=0

x=L

} = (WAx)eou’

X+ Ax X

at the limit Ax — 0 yields a governing equation for temperature distribution

e =pu? b:2:—a xe(O,L)
X a

with boundary conditions:

G = (W Ax) g0 u(O) =u,
r du

dx|,_,

Gomsn =(@ W)kﬂ

Couduchon

=0

Conducholn

i =~ (a2 The equation is a non-linear 2" order ODE. This is an autonomous equation
e which can be reduced to the 1** order equation by the change of variable
Ax u'=v
u"=w'
Then the equation becomes
w=bu’ where v/ = 4
u

Separate variables
vdv =bu’du
and integrate to get a general solution

2
14

5
—=—u +c

2 5

Apply the second boundary condition v[u(L)] = % =0 and notation
x

x=L
u, = u(L)
for the fin’s midpoint temperature to determine the constant of integration
b s
0=—u, +c
5 L 1
Then
2b
2 5
vi=—I(u-u
L

Because for the interval ((), L) temperature of the fin is decreasing and vis in a
direction of the temperature gradient, then the previous equation yields

- /Z?b(u_%)f

which is followed with the back-substitution to

S,y

dx 5
and after separation of variables
—du —dx
2b 5
(” Uy )

5
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Definite integration of this equation for the change of temperature from u, to

u(x, ) when the space variable changes from 0 to x, yields

u(x)
P — &)

. [2p
2,y

This is an implicit equation for the value of the temperature at x. The value of
the midpoint temperature u, can be determined from the solution of the

equation
Lo
u, ﬁ (u —u )5
5 L
which can be solved numerically.
Then for fixed values of the coordinate x temperature values #(x) can be found
from the numerical solution of equation (3¥).

Consider the particular case with the following values of parameters:

a=0.01m,520.8,k:IOOL,G=5.67-10’8 T K ,L=0.5m ,u,=330K

m-K m” -

Then from equation (%¥), the following temperature distribution follows with the
midpoint temperature u, = 259.9K ( Maple file: fin3.mws)

3304
3201
3107
300
200
2804
270

2601, , : : : .
0 o 02 0.3 0.4 05

3. Reduction of the order of a linear equation if one solution is known

th

a) If any non-trivial solution y, (x) of a linear n" order homogeneous

differential equation is known
al) (x)y(”) +eet anfl (x)y + an (x) = 0

then the order of the homogeneous equation can be reduced by one order by the
change of dependent variable with
y=y,v followed by the change of variable v' =u .

These two substitutions can be combined in one change of variable by
y=y, I udx
which preserves linearity and homogeneity of the equation.

The order of the non-homogeneous equation

a, (x)y(") +-+a,  (x)y+a,(x)=f(x)

can be reduced by one order by the change of dependent variable with the same
substitution y = y,v, but the resulting equation will be non-homogeneous.

This method was used by Euler for solution of linear ODE’s by systematic
reduction of order.

b) Reduction formula for a 2™ order linear ODE:
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a,(x)y"+a,(x)y' +a,(x)y=0
Let y,(x) be a non-trivial solution, then it satisfies
4 (x)y}'+a, (x)yl' ta, (x)y1 =0
Let ¥, =y,u then
Vo =yt yu
vy =yju+2yu'+ yu
Substitute into the equation and collect terms in the following way
a, (x)y]u"+[2a0 (x)y; + a,y,]u'—i—[ao (x)y/+a,(x)y, +a,(x)y, ]u =0
The last term is equal to zero because y,(x) is a solution of the homogeneous
equation
a, (x)yu"+ |:2a,, (x)y; + ajy]]u' =0
Now this equation does not include the unknown function u explicitly, therefore,
by substitution u' = v it can be reduced to a 1* order equation
u'=v
u// — V!
a,(x)yp' +[2a0 (x)y; +a,y,]v =0
, [2‘10 (x)y]' + a,le
v+
a (x ) Yi
The integrating factor for this equation is

v=20

2 j+apy , .
J{ an(x)y1+am]dx J'[Zy, L4l }M Zj}idx ar,
=e

ay(x)yy

—e —e Yo d Yot %
2ny .[ﬂdx Iny? jﬂdx 2 Iﬂdx
=M = "V " % =ye dy
then the general solution for v is
_ J' Y
e
v=c
1 2
Vi
Then the formal solution for the function u is
_ I Y
e a9

u= Jvdx+cz = c]v|.—2d)c+c2
Yi
then the second solution can be written as
[ ALy
e
Y, =yu :ClyI_.‘ 2 dx+c,y,
Yi
Choose arbitrary constants as ¢, = /,c, =0 then

,J"L!dx

ap

yZZyIJ.eyz dx
1

which is called the reduction formula.
Check if the solutions y,,y, are linearly independent:

Yy Yy yiu
W(yl’y2): Ir f = ]r ’ ! '
Vi Yo Vi yutyu
2 7,[&‘&
=yu'=e " >0

Therefore, the solutions are linearly independent and constitute the fundamental
set for a 2" order linear ODE.



Chapter 2 Ordinary Differential Equations

2.3 Theory of Linear ODE

2.3.1. Linear ODE

superposition principle

The general form of linear ODE of the n™ order is given by equation

n n—1

d d
LnyEaO('x);‘ny_Fal(x) dxnj/_ku._{—an—l(x)d_z_'—an (x)y:f(x) (1)

defined in the domain xe D c R, where coefficients a,(x) and f(x) are
continuous functions in D : a,(x), /(x)e C[D].

If in addition, the leading coefficient a,(x)# 0 for all x € D, then equation (1)
is said to be normal.

If f (x)z 0, then equation L, y =0 is homogeneous or an equation without a
right hand side; otherwise, the equation L,y = f(x) is non-homogeneous or an
equation with a right hand side.

A solution of equation (1) is n times continuously differentiable in a D function
y(x) eC” [D] which after substitution into equation (1), turns it into an identity

(in other words, y(x) satisfies the differential equation).

A differential operator of n” order L, is linear in the sense that if we have two n

times differentiable functions y,(x),y,(x)eC" [D], then application of the

operator L, to their linear combination yields a linear combination:

L, [Wl(x)"’ﬁyz(x)]: aLr1yl(x)+lBLny2(x) (2)

This property for the operator L, follows from the fact that the operation of
differentiation is linear.

We should note, that if y,(x), yQ(x)e C”[D] are solutions of the non-

homogeneous equation (1), then it does not necessarily yield that their linear
combination is also a solution of equation (1):

Ly(a)=f(x). Ly, ()= 1) = Loy, (x)+ By, ()] = £ ()

Instead, we use a superposition principle: if functions y, (x), V) (x) eC” [D] are
solutions of equations L,y = fl(x) and L,y = f, (x) correspondingly, then their
linear combination is a solution of the differential equation L, y = of;(x)+ /3, (x)
(see Theorem 10 for a more general form):

Lnyl(x):fl(x)s Lnyz(x):fz(x) =1L, [ngl(x)+ﬂy2(x)]=afl(x)+ﬂf2(x) 3)

For a homogeneous linear ODE L,y =0, the superposition principle reflects in
full the linearity of the ODE:

Ly, (x)=0, Ly,(x)=0 = L,[ay, (x)+ pr(x)]=0 4)
therefore, any linear combination of the solutions of the homogeneous equation
is also a solution of this equation. The last property is important for
understanding the structure of the solution set for the homogeneous equation: if
some functions are solutions of linear homogeneous ODE’s then their span
consists completely of solutions of this equation.
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Initial Value Problem

Existence and uniqueness

2.3.2. Homogeneous linear ODE

Linear independent sets

The initial value problem (IVP) for an n” order ODE is given by:

Solve Ly=f(x) inxeDcR
Subject to y(xo )=k,

¥(x,)=k, (5)

y("’l)(x0)= k, x,eD,keR

The setting of the IVP for an ODE is important for the proper modeling of
physical processes. Thus, the solution of the IVP should exist, and the
development of the solution from the initial state should be unique. The other
property of the solution should include the continuous dependence of the
solution on their initial conditions. If it holds, then the IVP is said to be well-set
(otherwise, it is said to be an ill-set problem). The following theorem (given
here without proof) gives the sufficient condition for existence and uniqueness
of the solution of the IVP.

Theoreml Ifalinear ODE L,y = f (x) is normal in D, then
the IVP (5) has a unique solution in D

Corollary If y(x) is a solution of the IVP (5) for the homogeneous
equation
Ly=0
with & =0,k, =0,...k, =0 , then y(x)=0.

Obviously, the trivial solution satisfies these initial conditions
and because the solution of the IVP is unique, y(x) is a zero

function.

Further, if there is no special reason otherwise, equations are assumed to be
normal. Because only a homogeneous linear ODE L,y =0 possesses the

property that a linear combination of solutions is also a solution, we will study
first the solutions of homogeneous equations.

But first we have to recall some concepts of linear algebra concerning vector
spaces. Consider a vector space of all n times continuously differentiable
functions in D:

s(x)ec[p]

and formulate definitions for linear independence of the set of their elements:

Definition 1 Functions y, (x), V) (x),..., Y (x) are linearly independent in
D, if equation

clyl(x)+...+cnyn(x):O ¢ eR (6)
is valid for all x € D only if all coefficients
¢, =0

Definition 2 Functions y, (x), ¥, (x),..., Y (x) are linearly dependent in D,
if there exist coefficients ¢, € R not all equal to zero such that

Clyl('x)+"'+cnyn (x): O
forall xeD.
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Wronskian

Obviously, if functions y,(x), y, (x),..., v, (x) are not linearly dependent,

then they are linearly independent.

Definition 1 provides a unique representation of a zero function by a linear
combination of linearly independent functions with all coefficients equal to zero.
Now, if we consider a subspace spanned by a set of linearly independent
functions:

V= <y1 (x),y2 (x),...,y" (x)> = {cjy] (x)+...+cnyn (x),cl. € R} ,
then representation of any function from V by a linear combination of

¥, (%) ¥ (x),..., , (x) is also unique:

f.(x):clyl(‘x)+"'+cnyn(x) (7)
Indeed, suppose that we have a linear combination with other coefficients that is
valid forallxe D :

f(x): d,y, (x)+...+d,,y,, (x)
then subtracting it from equation (7) we get

O:(Cl -d, )yl(x)+"'+(cl -d, )yn (x)
this, according to definition 1, yields immediately

¢ —d =0,..,c,-d, =0
or

¢, =d,.,c,=d,
therefore, functions y, (x), ¥, (x),..., v, (x) can serve as a basis for the vector
space V.
How is it determined that a set of functions y,(x),y,(x),...,y,(x) is linearly
independent in D? For this purpose we will use the properties of the
determinant of a special matrix (called the Wronskian) which is constructed
from functions y,(x), y,(x)..., v, (x) and their derivatives.

Definition 3 The Wronskian of y, (x), v, (x)...,y,(x)e C"[D] is a
determinant

W[y,,...,yn](x)z : : : ®)

Important properties of the Wronskian are formulated in the following theorems:

Theorem 2 The set of functions y, (x), y, (x)...., v, (x) e C"[D] is linearly
independent in D, if and only if
W[y1 yeres Vi ](x);t 0 forall xeD
Theorem 3 The set of functions y, (x), y, (x),..., », (x)e C" [D] is linearly
dependent in D, if and only if
W[y, [x)=0 forall xe D
Theorem 4 If at some point x, € D, W[y1 yeees Vi ](x0 ) #0, then
W[y1 yeres Vi ](x);t 0 forall xeD
Theorem 5 If at some pointx, € D, W[y1 yeees Vo ](xo ) =0, then functions

¥, (x), ¥, (x),...., , (x) are linearly dependent in D.
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Solution space of L,y =0

Proof of Theorem 2:

(< sufficient condition)
Let Yy (x), ¥, (x),..., v, (x) eC” [D] and
W[yl yeees Vi ](x);t 0 forall xeD.

Construct a homogeneous system of linear algebraic
equations:

.VJ(X) .Vz(x) yn(x) 9] 0
y?(X) yél(X) - y;_(X) ¢ |_[0
) ) W) | Lo

For any x € D, this system has only a trivial solution because
the determinant of the matrix of coefficients
WLVl yeees Vi ](x) # 0. Therefore, the linear combination

oy (x)+...+cnyn (x): 0
only if all coefficients c,are equal to zero for all xeD.
Then, according to Definition 1, the functions

" (x), ¥, (x),..., Y (x) are linearly independent in D. |

(= necessary condition)
Let the set of functions y,(x),y,(x)....y,(x)eC"[D] be
linearly independent in D. Then for all x € D

oy (x)+...+cnyn (x)z 0 onlyifall ¢, =0

Differentiate this equation n-/ times and construct a linear
system of algebraic equations

J’1(x) J’Z(x) yn(x) ¢ 0
yilx)  yi(x) - yLﬂX) ¢ |_|0

v ) ) le, | Lo
If for some x, € D, the determinant WLV1 ..... Y, ](x(,)=0,

then the linear system at this point has a non-trivial solution,
and
c,y,(x0)+...+cnyn(x0):0 where some c; # 0

but that contradicts the theorem’s assumption, therefore
W[yl,...,yn](x);to forall xeD. [ |

The next two theorems determine the dimension of the solution space of a

homogeneous linear ODE. In the first theorem, we constitute that there always
exists » linear independent solutions of L,y =0, and in the second theorem, that

there can not be more than # linearly independent solutions.

Theorem 6 There exist n linearly independent solutions of L,y =0

Proof: The existence will be shown by construction of such a set of n
linearly independent solutions.

Let x, € D be an arbitrary point. The initial value problem for the normal

equation L,y =0 subject to conditions y(x,)=k,, y'(x,)=k, .. y(”’l)(xo): k,

x,€D, k €R has a unique solution y(x)e D (Theorem 1). Denoted by

vectors
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ky Y (x)
|k y'(x) _ e
k= and y = ) , then the initial condition is written in vector form
k, » ()
as: y(x0 ) =k
1
0 L,y=0 ) .
Choose k, =| .|, thenIVP has a unique solution , (x)
: yix, )=k,
o]
1 L,y=0 ) .
Choose k, =| .|, thenIVP has a unique solution y, (x)
: Y(xo ) =k,
_O_
L,y=0 . .
Choose k, =|.|, thenIVP has a unique solution y, (x)
: y('xo ) = kn
1

Show that when constructed this way the set of solutions y, (x), vy ()s v, (x)
is linearly independent in D. Calculate the Wronskian of these functions
atx, e D:

W[yl,...,yn](xg) =

0 0
0 1 0
=k, k, K, |=|. . =1

Then according to theorem 4, the Wronskian is not equal to zero at allx e R;
therefore, by theorem 2, functions y, (x), , (x),..., Y (x) are linearly independent

in D. |
Theorem 7 Let y,(x),y,(x)..., ,(x) be a set of n linearly independent
solutions of the normal homogeneous linear ODE
L,y=0 xeDcR 9)

If the function y(x), x e D is any solution of equation (9),

then there exists coefficients ¢, € R such that

y(x):clyl(x)+...+cnyn (x) (10)
forall xe D
Proof: Let y(x) , X € D be an arbitrary solution of equation (9) in D.

Show that we can find coefficients ¢; € R such that

yx)=e ()4 +e,p, (x)
Differentiate this equation consequently n-/ times (as the solutions of equation

). y(x).y,(x)e C"[D]):
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y(x): iV ('x)+"'+cnyn (x)
y'(x)z clyl'(x)+...+cny,'z (x)
: (11)
y("_l) (x) = clyl(”'l) (x)+ ot cnyfl”_l) (x)
And applying this equations at some pointx, € D, write a system of algebraic
equations:
y(x )= oy (x0 )+ wtc,y, (x0 )
y’(xo): Cly{(xo )+"'+Cl1y;1 (xo)
: (12)
y(H)(xo ): Clyl(nil)(xo )+ et Cnyr(,nil)(xo )
which in the matrix form can be rewritten as
y(xo) J’1(x0) yz(xo) yn('xO) ¢
y’(xo) _ yl’(xo) y;(xo) y:z(xo) )
Y] ) ) e Y () e,
or in the short form as
¥(xo)= Ac (13)
The determinant of matrix A is a Wronskian WLVI yeres Vi ](xo ) of functions
v (x)y,(x)sy,(x)  calculated at x,eD. Since  functions
Y (x),y2 (x),..., Y (x) are linearly independent in D, W[y1 yeees Vi ](xo);& 0.

Therefore, the matrix A is invertable, and the system of algebraic equations (13)
has a unique solution

c=A"y(x,) c=| 7 |#0 (14)

Using determined coefficients ¢, (14), construct a function in D:

z(x):clyl(x)+...+cnyn(x) xeD (15)
As a linear combination of solutions, according to the superposition principle for
the homogeneous equation, z(x) is also a solution of L,y =0, and, therefore,
z(x)e C"[D]. Then differentiate equation (15) consequently n-/ times:

zx) =, () + 4 e, (%)

Z(x)=e (@) +te, v (%)

: (16)

() (x)= clyl("’l) (x)+...+ cny,(,"’l)(x)
Consider y(x)— z(x) , the function y(x)— z(x) also is a solution of L,y =0.
Calculate y(xo )— z(xo) and its derivatives comparing equations (12) and (16):

y(xo )_ Z(xo ): 0

)”(xo )_ Z,(xo )=0

)’(H) (xo )_ 20 (xo ) =0
Then, according to the Corollary for Theorem 1, the function y(x)— z(x) which
is a solution of L,y =0 satisfying zero initial conditions, is identically equal to
Zero:

y(x)—z(x) =0 forall xeD
therefore,

y(x)=z(x)= ey (x)+ ...+ ¢,y,(x) forall xeD
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solution space

where the coefficients c¢; are not all equal to zero, are uniquely determined by

equation (14). [ |

Equation L,y =0 always has n linearly independent solutions, but not more.
If we have n linearly independent solutions v, (x), v, (x)..., v, (x) of L,y=0,

then any other solution is represented by their linear combination. So, the
complete solution set of L,y =0is a vector space spanned by any set of its n

linearly independent solutions:
S = span{y, (x), y, (x).... v, (x)} (17

The set {y, (x). 25 (x).ee0s, (x)} is a basis for

the solution space of dimension 7.

Definition4 Any set of n linearly independent solutions of L,y =0

{yl (%), (%), 0, (x)}

is called a fundamental set.

Definition5 If {y, (x). 25 (%), (x)} is a fundamental set of L,y =0,
then its solution space
yv.(x) = span{y, (x),3,(x),- 0, (x)}
=c1y1(x)+...+cny"(x), xeD,celR
is called a complimentary solution.

Theorem 8 Let {yl (x). 25 (x).e00, (x)} be a fundamental set of
L,y =0, then any solution of L,y = 0 belongs to its
complementary solution y,(x)= span {y L)y, (x)y, (x)} .

That means that any solution of the homogeneous equation L,y=0 is

represented by a linear combination y = ¢,y, (x)+...+¢,y, (x).

2.3.3 Non-Homogeneous linear ODE Consider the structure of the solution set of the non-

General solution of L,y = f (x)

homogeneous linear ODE

Ly=f(x) xeD (18)

Theorem 9 Let {y, (x). 25 ()., (x)} be a fundamental set of L,y =0
on D, and let y, be any particular solution of the
non-homogeneous equation L,y = f(x) on D, then the
complete solution of the non-homogeneous linear ODE

Ly= f(x)
is described by a complimentary solution of the homogeneous

equation translated by a particular solution of the non-
homogeneous equation
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y(x) =y @)+, ()
=c,y,(x)++c,y,(x)+y,(x)  c,eR (19

Proof: Show that any solution u(x) of the non-homogeneous

equation L,u=f(x) is represented by the sum
u(x)=y.(x)+y, (x)

Let Lu=f(x)

Ly, =[x
general and subtract the second equation from the first equation
solution of L"y:f(x) L" (M _ yp ): 0
= e '__‘“\-;f S Therefore, u—y, is a solution of the homogeneous equation,
b i e, \ and, according to Theorem 8, is represented by a linear
solution y, particular T L. . .
solution_- v combination of the fundamental set
Ly=0 oL
”j’ h\m. £ u- yp = Clyl (X)+ et Cnyn (‘x)
(SRR E T The claimed result can be obtained by moving the particular
\\/ g solution to the right hand side of the equation
Ye
u:clyI(x)+~-~+cnyn(x)+yp [ ]
Superposition principle Theorem 10 Let y, (x) be the particular solutions of L, y = f; (x)
i=1,..k

L,y =f,x) xeD

k k
Then )y, (x) is a solution of the equation L,y =Y f; (x)

i=1 i=1

L2y =2 f,x)

This theorem is a simple corollary of the linearity of the
differential operator L, .

It follows that if the fundamental set and any particular solution are known then
the general solution of the non-homogeneous linear ODE can be constructed. In
the next section we will study how they can be obtained for the particular form
of linear equations.

2.3.4. Fundamental set of linear ODE with constant coefficients

Consider first differential equations of the second order because they are the
most popular in engineering modeling (for example, dynamical systems with
forces) :

2" order
a,y"+a,y'+a,y=0 xeD (20)

Ansatz: look for the solution of equation (20) in the form of an exponential
function

y — e mx (2 1)
with some undetermined parameter m. Differentiate (21) twice
y/zmemx y//szemx

and substitute into equation (20)
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2 R 2
a,m-e™ +a,me™ +a,e™ =0
2 2
(aom +a,m+az)emY =0 factor e™

because ¢™ >0 for all x, the necessary condition for the trial function y =e™
to be a solution is

a,m’ +am+a, =0

This equation is called an auxiliary equation. From the auxiliary equation we
can find the values of the parameter m satisfying this equation

—a, t+la] —4a,a, (22)

2a,

m;,=

Consider the following cases:

a)| a; —4a,a, >0| There are two distinct roots m, # m,, then corresponding

solutions of the differential equation (20) are
y,=€"" and y, =e"" (23)
Use the Wronskian to show that these functions are linearly independent

X

em,x emzx
my+my )x my+m; )2 my+mjy)x
= mze(" 2) —mle( ez )x = (mz—ml)e( +m2)

W(emp(}emzx) —

myx

me™  mye
because m, #m, and " 50 for all x, W(e'"’x,e'””)io for all x,
therefore, according to Theorem 2, solutions (23) are linearly independent and

constitute the fundamental set for the homogeneous equation (20):

{e”” Tem } (24)

b)| a; —4a,a, =0 | There is only one repeated root of the auxiliary equation of

o —-a . .
multiplicity two: m, =m, =m=—2_, then there is only one corresponding
4

solution of the trial form
vy, ="
To construct a second solution, use a reduction formula ( ):

_Iﬂdx
q

e 0 . a, m
y, = y,j—zdx substitute —=-2m and y, =e
Vi a
2jmdx
e . .
= e””jz—dx perform integration
e mx
eZm
=™ J ——dx
2mx
e
=™ I dx
— xemx
Use the Wronskian to check if the obtained solutions are linearly independent:
mx mx
e xe
W(emx)xemx) — . . . — eme +mx62mx _mxe2mx — eme > 0
me™ €™ +mxe

for all x. Therefore, the solutions are linearly independent and the fundamental
set is

{e”“ , xe’""} (25)

c) af —4a,a, <0 | There is a conjugate pair of two complex roots
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n'" order

. -a
m,=a+ib a=—=-

2a,

4a,a, —a;
m,=a-ib b=-——"——

2a,

and corresponding solutions are
(aﬂ'b)x

Yy =e

yz — e(afib)x
Use the Euler formula (1.xx) for conversion of the solution to trigonometric
form

y, =e“ (cosbx + isinbx)
v, =e" (cos bx—isin bx)
Any linear combination of solutions of a linear homogeneous equation is also a

solution, therefore, by adding and subtracting these solutions and neglecting
constant coefficients, two real valued solutions can be obtained:

v, =€" cosbx
v, =e" sinbx
More formally, the following fact can be proved:

If a linear homogeneous differential equation (in general, of order »n) has a
complex solution

y(x) = u(x) + iv(x)
then each real-valued function u(x) and v(x) are also the solutions of the same

homogeneous equation. It can be shown by direct substitution into the
differential equation (in exercise).
Use the Wronskian to check if the obtained solutions are linearly independent:
e™ cos bx e™ sinbx
W(e”x cos bx,e™ sin bx) = L L
ae™ cos bx —be™ sinbx ae®™ sinbx +be™ cos bx

2ax - 2 2 2ax . 2ax . 2

=ae’™ sinbxcos bx +be™ cos® bx —ae”™ sinbx cos bx +be”* sin” bx
2 2 .2

=be ™ (cos bx + sin bx)

— beZux

J4a,a, —a;
02 1 # 0
2a,
then the fundamental set of the homogeneous differential equation is

#0 for all x because b =

{e‘” cos bx,e™ sin bx} (26)

()

ay" +a1y(n_1)

+-+a, y+a,y=0 xeD 27

The same form of the trial solution y=¢™ is used for the n™ order

homogeneous equation. Its application yields an auxiliary equation

am" +am"" +--+a,_m+a, =0 (28)
which is an n™ order algebraic equation for parameter m. According to the
fundamental theorem of algebra, it has exactly n roots which can be real distinct
or repeated or complex roots appearing in conjugate pairs (also they can be
repeated). Consider the typical cases of the roots of the auxiliary equation:

a) If the auxiliary equation has a real root m of multiplicity k. Then there are k&
linearly independent solutions in the fundamental set corresponding to root m:
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{envc , xenvc , xZem ,,,,, xk—lernx} (29)

b) If the auxiliary equation has a conjugate pair of complex roots m, , =a+ib.
Then the fundamental set includes two solutions corresponding to these roots

{e‘“ cos bx,e™ sin bx} (30)
If the complex roots m,, =axib are of multiplicity k, the corresponding
solutions in the fundamental set are

. . k—1 k-1 .
{e‘“ cos bx,e™ sinbx,xe™ cos bx,xe™ sinbx,...,x" " e™ cosbx,x""'e* sin bx} 3D

2.3.5. Particular solution of linear ODE

variation of parameter

In general, the particular solution of a non-homogeneous equation is not easy to
find. There are two main methods for finding particular solutions: the variation
of parameters (called Lagrange’s method, however, published first by L.Euler
and D.Bernulli , 1740) and the method of undetermined coefficients.

Let the linear differential equation of n” order

d" dm! d

Ly=a,(x)"2+a,(0) 52+ 4a,, (x) +a,(x)y = f(x) (32)
dx dx dx

be normal and let

()3 (x)0, (%))

be its fundamental set (linearly independent solutions of the homogeneous
equation)

We will look for a particular solution of the non-uniform equation (32) in the
form of a combination of fundamental solutions

v, (x) =u, (x)yl (x)+u2 (x)yz (x)+ wtu, (x)yn (x) = gui (x)yl. (x) (33)

where coefficients ul.(x) are, in general, functions of x (variation of

coefficients), and we will try to determine them in such a way that equation (32)
is satisfied. We will feel free to impose any additional condition on these
coefficients if it makes our task simpler, because we need just any particular
solution (the number of such additional conditions can be at least n-/ because

initially for » unknown coefficients ul.(x) we required satisfaction only of
equation (32)).

Differentiate equation (33) using the product rule
()= S (1) St (51 ()

For simplification, require the second sum to be equal to zero
2 (x)yi(x) =0

i=1

then

vy () = 2 (x) (%)

Differentiate the particular solution the second time
()= S (e x)+ S (i 3)

and again simplify it by the condition

2 ui (x)i(x)=0

i=1

then

n

LACIEDIACHAC)

i=1
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Continue this process until for the (n—1 )th derivative we obtain

Sl (x) ) (x) =0

then

w7 (%)= Zu (e (x)

One more differentiation of particular solution yields
)’E,") (x) = gui (x)yl(_”) (x) + gu[’ (x)y,(H) (x)

and now we can substitute all derivatives into the non-homogeneous equation
(32):

Collect terms including coefficients u, (x)

() (7 () () Z (bl ()

and combine them in a single summation

AHRACTRIC

+,Z:1: u, (x)[a,, (x) yf") (x)+a,(x) yl("-l) (x)++a,, (x)y/(x)+a,(x)y (x)]
e

Since all functions y, (x) are solutions of the homogeneous equation the second

term disappears and we have
a (x)Lu (2 (x) =/ (%)
i=1

Because the differential equation is normal, we can divide it by the leading
coefficient a, (x):

S ) - f(x)
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Combine now this equation with other additional conditions for ul.’(x) into a

system:

n

2 (x), (x) =0

i=1

Sul (i ()

0

Sl (" (x) =0
i=1

; w (") (x) = f(x)
St -1

where unknowns are derivatives of coefficients u,(x). This system can be

written in the following matrix form

J’1(x) J’Z(x) yn(x)

W) e )

Since the determinant of the matrix is a Wronskian of the fundamental set of
solutions, it never equals zero, therefore, the system of algebraic equations for

the coefficients , (x) has a unique solution, which using Cramer’s rule can be

written as
Y1(x) Y2(x) 0 yn(x)
B v le) 0 (%)
W) ) T e
u, (x) = a{)(X) m=1,.,n
J’I(x) J/2(x) yn(x)

yE_(X) yé(X) - v, (x)

) )

Expand the determinant in the numerator over the m” column, and using the
definition of the Wronskian, the solution can be written in the following way

, (x) :(—I)m W()’1(x)~~:ym-1 (x),ym+1(x) ----- Yn (x)) f(x)

u, m=1,..., n
W(y](x)’“’yn (x)) a (x)
Then by integration, the unknown functions can be determined as
um (x) — (_ I)mj W(yl (x)""’ ymfl (X), ym+1 (X),..., yn (‘x)) f(x)dx m= ] ..... n
W()’z (x)""yn (x ) ao(x)
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2™ order linear ODE

Undetermined Coefficients

For the important case of the second order linear equation, variation of
parameters yields the following particular solution

Yy (x)= U (x)J’1(x)+“z (x)J’z (x)

()= - —22 /) 4 (35)
Vv =,y a,(x)

_ Vi f(x)
uZ(x)_Iylyé — YY1 a, (X)dx

This method was derived without any restrictions and should lead to the
calculation of the particular solution of the non-homogeneous equation provided
that integration can be performed.

In many cases of the special form of the function f (x) in the right hand side of

the non-homogeneous equation, the method of undetermined coefficients is
simpler and more convenient. In this method, the particular solution is found in
the form determined by the function f (x) It can be generalized to the following

description:
If the function f(x) is a combination of the exponential, trigonometric
functions and polynomial in the form

flx)=e™ [p,.(x)cos bx+q, (x)sin bx] (36)
where p,(x) and q, (x) are polynomials of orders i and j, respectively

1) and a=xibis not a root of the auxiliary equation (28) then look for the
particular
solution in the form

v, (x)=e™ [P, (x)cos bx + Q, (x)sin bx] k = max{i, j} 37

2) and ifa £ ib is a root of the auxiliary equation (28) of multiplicity s then look
for the particular solution in the form

v, (x)=x"e[P, (x)cos bx + Q, (x)sin bx| k = max{i, j} (38)

where P (x)=Ayx* + A,x" "+ ..+ 4, ,x+4,
o, (x)z Boxk +lek7] +..+B,_ ,x+B,

are polynomials with unknown coefficients which are determined by
substitution of the trial solution into the non-homogeneous equation (1)

Example 1 Find the particular solution of the linear equation

yrl_3yv — ejx

The auxiliary equation m’ —3m =0 has two roots m, =0
and m, =3 . Because the coefficient a in the function in the

right hand side is equal to one of the roots of the auxiliary
equation, the particular solution should be determined in the
form

y, = Axe’™, then differentiation yields
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v, = Ae’™ + 3 4xe™
yh =34e™ +34e™ + 9 Axe™

Substitute it into the equation
6Ae™ + 9Axe™ — 3(Ae3‘” + 3Axe™ )= e’

3Ae3x :e3x
a=1
3

Example 2

(application of Maple for the solution of 2" order linear
ODE’s)

Find the general solution of a linear ODE with constant
coefficients

Y'+3y +2y=e”
Use Maple to follow the required steps for construction of the
solution: the fundamental set and the particular solution of the
non-homogeneous equation.

Example 3

(Forced motion of a mass-spring system with damping)
Consider a spring suspended point mass m vibrating under the
external force f (t) . The equation of motion for the position
of mass x(1) is
d*x(1)
ar’

+2/1ﬂ+a)2x =F(1)
dt

where A = ﬁ, p is a damping coefficient, @ = \/Z isa
2m m

circular frequency of vibration, & is a spring constant,
f(t)
F(t)=—+.
«) m

The equation of motion is a 2™ order linear ODE with
constant coefficients. It describes deflection of the point mass
from an equilibrium position. Therefore any 2" order linear
ODE can be treated as a model of such a dynamical system.

Consider, for example, damping of the system under a
periodic sinusoidal force:

2
d xz(t) + 2ﬂ+ 2x = sin(t)
dt dt
which initially (# = 0) was at the point x(0)=2 at rest
dx|
dil,
The solution with undetermined coefficients yields:

Auxiliary equation m’ +2m+2=0
Roots m,,=—I1%i
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Complimentary solution y. =ce sint+c,e”’ cost

Ansatz for the particular solution

Y, =Asint+ Bcost
v, = Acost—Bsint
y, =—Asint—Bcost

Substitute into equation
(A—2B)sint+(2A+B)cost = sint

A-2B=1
24+B=0
. . 1 -2
Find coefficients A=— B=—
5 5
. . . 2
Particular solution x,= E sint — ;cos t

General solution

.y » r. 2
x(t):cle sint+c,e cost+—sint——cost
5 5

From initial conditions C,=— C,=—

Solution of initial value problem:

-0.57

. 12 _, 1 . 2
x(t):—e sint+—e cost+—sint——cost
5 5 5 5

N

The graph of solution of the initial value problem together
with the graphs of the particular solution and the external
force are shown in this Figure. We can see that for this
periodic case, the solution curve due to damping approaches
the particular solution (which plays the role of steady state for
this system). Steady state follows the trend of the external
force with some delay.
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2.3.6. Euler-Cauchy Equation

& _dd_1dv
dx dzdx xdz

d’y :i
dx’  dx
d‘?y :i
d  dx

(

1

x dz

djy

{ dx’

A linear differential equation with variable coefficients is called an Euler-

Cauchy (or just Euler equation) if the coefficients have the form

n—k

a, (x): a,x where a, € R are constants, k =0,1,...,n

therefore, an Euler equation has the form

d" dnf] d
L d"y n-l J]’+...+an4x—y+a"y:f(x)
o dx"” dx (39)

It can be noticed that the scaling of the x variable in the Euler equation to ax by
any non-zero constant & does not change the form of the equation — that is why
this equation is also called the equidimensional equation.
An equation of the form
nd"y e d"y dy

a{,(ax+b) —+a1(ax+b) - +...+a"71(ax+b)—+any = f(x)

dx” dx” dx (40)
is also called an Euler equation, it can be reduced to the form (39) by the change
of variable £ =ax+b.

This equation appears in a solution of partial differential equations in cylindrical
and spherical coordinates by separation of variables.

These type of equations with variable coefficients can be reduced to linear
differential equations with constant coefficients with the help of a change of
independent variable

x=e’ with inverse substitution z = ln|x|

Derivatives of the unknown function y are replaced according to the following

. . . . d
representation (use for convenience the differential operator D = % ):
/z

X
—ldy 1d/(dy 1 dy d’y , 1
= — | L | = —] — =+ - :—D D—]
) x’ dz xdx[dzj xz( dz  dZ’ 7 x’ ( )y
I1(,dy ,d’y d’y "
=—|2—-3 + = =—D(D-1)(D-2
J x3[ dz dz*  dz’ 7 x’ ( )( )y

then, noticing the pattern, assume that for the n™ derivative

dny_

dx"

1

n

X

d"y

dz"
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For mathematical induction, show the validity of this equation for n+ /:
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Use the product rule and i(

dz

=

X

n

X
1

+1
x"

= p(D-1)(D-2)-[D

1 \J —n—1 dx —-n—1 _z —n—1 _Inx —n—1 —n
— | =—nx — =—nx =—-nx —nx X=—
X" dz X"

1 1

—(n=1)]y+—DD(D-1)(D=2)---[D=(n-1)]y! L~

(n=1)]y+—-PD(D=1)(D=2)-+-[ D=(n )]y} .

(—n+D)D(D—I)(D—Z)-u[D—(n—])Jy%

D(D-1)(D=2)--[D=(n—1)](D=n)y

From these formulas it is obvious that their substitution into equation (39) yields
a differential equation with constant coefficients. Thus, for 2" order and 3™
order ODE’s the results are

2

dy dy
nd _ z
2" order a, = +(a1—a,,)g+a2y—f<e )
d’y d’y dy
rd z
3" order a,,?+(a,—3a0)?+(2a0—a,+a2)z+a3y=f(e )
Example 4 (ODE/Euler.mws)
Find the solution of the linear equation
Xy +3x) +y=Inx

This is a 2" order non-homogeneous Euler equation. Solve it
with the substitution x =e” which yields a linear ODE with
constant coefficients
d’y ,dy
+2—+4+y=z
dz’ dz 7
The general solution of this linear ODE is

y(z) =ce +cze +z-2
then replacing z = ln|x| , we obtain a general solution of
the original problem

y(z) =ce

y(x)

Solution curves have the following form

“inl c, ln|x| ey ln|x| -2

i+c2xln|x|+ln|x|—2
x
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Example 5

Solution:

Consider a viscous flow around a long circular cylinder of
radius 7, rotating around its axis with angular velocity @ .

The fluid angular velocity component v(r) is defined by

the differential equation

PV A —v=0

with the boundary condition:

v(r,)=r, (non-slip condition).

It is reasonable to assume that the steady state velocity profile
is developed in the initially stagnant fluid, therefore, the

velocity of the fluid when radial coordinates approach
infinity is zero

v(r)|Hao =0 (is still at rest).

Find the steady radial dependence of angular velocity v(r).

The differential equation is the 2" order homogeneous Euler
equation. The auxiliary equation is

m’ +(+]—])m—1 =0

m’ =1 the two real roots are m, , =+1.

Then the general solution of Euler equation is

1

v(r) =cr+c,—
-

To satisfy the condition v(r)|‘ =0, we have to demand that

the constant of integration ¢, =0.

Then the boundary condition at » =7, yields

1
v(0)=c,—=wr, = c,=or
)
and the solution of the problem is
2
or,
v\r)=
()=~
This field is exactly like the potential vortex driven by the
viscous no-slip condition.

Example 6

Consider steady state conduction in the long cylindrical region
between two isothermal surfaces » =, at temperature «,and
r =r, at temperature u, . The radial temperature distribution

under assumption of angular symmetry in the absence of
volumetric heat generation is described by the differential
equation

d’u du
r—+—=
dre dr
Find the temperature distribution u(r), e (r,r,).

0
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2.4 Power Series Solutions

2.4.1 Introduction

In the previous chapter, we have developed and studied solution techniques for spe-
cial kinds of ordinary linear differential equations, namely those which had constant
coefficients or those which were of “Cauchy-Euler type”, so-called “equi-dimensional
equations”. We will now consider a more general class of linear differential equations.
Again we will confine ourselves to equations of order 2, although the methods can also
be applied to higher order equations.

We will consider differential equations of the form

ao(x)y” + a1(z)y’ + az2(2)y = 0, (2.1)
y(wo) = yo (2.2)
y/(l'o) =Y (2.3)

where the coeffient functions; : I, — R are “analytic” on the open intervdl,
xg € Iy andag(zg) # 0. Equation (2.1) is called thgeneral formof the linear
ordinary differential equation (of order 2).

We will see, that under the specified assumptions on the coefficient functions, every
solution of the differential equation (2.1) is analytic and has a “power series” represen-
tation

o]
y(@) = > enlz — xo)"

n=0
at zy, whose “radius of convergence® is at least as great as the distance frogn
to the nearest (not necessarily real!) “singular” point of (2.1). The coefficights
the solution series can be easily computed using a procedure callpdwiez-series
methodor themethod of undetermined coefficierfts' power series.

Before we present this solution technique, we will introduce some terminology and

review some well-known(!) facts on power series etc.
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2.4.2 Basic Definitions and Results
Ordinary Points
The equation (2.1) can be rewritten as
y" +p(x)y +q(z)y =0, (2.4)

which is called thenormal formor thestandard formof the general linear differential
equation. Here, clearly

ai(z)

pla) = s (2.5)
and
_ ag(x)
q(x) = a0(@) (2.6)
forz € Iy.

In this chapter, we will consider the special and pleasant case, were the solutions
of (2.1) are centered at a poing € I, for which ag(xg) # 0. Those points of, are
called ordinary pointsof the differential equation (2.1). In the next chapter, we will
consider the more general situation, were we are looking for solutions around points
xo € Iy, for whichag(zp) = 0, so-calledsingular pointsof the equation (2.1). Note
that in this case, the coefficient functiopsand ¢ of the normal form (2.4) of our
differential equation have “singularities” (poles) at the paint

Binomial Coefficients, etc.
Recall that the factorial of a numbere N° := {0,1,2,3,...}, can be defined recur-
sively by

0:=1 and n!l:=n-((n—1)) (2.7)
The numbern! = 1-2-.. .-n, is called nfactorial and counts the number of permutations
of n objects along a line. For numbetsc N, we define the numbers

(Z) ::ﬁn—j—i—l :n(n—1)-..l.€!-(n—k+1)7

j=1

which are calledinomial coefficientssince they occur in the binomial theorem. Recall
that (g) counts the number of ways in which we can chobsdjects out of a set ot
objects. Then we can prove the

Theorem 2.1
Suppose n, k € N, then

1. (Z) —0 ifk>n.
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n n! n
2. = — = fi <k<n.
(k) Kl(n — k)! (nk) or0<ks<n

n n—1 n—1
) = <k<n.
3 (k‘) <k:—1>+( 2 ) forl1<k<n

4. Forx,y € Randn € N°, we have

n
n _
(x+y)n _ <k>1,n kyk
k=0

which is called the “Binomial Theorem”.

If we setx = y = 1 andx = 1 andy = —1, respectively, in the Binomial Theorem,
we obtain from Theorem 2.1 equations (1) and (2) of the following corollary. Equation
(3), follows by subtracting equation (2) from equation (1) and dividing the difference
by 2.

Corollary 2.1
For alln € N we have

-

1.

n

k

o om+1
3. Z ( ‘ ) — 22m
= 27 +1
Some Basic Facts on Power Series

Recall that a series of the form

oo

Z ag(x — xo)k

k=0
is called apower seriesn x — xy. The pointz is called theexpansion poinbf the
power seriesgy, its coefficients.

Example 2.1
The well-knowngeometric series

oo
Dot

k=0



CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

is a power series with expansion poiry = 0 and coefficients;; = 1 for all & €
N° := {0,1,2,...,}. It converges, as we have seen in calculus, foradl R with
|z| < 1,i.e.forallz € (—1,1) and represents there the function

1 .
1 :E F forallz € (—1,1).
—x

k=0

oo

It diverges for allz > 1 although the function /(1 — z) is defined for all: € R\ {1}.

The following “maple worksheet” gives some visualizations:

> restart:n:=4;m:=51;

the n-th partial sum

> p[n](x):=sum(x"k,k=0..n);p(x):=Sum(x"k,k=0..infinity)
> ;p[m](x):=sum(x"k,k=0..m):

pa(x) =1+ 2+ 2% + 2% +2*
o0
p(z) := Zx"’
k=0

the limit function

> f(x):=1/(1-x);

f(x) := 1ix

The graphs of p[n], p[m] and f, note that the interval of the power series p is (-1,1)
and that p has a pole at 1!

> plot( _ {p[n](x),p[m](x),f(x)
> },x=-5..5,y=-3..10,color=[red,blue,gold]);
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ko]

Let C' denote the set of all numbetse R for which the power series ~  ax(z—
70)* converges. Sinc® .~ ak(zo — z)k = Y reo ak - 0 = 0 clearly converges, we
know thatC # () is not empty. The number

R :=sup |z — x| (0 <R <)
zeC

is called theradius of convergencef the power serie§ ;> ax(z — 20)*, the open
interval
(ro — R, 0 + R),

theinterval of convergence of the power series (which becofres, ) if R = o0).
The association

oo
x Z ap(z — x0)*
k=0

defines a functiory : (g — R,z¢9 + R) — R which is called thdimit function of
the power series, or the function represented by the power Sefjes ax(z — xo)F.
In the previous example, the radius of convergeRce 1, i.e.R = 1, its interval of
convergence i§—1, 1) and the limit function isl/(1 — z). The following theorem
describes the “quality” of the convergence of a power series.

Theorem 2.2 (Convergence)

Suppose the power series Y - ay(z — )" has radius of convergence R > 0. Then,
> o ar(z — x0)k converges absolutely on its interval of convergence I := (zg —
R, xo + R) and uniformly on each compact subinterval of I.
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Recall thata seri€s. - , b, convergesibsolutelyif the associated serigs ;- |bx|
converges. A sequencg, : I — R),cn convergesiniformlytowards the (limit) func-
tion f : I — Rif for any e > 0 there exists &, € N such that

|f(z) = fu(z)| <e foralln>noandallx € I.

Intuitively, this condition means that the sequeri¢g(z)) (note the free parameter
x 1) converges towardg(z) at the same rate for all points € I. In the case of
Theorem 2.2, the functiong, are the partial sumg, (z) := >, _, ax(z — o)~ or
(nth Taylor polynomials) of the infinite serie§(z) = > p, ax(z — zo)" atzg. In
Example 2.1, the functiong, are given by

n 1 anrl
§ k
Jn{Z) = r = —— for GIZ— —1,1.

Recall that an absolutely convergent series can be rearranged in any order or re-
grouped in any way without affecting the convergence and the sum of the series. In
contrast a conditionally convergent series (convergent but not absolutely convergent
series) can be rearranged so that it converges to any giverSlib@étween—oco andoo
(Riemann Rearrangement Theorem). Since power series converge absolutely on their
interval of convergence, they can be arbitrarily rearranged.

The following theorem gives some efficient formulae to determine the radius of
convergence of a given power series:

Theorem 2.3 (Radius of Convergence)
Given a power series y - ax(z — x0)*, its radius of convergence can be computed
using the

1. formula of Cauchy—Hadamard
1

TRy lak]|
k—oo

2. or, ifay # 0 forall k € Ny

R = lim x| .
#o8e Tans]

Example 2.2
We would like to revisit the geometric series

00
E Z‘k,
k=0

and recompute its radius of convergeri¢eNote thata,, = 1 for all £ € Ny. We first
try the root test:
1 1

1
klim Y/ ak] klim Vi1
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We will now use the quotient test and again obtain

R=tim 1% g Lo
k—o0 |ak+1| k—oo 1

)

as claimed above.

Example 2.3

Find the radius of convergence of the power series
o0 k2
> (@ = k.
k=0

Clearly,a;, = k%/2%. We will use the root test and obtain
_ 1 _ 1 _ 1 _ 1
dm V] e VR ()
~ o T e T

k—o00

and by the limit theorem of calculus

B 1 _2_,
BNt
3(Jim Vi)© 1

sincelimy_,oo VEk = 1.

Power series behave very much like polynomials:

Theorem 2.4 (Differentiation and Integration)

Suppose Y7~ ar(z — x0)* is a power series with interval of convergence I := (zo —
R,x0 + R), R > 0, representing the function f : I — R as limit function, i.e.
f(x) =Yp2yar(z — x0)k forall z € I. Then

1. f is differentiable on I and its derivative f' has a power series representation
with the same radius of convergence, which can be obtained from the power
series for f by termwise differentiation:

f(z)= Zkak(aﬂ ) forallz € I.
k=1

2. f is integrable on I and its integral [ f(x)dx has a power series representation
with the same radius of convergence, which can be obtained from the power
series for f by termwise integration:

/f(a:)dx: W _(z—z) L+ C  forallz e I.
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Through repeated application of Theorem 2.4, we obtain the following corollary

Corollary 2.2

Suppose f(z) = Y pey ar(z—x0)" forz € (xo— R, xo+R), R > 0, then f possesses
derivatives of any order, which can be obtained by repeated termwise differentiation of
the power series. In particular, we have

_ f(k) (zo)

o for all n € Np.

Qg

Theorem 2.4 is a very useful tool for computing new power series expansion from
old ones. We demonstrate this technique by some examples and add a list of funda-
mental expansions, which can be obtained by Taylor’s theorem.

Example 2.4
Expand the functiorf given by

as a power series in termsof Then find a power series representationi@ftan.

The given functionf has the form of the limit function of the geometric series
studied above. Therefore, we obtain

o0 o0

f@) =1 +13;2 - (1—3:2) B kz<_x2)k =D (=1

=0 k=0

Since the geometric series has radius of convergéneel, we conclude that— 2| <
1 = R, which is equivalent tdz| < 1. Hence, the power seri€s -, (—1)*z2*
representing the functiofi has radius of convergende= 1, too.

We will now determine the power series expansiordfietan. Recall that

1
arctan’(x) = i
Therefore, we can conclude that
1 oo
arctan’(z) = 52— g_o(_l)kx%- (2.8)

for all || < 1 and apply Theorem 2.4(2) and integrate equation 2.8 in order to obtain a
series representation farctan(z) + C' = [ arctan’(z) dz, which will have the same
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radius of convergence, namelyy= 1. Hence

arctan(z) = /arctan’(x), de — C

:/<§:(_1>kx2k> dw —C

k=0

_ Z/((—l)kx%) o —C

L )

2k +1

(2.9)

(2.10)

(2.11)

(2.12)

By evaluating botharctan(x) and the power series 2.12:at= 0, we find thatC = 0.

Thus

oo
1
arctan(x) = Z(—l)k mx2k+1 .
k=0

Theorem 2.5 (Fundamental Power Series Expansions)

Here are some fundamental power series expansions and their radius of convergence:

(Geometric Series).

(Binomial Series).
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0 2k+1

9. arctan(z) = Z(—l)k *

P 2k+1

|z| < 1.

A power series is uniquely determined by its coefficients. In other word, if two
power series with common expansion paipthave the same values on a neighborhood
of zo then they are identical. In fact, this result follows even under weaker assumptions:

Theorem 2.6 (Identity Theorem)
Suppose x is limit point of the set S which is contained in the interval of convergence
of both of the power series below. If

Z ak(z — aco)]C = Zbk(if - CUO)k
k=0 k=0

for all x € S (note that S could be a tiny neighborhood of the point x) then aj, = by,
for all k € Ny.

Recall that a point, € R is called dimit point of the setS C R if any neighbor-
hood ofzx, contains at least one point Sfdistinct fromzx.

The assertion of Theorem 2.6 is fundamental for the “power series method” for
solving linear differential equations, which we will study below. Also crucial for this
solution method is a working knowledge of the algebraic operations which can be per-
formed with power series. Given two functioisandg which are representated &
by the power series - , ax(z — zo)" andd_ 7 bi(z — 70)* on some open subinter-
val (zo — r, o + ) r > 0 of their intervals of convergence, respectively, the following
theorem indicates, that the functiolfist g, af and fg can also be represented by a
power series at, and how their power series can be obtained from the power series of
f andg:

Theorem 2.7 (Algebraic Operations)

Given two power series f(x) = Y pq ar(® — 20)* and g(z) = Y32, br(z — 20)
with common expansion point x( and positive radius of convergence. Letr > 0 be
chosen such that both power series converge for all |z — x¢| < r (for example, could r
be chosen to be the smaller of the two radii of convergence). Then

k

o0

1 f(@) +g(@) = " (ar + bi) (z — 0)*.

k=0

2. (af)(@) =Y (aax)(x — z0)".

k=0
00 k

3 flx)-g(z) = Z Zajbk,j (z — )", (Cauchy Product)
k=0 \j=0

Keep in mind that polynomials are special power series, namely power series, for
which “almost all” coefficients are zero. “Almost all” is just short for “all but finitely
many”.
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Example 2.5

Supposef (r) = ag + a1r + azx® + azx® andg(x) = by + bix + box® + by +

byz* are two polynomials. Sinc¢ andg coincide with the polynomials representing
them everywhere, they are just called polynomials. We will compute their product
and see that the Cauchy product is just a natural extension of the common polynomial
multiplication to absolutely convergent series.

f(z)-g(x) = (ap + arx + azx® + azx®) - (bg + by + bya?)
= (agbo) + (apby + arbo)x + (aghs + arby + azby)x?
+ (a0b3 + (lle + agbo)l'g + ((10174 + a1b3 —+ a2b2 + a3b1)x4.

Example 2.6
Suposef(x) = 2 and the functiony(z) = 1/(1 — ), which can be represented by
the power seried ;- , = on the open interval—1, 1). Then, with

1 ifi=y
5ij = e J
0 else

denoting the Kronecker-delta, we obtain

fa) gla) =a® =Yt
0

= <0+Ox+0w2+1m3+0x4+0x5+---> Zwk
k=0

- (;637;@]“) : (;ﬁ) = i Zk:(sg,j |2k = imk

k=0 \j=0 k=3

which is the same as

oo
= E k3,

=0

Example 2.7
Supposef(z) = 2™ andg(z) = >_,—, axz”, then, as above, we obtain

o0
f(z)-g(x) = (O + 0z + -+ 0z~ 4 12" + 0zt + ) : Zakajk
k=0

') 00 %S k
(Zé'no,kxk) . <Z ak:z:k> = Z Z5no,j CQf—j "
k=0

k=0 k=0 \j=0
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and, since,,, ; is only different from0 if j = no (in which case it assumes the value
1), this expression is

o0 o0
= E ak_nocckzg agzFtmo.
k=0

k:’n()

We can therefore conclude that multiplying a power serie&in x) by the binom
(x — x0)™ yields

oo oo
(x — o)™ - Z ag(x — aco)]C = Z ap(x — x())"0+k.
k=0 k=0

Example 2.8
oo Ik 0o xk oo k 1 1 .
R O SO R DI R
k=0 k=0 k=0 \j=0
0o k oo k
k! & k! ok
=2 |25 DB DTl
k_o(j_oﬂ(k—y)'k' o\ k=) R
0o k 00
kY 2 Rz" 22)* o
S ()] m-r - g -
k=0 \ j=0 k=0 k=0

Definition 2.1 (Real-Analytic Functions)

Supposel is an open interval and, € I. Then the functionf : I — R is called
analyticat x, if there exists a neighborhood @§, in which it can be represented by a
power series. The function is calladalyticon [ if it is analytic at each point, € I.

Example 2.9
Clearly, every polynomial is analytic dR.

Example 2.10
The functionf given by the expression

f(z) = % forall z € (0, c0),

is analytic atzy = 1 (actually it is analytic or{0, o). The following computation can
be easily extended to a general proof:
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and, using the geometric series

_ i(_a —x))k forall | — (z —1)| < 1.
k=0

Hence,

fl@)= > (-D*a-=2)* foralljz—1] <1,
k=0
or in other words, for alk: € (0,2). In this example, the neighborhood mentioned in
Definition 2.1, is the open intervdD, 2) containing the pointy = 1. Note that the
power series - (—1)*(1 — z)* representg only on this neighborhood, outside it
does not even converge.

Theorem 2.8
Suppose the functions f and g are analytic on the open interval I. Then f + g and fg
are analytic on I. If g(x) # 0 for all x € I, then also 1/g is analytic on I.

2.4.3 The Power-Series Method
Existence and Uniqueness of Solutions

Recall the following theorem, which guarantees the existeneeliokear independent
solutions of a “normal” linear differential equation of order

Theorem 2.9 (Existence)

Suppose the functions a; (j = 0,1,...,n) are continuous on the open interval I and
ag(z) # 0 for all z € Iy. Moreover, suppose kjeRforj=0,...,n—1andxg € Iy.
Then there exists exactly one solutiony : Iy — R of the linear differential equation

ao(2)y'™ + ay(2)y" D + - 4 an_1 (@)Y + an(z)y =0
satisfying the initial conditions y(xo) = ko, ' (z0) = k1, ...,y D (zo) = kp_1.

We confine ourselves again to the special but for applications most important case
of linear differential equations of order 2. Here, it can be shown that under the stronger
assumptions requiring that the coefficient functiangre not just continuous ofg but
analytic onl, then the solutions are analyticaj.

Theorem 2.10 (Analyticity of the Solutions)
Suppose the functions az, a; and aq are analytic on the open interval Iy and suppose
that zy € Iy is an ordinary point of the differential equation

ao(2)y” + a1(2)y’ + az(x)y = 0. (2.13)

Then every solution of (2.13) has a power series representation whose radius of con-
vergence R is a least as great as the distance from x to the nearest singular point of
(2.13).
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Determining Solutions

We will now demonstrate by an example, how the solutions of a linear differential
equation can be obtained using the “power series method”.

Example 2.11
We would like to solve the linear differential equation
y// _ $2y =0
whose coefficienta(z) = 1, a;(x) = 0 andas(z) = —2? are polynomials and as

such analytic oy = R. We are looking for solutions around the origin, ig.= 0,
which is an ordinary point of the equation.

By Theorem 2.9 and Theorem 2.10, the differential equation possesses two linearly
independent solutions and every solution is analyticyafTherefore, we can assume a
solution of the form .

= Z cpa”.
n=0

We determine its first two derivatives using Theorem 2.4 and obtain

o0
y/(l‘) = Z ncnx’” I
n=1
oo
y'(x) =Y n(n—1)c,z" 2
n=2

Substituting these expressions into the original differential equation yields
0= Z n(n — 1)anL'”*2 — 22 Z cpx™
n=2 n=0

which by Example 2.7 equals

o0 oo
= Z n(n —1)c 2™ 2% — Z cnz™ 2
n=2

n=0

and applying the index substitution = n — 2 to the first and the index substitution
m = n + 2 to the second power series, we obtain

ol

(m+2)(m + 1)cpmqz™ Z Cm—ax™
0 m=2

3
I

rewriting the sums such that they have the same starting index yields

=2-1-c04+3-2-¢c3-2+

+ (m+2)(m + 1)cpmq2z™ Z Cm—2x™

m=2
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using Theorem 2.7 we can combine the two power series and obtain the power series

= 2¢9 + 6caT + Z ((m +2)(m 4+ 1)cmpe — cm72)xm_

m=2

Thus, summarizing, we have obtained the following identity

0 =2c¢y + 6c3x + Z ((m +2)(m+ 1)emea — cm,2>xm

m=2

for all z € (—R, R), whereR denotes the radius of convergence of the power series.
Thus, by Theorem 2.6, we can conclude that

202 = 07 663 =0
and

(m+2)(m+ 1)cme2 — ¢m—2 =0 forallm > 2.

Hence, the coefficients,, satisfy the following recursion formula:

co = arbitrary
c1 = arbitrary

Coy = 0
C3 = 0
and for allm > 2
1
Cm+2 =

(m+)(m+2) ™
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Thus, we can compute the first values:gf.

1
4= 3 o
1
C5—4.5 C1
1
= —_— :O
CT 56
1
= .c3=0
Cr 6.7 C3
1 1 1
=g —='C4=-—"=—="C
8T 7.8 M T34 7.8
1 1 1
Cg = — +Cr = —— +« —— - C
97 8.9 P 4.5 8.9
1
€0 =gq9 =0
1
=0 7Y
1 1 1 1
C — g = —  —— - - C
712 T34 78 1112 70
1 1 1 1
BT 1913 ®T 1.5 8.9 1213
By induction, we obtain
co = arbitrary
c1 = arbitrary
C2:O
63:0
Co Co
Cqk = = n .
1 (45— 1)aj 4RI, (45— 1)
Cc1 C1
Cak+1 = . = ;
[l 4545+ 1) 4RI, (45 + 1)
Capy2 =0
cap3 =10

for all £ > 1. Hence, we obtain the following solution, which still contains the free

parameters, andc;

NE

y(r) =

k=1

4k
<C4k$ + C4p+1

4k+1)
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which can be rearranged, since power series converge absolutely on their interval of
convergence

c- 1 4k> ( - 1 4k+1
=0 | Y e ra | Y e
(k_o AFE! Hj:1(4j -1) o AFK! Hj:1(4] +1)

since the empty productﬁgzl(@‘ —1)and H2=1(4k + 1) (by definition) equal 1,

also recall thatl® = 1 and0! = 1; hencey(z) = coyo(z) + c1y1(x), whereyy(x)
andy; (z) stand for the first and second power series, respectively, which are clearly
linearly independent. Since the equatigh— z?y = 0 does not have any singular
points, by Theorem 2.10, the radius of convergence of the solugipaady, clearly

is R = oo.

HOMEWORK SET 2.1
1. Provethatfol <k <n

2. Evaluate

n n—1
2n 2n
> (o)~ (o)
k=0 k=0
3. Using power series and Cauchy products to verify the “First Pythagorean lden-
tity” cos?z + sin?z = 1. HINT: Use the identity established in the previous

exercise!

4. Give the power series expansionsgfz — 1) and1l/(z — 1) in = and determine
their radius of convergence.

5. Show that the Cauchy product of the two power seriesrgpresenting /(1+x)
and1/(1 — x) reduces to the power series expansiom (fi — x2).

6. Find the radius of convergence of the power series

= boon2/_ 1 =l
(@) ’;—(nwy ()T;};n(w ) (C);OW

7. Using the power series method, find complete solutions around the origin for the
following differential equations

@y —Xy=0 (b) " =Xy =0 © y' +ay +2y=0
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2.5 The Method of Frobenius

2.5.1 Introduction

Recall that any solution of the ordinary linear differential equation
aog(x)y” + a1 (x)y’ + az(z)y =0 (2.14)

whose coefficient functionsy, a1, as are analytic at:y and for whichag(zo) # 0, is
analytic atzq and therefore has the form

y(x) = Z en(z — )" (2.15)
n=0

The radius of convergence gfis at least as large as the distance frggmo the nearest
singular point of (2.14) (including complex zeroesaf!). As we have seen in the
previous chapter, the power series method allowed us to find a complete solution of
(2.14).

However, in applications, for instance the “separation of variable method for the
classical partial differential equation, we are often lead to linear differential equations,
which need to be solved around so-called “regular” singular points. We just mention
the Bessel and Legendre differential equations as examples.

To address this need, we will study an extension to the power series method, called
“Frobenious method”, which will allow us to also develop series representations of
solutions of (2.14) around regular singular points.

2.5.2 Singular Points

We will rewrite equation (2.14) in “normal form”

v +p(x)y +q(x)y =0 (2.16)
where (2) ()
L ai\xr z) = as(xT .
p(x) L ao(I)’ q( ) Q/O(I’)’ (2 17)

xo € Ip andly C R is an open interval containing the poiry.

Definition 2.2 ((Ir)regular singular point)
Supposex € Iy with ag(z¢) = 0. Then the point is called a
1. regular singular pointof the equation (2.16) ifz — zo)p(x) and(z — z0)%q(x)
are both analytic aty, i.e. if there exists power seri@j"zo pj(z — z0) and
> =0 4j(z — x0)7 with positive radii of convergenc,, R, > 0, respectively,
such that

(z — xo)p(x) =Y pj(z — o)’ (2.18)
j=0
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and
(x — x0)?q(z) = qu‘(ff — zo)’ (2.19)
=0

for all x of their common domaiy — R, zo + Rp) N (2o — Ry, o + Ry).

2. Otherwise the point, is called arirregular singular pointof (2.16).

Example 2.12
The linear differential equation

z(z—1)%y" =3y +5y =0

has normal form

I ’
=0.
Y +ac(:z:—l)Qy Jr:C(az:—l)Qy
—— N——
p(z) q(x)

We will classify the singular points, = 0 andz; = 1 of this equation by applying
Definition 2.2:

1. We will first considerry = 0:

-3 -3
(@ =wo)p(e) = (@ = 0) =335 = =
5 %4

(*T - mo)QQ(x) = (m - O)Qx(x —1)2 = (x—1)2

which are both analytic aty, = 0. Hence,zy = 0 is a regular singular point of
the given equation.

2. We will next checkr; = 1:

-3 -3
(z —21)p(x) = (z — 1)95(:13 —1)2 - z(rx—1)
5

5

2 2

o = (r—1)°2——M— =

(‘IJ xl) Q(m) (l‘ ) .17(.%‘ _ 1)2

where the first quotient isot analtyic atz; = 1. Hence,z; = 1 is an irregular
singular point of the given equation.

Remark 2.1 (Necessary Condition for Analyticity)

The following list contains two useful necessary—but not sufficient—conditions for a
function to be analytic at a point xq derived from its associated power series represen-
tation:
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1. lim,_,,, f(x) exists (it equals the constant term of the power series representa-
tion of f atxy !)

2. f possess derivatives of any order at xg (since a power series possess derivative
of any order !)

Example 2.13
In the equation

y' +Vry =0,

which is already in normal form, the functiongz) = 0 and¢(z) = /« for all
x € [0,00) . Clearly, bothp andq are analytic for allzy, > 0. However,q is not
analytic atzy = 0, since(r — x¢)%q(x) = (z — 0)2y/z = 2°/2 is not analytic at
xo = 0 because its third derivative does not exist@t= 0 as can be easily verified.

HOMEWORK SET 2.2
1. Find the singular points of the equations

@y +2xy +y=0 © Q-2 +y —y=0
(b) 22%y" —3X%2y =0 (d) 22y —y +2y=0
2. Show thatlz — 1)p(z) = 2(z — 1)/« is analytic atry = 1 by computing its
Taylor series expansion in— 1.
3. Show thatr?q(z) = 3z/(x — 1)3 is analytic atry = 0 by computing its Taylor

series expansion in.

2.5.3 The Solution Method

Supposer, € 1y is a regular singular point of the equation
v +plx)y +qx)y=0, =z €l (2.20)

For convenience, we assume thgt= 0 (otherwise shift using the substitutign:=
x — w0 !) and Iy := (0, a) for somea > 0. We multiply the equation by? and obtain

22y + x(xp(x))y' + ($2q(z))y =0. (2.21)
Since, by assumptiony; = 0 is a regular singular point of (2.20), there exist two
power seried "2, pja’ and)_2 ¢jo7 such that

zp(x) = ijxj7 |z] < R, (2.22)
=0

rq(z) = qumj, |z| < Ry. (2.23)
=0
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Remark 2.2
In a small neighborhood of the point zy = 0, equation (2.21) can be “approximated”—
using just the Oth term of the power series (2.22, 2.23)—by the equation

1

z%y" + pozy’ + qoy = 0, (2.24)

which is a Cauchy-Euler equation. As we have seen, the solutions of (2.24) have the
form

y(z) = 2" f(z) (2.25)

for somer € R and f(x) =1or f(x) =Inz.

In view of Remark 2.2, it is natural to expect that the solutions of equation (2.20)
have the form

oo

y(x) =a" Y cpa”. (2.26)

n=0

We will first demonstrate the solution technique in general to make transparent
steps where the method has the potential of failing and provide remedies. Afterwards,
we will study examples.

Suppose

y(@) =2" Y cja? =Y e’ e #£0,r€R (2.27)
j=0 §=0

is a solution of the the equation

(oo} o0
2y + ijxj y + qua:j y=0, 0<z<min(R, R,). (2.28)
=0 =0

Then since,
22y =2 Z(] +7)(j + 7 — 1)eaitr2 (2.29)
=0
= Z(j +7)(j + 71— et (2.30)
=0
and
o =2 35+ eyt 231
j=0
= Z(] + T)ijj+r7 (2.32)
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we obtain
0= (G+r)(+r—1Dea’™" (2.33)
7=0
+ (Z pj’ Z(] + 1)t + Z qja’ Z cjxltr (2.34)
=0 =0 =0 =0

(G470 +r—Degaltr (2.35)

M

(=)

+ Z (an_k(k + r)ck> a4 Z <Z qn_kck> "t (2.36)
n=0 \k=0 n=0 \k=0
=" lz <(n +r)(n+r—1)c, + Z(pnfk(k +r)+ an)ck) xn] :

n=0 k=0
(2.37)

<.

Division by z" (notex > 0) yields

0= Z ((n +7r)(n+r—1)c, + Z(pnsz(k +7r)+ an)ck> ", (2.38)

n=0 k=0

which implies by the Identity Theorem that
(n+r)(n+7 = Den+ I (poslb+7) + g i) =0 (2.39)
k=0
for alln € N°. Forn = 0, we obtain
(r(r — 1)+ por + qo)co =0, (2.40)
which implies, since we chosg # 0 that
r(r—1)+por +q =0 (2.41)
and therefore
h(r) =72+ (po — 1)r +qo = 0. (2.42)
Equation (2.42) is called thedicial equationof (2.20).

Remark 2.3

We mention that the coefficients py and qo occuring in the indicial equation (2.42)
and which are the constant terms of the power series expansions of xp(z) and x2q(z),
respectively, can be easily obtained by computing the limits

po = lim ap(x),  qo = lim 2%q(x). (2.43)
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We summerize: If (2.27) is a solution of the differential equation (2.20), then the
parameter has to satisfy the indicial equation (2.42).

We will now study the conditions which the coefficientshave to satisfy if (2.27)
is a solution of the differential equation (2.20). To this we first rewrite equation (2.39)
collecting the terms containing, on the left side:

n—1
(1) +7 = 1) +(po(n+7) +a0)] en+ D (Puoklb+7) + uos o =0,
k=0
(n4+r)2—(n+r)
h(n+r)
(2.44)
noting that the coefficient af,, coincides withh(n + r), i.e.:
n—1
h(n + T)Cn = - Z (pn—k(k + T) + QH—k,)Ck (245)
k=0

foralln € N.
We will now use the recurrence relation (2.45) to determine the coefficigra$
the first solutiory; of (2.20) . In order to facilitate the computation, we introduce the
convention that the solutions,r, € C of the indicial equation (2.42) are indexed First solutiony;
such that Ré;) > Re(r2). Then, if we start our computation with the “larger” zero
r1 of the indicial equation, then

h(n+r)#0 forallneN, (2.46)

(otherwisen + 1 would be a larger zero df, sincen > 0!) and we can divide the
recurrence (2.45) bi(n + r1) solving fore,, for all n € N and obtain

1 —
h(n+r1)

Cp = —

1

(pn_k(k )+ qn_k>ck foralln € N, (2.47)
k=0
which uniquely determines the sequence of coefficieptencecy has been chosen.
Thus we obtain the first solution

(@) = [2[™ > cna” forall 0 < |a| < Ry, (2.48)
n=0
with free parametex,.
We will now compute the second solutign of (2.20) and consider the second zero

ro of the indicial equation (2.42). Renaming the coefficients the recurrence (2.45)

to d,, and replacing- by r, we obtain the recursion Second solutiomy,
n—1
B+ r2)dy = = > (pu-pll+72) + an ) do (2.49)
k=0

for all n € N. However, since by assumption ®e) > Re(rs), it might happen that
ro +n = r; for somen € N. Therefore, we have to distinguish the following three
settings:
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1.7 —re € Z: Then, since Rg1) > Re(ra), n+ry # ri foralln € N, i.e.
h(n +r9) # 0foralln € N, we can solve for,, by diving equation (2.49) by
h(n + r2) and obtain the recurrence

n—1

1

o = s kz_%(pn_k(k +72) + ) d (2.50)

for all n € N, which yields the second solution
oo
yo(x) == x| Y dpa™ forall0 < |z| < R, (2.51)
n=0

with free parameted.

2. 71 — 19 € N. Thenry + ng = r1 for someng € N. In this case, we can com-
pute the coefficientd;, ds, . .., d,,—1. However, ifn = n, then the recurrence
(refeq:recurrencet) yields the identity

nofl

h(ng +19)dng = — > (pno_k(k Fra) 4 qno_k,)dk. (2.52)
—_———

—o k=0

If the right side of equation (2.52) is also zero fer= n, thend,,, can be
chosen arbitrarily and we obtain the second solution

ya(x) = |2|" Y " dpa™ forall0 < |z| < Ry (2.53)
n=0

with the free parameter andd,,,. If the right side of equation (2.52) is not
zero forn = ng, then the solution method has to be modified or the method of
“Reduction of Order” can be applied to obtain a second solution.

3. r1 —ry = 0: In this case this method only yields one solution. To obtain a
second solution this method has to be modified or “Reduction of Order” has to
be used.

The general result is formulated in the following

Theorem 2.11
If the equation y" + p(z)y’ + q(x)y = 0 has a regular singular point at xy = 0
and if zp(x) = Y77% pja’ and 2?q(x) = 372 g2 for [z| < R, and |z| < Ry,
respectively, and if r1,ro € C are the solutions of the indicial equation 7> + (pg —
1)r + qo = 0 indexed such that Re(ry) > Re(rq), then the differential equation has a
complete solution

y(x) = ayr (x) + by2(z), a,beR (2.54)

on a “deleted neighborhood” 0 < |z| < R where R > min{R,, R,} and the functions
y1 and y» have the form
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1. Ifry — ro € 7, then

(oo}
yi(@) =2 ena”, o #0 (2.55)
n=0
ya(z) = 2| D dna”,  do #0. (2.56)
n=0
2. Ifry — ro € N, then
yi(z) = 2" D eaa”, o #0 (2.57)
n=0
yo(x) = || Y dpa™ + cyr(z) Infz|,  do #0 (2.58)
n=0

where ¢ € R (can be zero!).

3. Ifry —ro =0, then

yi(@) = 2" ena”, o #0 (2.59)
n=0

yo(z) = |z|™ Z dpz™ + y1(x) In|z|. (2.60)
n=1

Example 2.14 (Case 1ry — ro € Z)
We consider the differential equation

22%y" + (2® —x)y +y=0 (2.61)
which has normal form
22—z 1
" "+ —qy=0. 2.62
Vot Yt ay=0 (2.62)

We are seeking a solution near the paigt= 0, which is a regular singular point of
equation (2.61), since

zp(z) = 2z -1 and 2%¢(z)= 1 (2.63)
~~ ~~
Po q0
1. The indicial equation of (2.61) is given by

h(r)=r>+(po—r+g =r>—3r+3=0, (2.64)

which is equivalent to
2h(r)=2r* =3r+1=2r—1)(r—1)=0 (2.65)
and implies that, = 1 andry = 1. Sincer; —rp =1— 3 =1 ¢ Z, we arein

case 1.
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2. We will now determine the recurrence relations for computing the solutions. We
are seeking solutions of the form

oo oo

y(z) =a” chxj = ch:rj+r (2.66)

j=0 j=0

where we assume thaf # 0 andz > 0. Its derivatives are

Y (z) = (G +r)ea’ ! (2.67)
j=0
y'(z) = Z(] +r—=1)(j + )it (2.68)

ECH
Il
=)

Substituting these functions into the equation (2.61) yields
e .
0=>Y 2(j+r—1)(j+r)c;a’t"

Jj=
o}

0
MR ED SR ILSD D
=0

=0 =0

sub:f:=j5+1

=S G +r =G+ = G4+ 1 eat
§=0

+ Z(é —1+7)cp gzt
=1

=12(r—=1r—r+1jca"

2h(r)=2r2—-3r+1

—I—Z[ jHr—=1G+r)— (j—l—r)—i—l}cja:j”
2h(j+r)=2(j+r)2=3(j+r)+1

+ Z(ﬂ — 14 7).
=1

Division by z” yields

0=[(r—1)(2r—1)]co
+Z{ (j+r—1) 2(j+r)—1)]cj+(j+r—1)cj,1}xj,

from which, by the “Identity Theorem”, follows that

[(r=1)(2r —1)]co =0



and

[G+r—1)2G+r)—1)]cj+(i+r—1)cj—1 =0 foralljeN.

Since, by assumptiorg # 0, it follows that(r — 1)(2r — 1) = 0 which is the
“indicial equation” of (2.61). We thus obtain the recurrence relation

[(G+r—1D2G+r)—1)] == +r—1)—1 foralljeN. (2.69)

2h(j+r)

3. We will now use the recurrence (2.69) to compute the two linearly independent
solutions of equation (2.61). We start with the larger solutipa= 1 and substi-
tute it into the recursion (2.69) and obtain (note thgt+ 1) # 0 forall j € N,
sincer; = 1 is the smallest root of the equatidfr) = 0.)

—Cj—1 .
= ——— forall N. 2.70
Cj 2 +1 J € ( )

With ¢y € R arbitrary, we then compute

—Co

o=— (2.71)

om0 @7
and thus

cj = (e _ (-1)]%eo. (2.74)

I (2k+1) (27 +1)!

for all j € N. For convenience, we sef := 1. Then

] |2j ; o] ]
! It 2.75
- ]Z 2] + 1! go 2] + 1)! ( )

is the first solution of the equation (2.61).

The following maple worksheet computes the 10th partial sum @ind plots this
function:

> restart:c[0]:=1;

Co ‘= 1
> for j from 1 to 10 do c[j]:=(-1)7*Y((2*+1)") od;
C1 = -1

6
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1
Co Z:@
-1
C3 .:%
1
C4.—m
-1
332640
1

"~ 8648640

_1
7 950459200

1
8 = 3821612800
B -1

T 335221286400

1
10 *= 14079294023300

> p(x):=sum(c[k]*x"(k+1),k=0..10);

Cs

Ce

Cg

1 3 1

1.2, 1.3 1 .4 1 .5
p(z) =r—ga°+ gz 10 T 1207

1 6 1 7 1
332640 £ T+ S6asea0 & 259459200 *

1 9 1 10 1 11

+ 5821612800 & 335221286400 £ T 14079294028800 £

> plot(p(x),x=-5..5);

- —2 ] 2 i

—10

—12
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HOMEWORK SET 2.3
1. Determine the second solution for Example 2.14.

2. Find two linearly independent solutions near the origin for the differential equa-
tion 22%y" + (222 + z)y’ —y = 0.

Example 2.15 (Case 2r; — ry € N)
We will now consider the differential equation

92%y" + 3y’ +2(x —4)y =0 (2.76)
or in normal form
1 2(z — 4)
"y 4+ Ly =0. 2.77
Yoty g (2.77)

We are seeking a solution near the paigt= 0, which is a regular singular point of
equation (2.76), since

ap(r) = —3 and rq(x) = 2z -3 (2.78)
~~
Po q0

1. The indicial equation of (2.76) is given by
h(z) =1"+(po— r+qo=1"—3r—§ =0, (2.79)
which is equivalent to
9% —6r —8=(3r—4)(3r+2)=0 (2.80)

and implies that, = % andr = —2. Sincer; —r, = %2+ 2 =2 € N, we are
in case 2.

2. We will now determine the recurrence relations for computing the solutions. We
are seeking solutions of the form

oo oo

y(z) =a" Z cjx? = Z cjzltr (2.81)

Jj=0 Jj=0

where we assume thaf # 0 andz > 0. Its derivatives are

y'(z) = Z(] +7)ejal Tt (2.82)
Jj=0
y'(@) =D (G =D +r)ea’ T (2.83)
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Substituting these functions into the equation (2.76) yields

0="0(j +r—1)(j +r)eja’*"

oo oo o0
+ Z 3(j +r)ejai T+ Z 2cjad T — Z 8zl ™"

=0 =0 j=0

sub:£:=n+1

oo
E 2ce,1x€+
=1

= [97"(7“ — 1)+ 3r — 8]coz”

+Z( G+ +r—=1)+3(+7) = 8cj +2¢;- 1)9&”

Division by z" yields

0= [(r— D2 - D]eo
+Z{ +r =120 +7) = D]es+ G+ = Dej fa,

from which, by the “Identity Theorem?”, follows that
[(r=1)(2r —1)]co =0
and

20 +r—1)2G+r)—1)]¢;+(G+r—1)c;_1 =0 foralljeN.

2.5.4 The Bessel Functions
Introduction

Before we construct the Bessel functions, we would like to recall that several important
functions can be defined through differential equations. We illustrate this by some
simple and well-known examples.

Example 2.16 (The Exponential Function)
Consider the homogenius first order linear differential equation

y —y=0. (2.84)

To illustrate the similarity to the case of the Bessel functions, we will use the power
series method and seek a solution of the form

o0
x) = Z cnx™.

n=0
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Substituting the series and its derivative into (2.84), we obtain
0= Z ne,z”t — Z cpz”
n=1 n=0
and with the index substitutioris= n in the first andk = n + 1 in the second sum
= Z kcnxk_l — Z ck,lxk_l = Z(kck — ck,1>xk_1,
k=1 k=1 k=1
from which follows by the Identity Theorem that, — ¢, = 0 for all k € N and

thus
1 1 1 1

Ck = ECkl k k:—l Ck—2:"':E'CO'

Hence, if we set, := 1, we obtain the particular solution

(o)

=3

k!’

k=0
of the equation (2.84) which is called the (hatural) exponential function and usually
denoted denoted hykp(x) or simply bye®. As the differential equation does not have
any singular points, by the theorem on the analyticity of the solution from the previous

lecture, we can conclude that the series converges #®R. Thus the general solution
of (2.84) is given byy(z) = c- e* forc € R.

Example 2.17 (The Trigonmetric Functions Sine And Cosine)
Consider the homogenius linear second order constant coefficients equation

y' +y=0. (2.85)

Again, for the purpose of illustration, we seek solutions of the form

o
= g cpx”
k=0

Substituting the series and its secon derivative into the equation (2.85), we obtain

O—Z n(n — 2)c,a"” 2+ch

n=2

from which follows using the index substitutidn= n in the first andc = n + 2 in the
second sum

o0
Zk -2 ckxk 2—|—ch ozk 2
k=2 k=2
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and

_Z( k—2)ck + cp— 2> b2

and by the Identity theorem finally the recurrence relakdh — 2)c;, + c,—2 = 2 or,
solved forey,

-1
Crp = m *Ck—2 for all k Z 2.
Therefore,
co = arbitrary
c1 = arbitrary
-1
Coy = ﬂco
-1
C3 = szcl
C. ;16 = (_1)2 C
T3P 43217
It I G Vi
" 5.4 ' 5.4.3.27°"
and
1
1 k
ek = (=1) (2k)! €
¢ (=1)* ! ¢
2k+1 (2]€+ 1) 1

= ((=DFe —D¥er gpaq
ye) =2 ((211)!0“*((%11;!:”“)

k=0
0o 2k+1
= —1)k
0 kzzo( 2k: + 12 2k+ 1!
The series solution
@) = YD
y1(x) = -1
k=0 (2k)!
is commonly abbreviateebs x, while the solution
> l‘2k+1
= L

is usually denoted byin x.
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The Bessel Equation of ordens

The second equation
22y + xy + (V2?2 — %)y =0 (2.86)

is called theBessel equationf orderv with parameter\. This equation arises in a

great variety of problems, including almost all application involving partial differential

equations like the wave equation, heat equation in regions with circular symmetry.
The substitutiort := Az reduces equation (2.86) using

dy_ dy dy2_ ngZy
AT M R 7
to the form )
d*y  dy
220 4T 2 -2y = 2.87
tdt2+tdt+(t vy =0, (2.87)

which is called thBessel equationf orderv. We will solve this form of the equation,
but choose the simpler formulation

2y +ty + (£ —v7)y =0,
or in normal form
n 1 ,+t2—y2 —0
Yoty 2 y=0
Note thattp(t) = 1 andt?q(t) = —v? + t2, which implies thap, = 1 andgy = —v2.
Thereforety = 0 is a regular singular point of equation (2.87) and its only singular
point. We will systematically solve equation (2.87) using the Frobenius method.

(a) Indicial equation:

h(r) =1+ (po — 1)r + qo
=r2 4+ (1 -1)r+(-v?
=72 -2 =0.

Hence,;r; = v where we choose > 0, andr, = —v.

(b) Recurrence relation;
We are seeking a solution of the form

o0 o0
y(t) =" Z et = Z cnt"t > 0.
n=0 n=0

Substitution its derivatives

oo

Y(y)=> (n+r)e ™!

n=0
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and

[e.9]

y//(y) = Z(n +r— 1)(n + r)cntn-&-r—z
n=0

into equation (2.87) yields

oo

0= Z(n +r—1)(n+r)c,t"" + Z(n +7)ent"
n=0 n=0

+ Z Cn tn+T+2 4 Z tn+r
oo

Z(n—i—r—l n+r)+(n+r)—u2)cnt”+’"

n=0
[e%S)
+ Z ¢ tn+r+2
n
n=0

and with the index substitutioh = n in the first andk = n + 2 in the second
sum and simplfying the coefficient of, we obtain

[e.9]

((ki + )2 _ V2)cktk+r + ch_2tk+r

k=2

k=0
(r — 1o+ ((r+1)* —v)ert +

3 [(0 )
k=2
Using the Identity theorem, we conclude that
(r? — vy =0, ((r+ 1)? — V2)61 =0

and
(k+7)?—v*)ep +cpo=0 forallk >2.

Since by definitiorey, we obtain (a second time) the indicial equation
h(r) =7 —1v?>=0
and the recurrence relation
h(k+7r)ck +cx—2 =0 forall k > 2.

Note that our assumptian > 0 implies thatc; = 0. Thus we obtain the recur-
rence
Co 75 O7 Cc1 — 0
and
h(k+r)cg + cg—a =0 (2.88)
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(c) Using the recurrence relation to determine the coefficients of the first solytion

We setr := r; = v > 0 which is the “greater” of the two solutions of the indicial
equationh(r) = r? — v? = 0. Thereforeh(k + v) # 0 for all k > 0, since
ry = v > —v = ry. Hence we can solve equation (2.88) &prby dividing the
equation byh(k + v) = k(k + 2v) yielding

1 1

Cr = —W Cp—2 — _m CrL—2 for k :2,37... (289)

Thus we obtain

co = arbitrary but£ 0

c1 = 0
1
2T 50 1w) @
1
BT3B ) T
1 -1 -1
AT Tt 2) T darw) 22r2)
1
ST TG T
1 1 1 1
CT 6 +20) T 6(6+20) 4d+2v) 22+20) 0
3
— (=1 co,

(3-2-23+v))(2-2-22+v))(1-2-2(1 +v))
and finally
_ (=1)™co
Com = 2ma | m 3
2°mml Hj:1(] +v)
To emphasize the fact that,, is the coefficient of>™*+" we rewrite the expres-
sion above

for all m € N.

(~1)™ (2co)
2t T, (G + )

Com =

which in turn can be rewitten using the Gamma function notation as

)@+

T T+ DI G+ )

which using the properties of the Gamma function simplifies to

_ (=DM RIT (A1) col
C22mtv I T (m 4+ v+ 1)

Com forallm € N.
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(d)

If we chosecg to be

1

O T 1)

the formula for the coefficients,,, simplifies to
_ (=™
Com = P I T(m + 14 0) forallm € N.
The solution
— — c- (_1)m 2m—+v
yi(t) = Ju(t) ==Y t (2.90)

A= 22mtrmlT(m 41+ v)

of the equation (2.87) is calledBessel function of the first kind and order
Sincety = 0 is the only singular point of the Bessel equation, we can conclude
that the radius of convergenceof this Frobenius series iB = o, i.e. it con-
verges for any: € R. Recall thatR > min{R,,, R,} andR, = R, = oo, since
tp(z) = 1 andt?q(t) = —v? + 2 are polynomials irt.

Finding the second solutiap:

We will now consider the case = —v, where we might encounter “overlap-
ping” series. Clearlyy; —ry = v — (—v) = 2v € N° := {0,1,2,...} ifand
only if v = k- 1 for somek € N°, i.e. if v is a non-negative multiple of.
Summarizing, ifv is not an integer therk,(k + (—v) = 0 ifand only if 0 = 0 or

We begin with the special casec R\ Z, i.e. the case, whereis not an integer.
Note that this assumption includes the case (2¢ + 1) - 1 for somel € N°,

i.e. the case, where is an odd non-negative multiple (%f and wherer; — 7o

differ by a positive integer (case 2 in the textbook). However, we will see that
we are in the “fortunate” situation where in the recurrence equation (2.88) the
termh(k + (—v)) = 0 at the same time when,_, = 0, namely for all odd
subscripts.

We first rewrite the recurrence relation (2.88) exchangingvith dj;, andcy_o
with dj,_, and obtain
d() 7é O7 d1 == 0

and
h(k+r)dg +de—o=0 fork > 1. (2.91)

Clearly, as mentioned above(k+(—v)) = k?—2kv+v?—1? = k(k—2v) = 0

if and only if & = 0 or k& = 2v, which implies that2v € N° i.e. thatv is

a multiple of 1. Since, by assumption is not an integery = (2¢ + 1) - 1
for somel € N° and thusk = 2v = 2(2¢ + 1)1 = 2¢ + 1. Thus, under the
assumption that is not an integer (k + (—v)) # 0 for all even integers > 1.
For odd integerg = 2¢+ 1, the recurrence (2.91) in conjunction with the initial
valued; = 0 yields that

h(2€—|— 1) + (—I/))dgg_;,_l = (—1)d2g_1 == (—1)£d1 =0.
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Hence, we can set, = 0 for all oddk € N. For evenk € N, we can solve for
d;, as in the case; = v and obtain
1

- —di_o if kiseven
dp =4 k(k+2(-v) "7

0 if k£ is odd

which coincides with (2.89) if we replaceby —v. Hence, since we have the
same start values as in the previous case, the second solution can be obtained
from the first by replacing by —v yielding

va(t) = J-u(t) = ) 22m—v m('_rtz;l 1-v)

m=0

t2my, (2.92)

Thus
y(y) == c1Ju(t) +caJ o (t)

constitutes a complete solution of the Bessel equation of erder

(e) Modifications of the basis function of the complete solution of the Bessel equa-
tion:

(i) Foranyr € R\ Z (any real number that is not an integer), we can define
the function
cos(vm)dy,(t) — J_,(t)

sin(v)

Y, (t) :=

Y

which is called thdessel function of the second kind of ordeAs a linear
combination of/,, andJ_,, Y, is also a solution of the Bessel equation and

y(y) = 1y (t) + c2Yo (1)

also constitutes a complete solution of the Bessel equation (2.87).
(i) Forv € R\ Z, the complex valued functions

HM(t) = J, (1) + 1Y, (1)
and
HP(t) = J, (1) — i, (t)
are called thedankel functionsor theBessel functions of the third kind of
order v. Again as linear combination of solutions of the Bessel equation
they are also solutions and
y(y) = el HMV (1) + e HP (¢)

constitutes a complete solution of the Bessel equation (2.87).
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Some Basic Facts On The Gamma Function

/OO e S¢rde

0

The improper integral

converges for alk > 0 and defines a function

I(z) := /OOo eS¢ 1qg,

which is calledEuler's Gamma functiomnd which is positiv for alk: > 0.
Clearly,

r) = [ ete= e -1
0
Partial integration for: > 0 yields
Pz +1) = / etgrdE = [—e ST o / e ST lde,
0 0

which, considering that

implies that
Iz +1) =al'(x).

For natural numbers € N, it can be shown using mathematical induction that
I'(n+1) =n!

The Gamma function possesses derivatives of any order, which can be obtained
by differentiation under the integral sign:

™ (z) = /w(lng)"e*%x*ldg
0

Thus, the Gamma function can be considered as a differential extension of the
factorial.
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Chapter 2

2.1 Basics

Ordinary Differential Equations Exercises:

1. Give an example of a differential equation (simple or sophisticated) used for
modeling in engineering. Describe briefly what process is governed by this
equation. What assumptions and conditions are applied?

2. Describe each of the following differential equations, giving its order and
telling whether it is ordinary or partial, its order, whether it is linear or
nonlinear, and homogeneous or non-homogeneous:

d .
a) x? d_y =sinx (example: ODE, I* order, linear, non-homogeneous)
Ix

b) X+ax+bx=csint
¢) (V) +av=>b
d) X"+2X=0

o'y 0%y
2

e) a?—=—
) oxt or*

f) y'+xy=siny
g) V' —6y —4y=sin’x
h) y”'+x2y=x/;

) Y'+w'=0
. 8u(x,t)_i au(x,t)j
D T (k(”) ox
2 -1
K 4 ﬁ‘+[ﬂ] =0
dx dx

3. Find the values of m for which y=x" is a solution of the differential

equation 3x’y" —x’y"+2xy' =2y =0
4. Solve the following differential equation
y'=xe®™ subject to the initial condition y(0)=0

1
5. Find a complete solution of the differential equation y’ =4x3 and sketch the

solution curve through the point (2,3).

-2

6. Find a complete solution of the differential equation »'=xe 2 and sketch

the solution curve through the point (IL] .

A

7. Find the integral of the differential equation 4x+9yy'=0; sketch the
integral curve through the point (3,—4 )

8. Sometimes it is necessary to find a differential equation which has a given
general solution. Usually, it can be found by differentiation of the given
solution and elimination of the parameters by algebraic manipulations.

Find a second order differential equation which has a general solution given by
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2.2.1-2 I* order ODE

2.2.3-4 Separable

y=c,e " +c,sinx,where ¢, and ¢, are arbitrary constants.
9. Find a solution of the initial value problem (x + I)y’ =2y subject to
y(— 1 ) = ( and state whether or not it is unique.

10. The homogeneous spherical wall (inner radius 7, and outer radius r,) with

thermal conductivity % is in a steady state with temperature of the inner surface
T, and of the outer surface 7, , respectively. Assuming that due to conservation

of energy, in steady state the same rate of heat transfer O is passing through a
spherical surface of any radius, find the temperature T(r) at an arbitrary radius
r, <r<r,. Derive the differential equation using Fourier’s Law and relation
Q=qd,, where A, is the surface area. Sketch the graph of solution for
r,=5r=2 and T,=4T,=80°C, k=0.5, and determine the rate of heat
transfer Q.

1) Solve the following differential equations and sketch the solution
curves:

a) (x+y+1)dx+(x—y2+3)dy:0
b) (2xy+x3)dx+(x2+y2)dy:0
9] (ex +Z}dx+(lnx+ijdy:0
X Y
d) (x+x2y+y3)dx+(y+xy2+x3)dy=0
e) (3y—2x)y'+2y:0
f) e sin ydx—(y—Ze" cos y)dy =0
g) x+y+ylhxy=0

2) Prove Theorem 2.

3) a) Determine an equation for the multiplication factor if it is a function of x
only.
b) Determine an equation for the multiplication factor if it is a function of y

only.

1. Solve the differential equation and sketch the solution curves:
a) x(1+y2)dx—y(1+x2)dy =0

b) yy'=2xy+2x

c) 2xy'+2xy'=y

2. Solve the differential equation and sketch the solution curves:
a) (2xy3 —x4)y’+2x3y—y4 =0

b) (xr+y)dv—(y—x)dy =0

¢) (x=ydx+(y—x)dy=0

d 2x'=y-x

e) y'= sec(%) +% subject to y(2)=7

3. Solve the differential equation by conversion to polar coordinates and sketch
the solution curves:

, Xty
a) y'=
x—y
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2.2.5 Linear 1" order

2.2.6 Special

2.2.7 Applications

2.2.8 Numerical

4., a) Show that the equation y'=f (ax+by) where a,beR can be

transformed to a separable differential equation with the help of a change of the
dependent variable by the substitution z = ax+by.

b) Solve the differential equation and sketch the solution curves:
) y'=2x+y
1
x=y
1. Solve the differential equation and sketch the solution curves:

+1

i) y'=

X

a) xy'+(1+x)y=e'
b) y'=y+4e" sin’ x subject to y(O)le

¢ y'-L=x’
X

1. Show that if u(x) is a particular solution of the Ricatti equation

y'=P(x)y* + Olx)y + R(x)
Then the substitution

1
y=—+u
z

reduces the Ricatti equation to a Bernulli equation
u'= (Q+2Pz)u +Pu’

2. Solve the differential equation and sketch the solution curves:
a) y'+y=xy’

b) y'=xy’ + (/- 2x)y+x—1 (particular solution u = 1)

¢) y=xy'~e”

1. Find a family of orthogonal curves defined by the equation:

x'+3y’ =c
and sketch the graph of curves

A skier is skiing down a hill with a constant slope €. The dependence of his
speed v on time ¢ is described by the equation:

dv PAC, .
m—=———=—v" +mgsinf - cos 6
i 5 g HmMg
with the initial condition v(0)=v,.
Solve this IVP by:

a) exact methods,
b) as a special equation,
¢) the Euler method,
d) the modified Euler,
e) the Runge-Kutta, and
f) Newton’s method.
Use the following values of parameters:

p=1

C,=09
A=04
m =380
g=982
0=30°
wu=0.1

v, =2 Make some observations.
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2.2.9 Reducible

2.3 Linear ODE

Solve by reduction of order
"' =xy'+y=0 (hint: y, = x is a solution)

1) Solve the following equations and sketch solution curves:

a) y'+y=secx

b) y'+y=4xcosx

¢) y"—y=cost

d) y'=5y'+6y=2e"

e) ¥ +y=0

By +y=0

9y +y=0

h) y" -3y’ =e®

i) y"+3)y" —4y=e""

k) x’y"=3x"y"+6xy —6y = 20x

2. Let y,,y, be two linearly independent solutions of the normal linear ODE

a,(x)y"+a,(x)y +a,(x)y=0
Show that any solution of this equation can be written as a linear combination
y(x) =6 (X)+czy2 (x)

3. Show that any solution of L,y = f(x) is represented by y =y, +y,

4. Consider steady state conduction in the spherical region between two
isothermal surfaces » = r, at temperature u,and r =r, at temperatureu, .

Radial temperature distribution under assumption of angular symmetry in the
absence of volumetric heat generation is described by the differential equation

d’u du
r—+2—=
dr’ dr

Find the temperature distribution u(r), re(r.r,)

0

5. Conjugate problem for multilayer region.
[modification from Transport Phenomena] Fixed-bed flow reactor

Assume that flow enters a three zone fixed-bed flow reactor at x = —oo at initial
temperature 7,. Zones I (—oo <x< 0) and 111 (1 <x< oo) are filled with inert

pellets, and zone I1 [0 < x <[] is filled with catalyst pellets, respectively.

Temperature distribution is described by the function 7; (x) where the index i

denotes the corresponding zone of reactor, i = /,1I,1II , and has to satisfy the
following differential equations with corresponding boundary conditions:



Chapter 2 Ordinary Differential Equations Exercises
Zone: Equation: Boundary and Conjugate Condition:
T} X—>—00 T(')
1d°T,(x) dT,(x
I (—oo<x<()) 15 )— 1( )=0
b dx dx
T} x=0 = 2lx=0
dr,|  dT,
dx|_, dx|_,
1d°T,(x) dT,(x
I (0<x<I) 22( ) _9L( )+aT2(x)=()
b dx dx
]12 x=1 = 3x=1
ar,|  dT;
dx | _, dx|_,
d°T,(x) dT,(x
I (/<x<oo) ! 32( )_9L( )=0
b dx dx
P |Hw bounded
entrance zone zone where heat is produced exit zone
by chemical reaction
I II 111
flow enters
at x =—o0 inert pellets catalyst pellets inert pellets
with initial = T,(x) T,(x) T, (x)
temperature
T, >
x=0 x=1

a and b are physical parameters of the reactor (a > 0,b > 0 ) and the fluid with the following properties:

a is bigger for a longer reactor, lower flow rate, and faster reaction;
b is bigger for a longer reactor, higher flow rate, and smaller conduction between zones.
Conditions between zones provide continuity of temperature and heat flux.

Find the temperature distribution 7, (x) for all zones and investigate the influence of the parameters a andb .
Sketch the graph.

6. Solve problem in the Example 6 of section 2.3.6.
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n 271 n—1 2n
2.4-5 Power Series Solution 1. Evaluate )’ ->
o\ 2k ) o\ 2k+1

2. Using power series and Cauchy product , verify the “First Pythagorean

Identity” sin’ x+cos’ x = 1 (Hint: use the identity established in the previous
exercise).

and in x and determine

3. Give the power series expansions of
x—1 x—1

their radius of convergence.

4. Find the radius of convergence of the power series:

a)z

- o(n+3)

23—(—)

o Y

n=0 N

5. Find the singular points of the equations

a) Y'+2x'+y=0 c) (]—xz)y"+y'—y:0
b) 2x°y" =347y =0 d) ¥’y =y +xy=0

2(x—-1
6. Show that ( ) is analytic at x, =/ by computing its Taylor series
x

expansion in terms of x—1/.

7. Show that (3—xy is analytic at x, =0 by computing its Taylor
x—=1)

series expansion in x .

8. Using the power series method, find complete solutions for the following
differential equations:

’ " 3 !
a) y'=ay=0 B y+—y=2y=0
b) y'-Ay=0 g) 2x°y"—x(x=1)y'=y=0
c) V'+xy'+2y=0 h) x"+y' —-xy=0
d) y'-x'y=0 i) xzy"+xy'+(x2—§jy:0

e) Y'-xy=0 y(0)=1y'(0)=0 k) 2x2y”+(2x2 +x)y’—y =0
9. Determine the second solution for Example 73 (p. 99).

10. Consider the differential equation (x—1)y"—xy'+y =0

a) find the general solution of the given ODE in the form of power series about
the point x, =0;

b) What is the radius of convergence of the obtained power series solution?

¢) Sketch the solution curves.

d) Find the solution subject to the initial conditions: y(0)=-2;y'(0)=6.
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