Solutions to Some Problems, Calculus (Third Ed.)

Chapter 2

Section 2.1

- 1. (b) 16. (d) -16.
- 2. (b) 19.8.
- 3. 9; 7; 6; 5.2; 5.1; about 5.
- 5. (b) 40.6; 5.4; 0.7. (c) approaches 150; approaches 0.
- 9. about -2; no tangent at -1 or 2.
- 14. $b \rightarrow a$ if and only if $h \rightarrow 0$; substitute.
- 17. (a) $\frac{C(b)-C(a)}{b-a}$. (b) $\lim_{b\to a} \frac{C(b)-C(a)}{b-a}$.
- 22. (a) $3q + 0.005q^2 0.001q^3 4000$. (b) 0.426. (c) 0.514. (d) 0.59149. (e) about 0.6.

Section 2.2

- 1. (b) -1. (d) 0. (f) $\frac{1}{2}$. (h) DNE.
- 2. (b) 6. (d) -1. (f) -5. (h) DNE. (j) DNE. (l) 0. (n) 0. (p) DNE.
- 3. (b) $\delta \le 0.003$.
- 4. (b) $\delta \le 0.003$.
- 5. (b) $\delta \le 0.0024$.

6. (b) Given $\epsilon > 0$, let $\delta \le 3\epsilon$. Then $0 < |x - 9| < \delta \Rightarrow |\sqrt{x} - 3| = \frac{1}{|\sqrt{x}+3|}|x - 9| < \frac{1}{3}\delta \le \epsilon$. (d) Given $\epsilon > 0$, let $\delta \le \frac{1}{2}\epsilon$. $|x + 1| < \delta \Rightarrow -1 - \delta < x < -1 + \delta \Rightarrow |x| > 1 + \delta \Rightarrow \frac{1}{|x|} < 1$. Hence $0 < |x + 1| < \delta \Rightarrow |\frac{2}{x} + 2| = 2\frac{1}{|x|}|x + 1| < 2\delta \le \epsilon$.

13. (a) close to 12.

14. (d) 1. (e) 1. (f) 1. (j) 0. (k) 0. (l) 0.

Section 2.3

- 1. (b) 1. (d) DNE. (f) $\frac{3}{4}$. (h) DNE. (j) -4. (l) -6.
- 2. (b) $-\frac{1}{2}$. (d) DNE. (f) $\frac{2}{3}$. (h) $\frac{1}{2\sqrt{2}}$. (j) $-\frac{1}{4}$. (m) $\frac{3}{4}$.
- 4. For example, $f(x) = \frac{|x|}{x}$ at 0.
- 5. Copy the proof of Thm. 17, using |m g(x)| = |g(x) M|.

Section 2.4

- 1. (b) $\frac{1}{\sqrt{3}}$. (d) -2. (f) 2. (h) $\frac{2}{3}$. (j) 4. (l) DNE.
- 2. (b) 0. (d) 0. (f) 1. (h) DNE. (j) DNE.
- 3. (b) e^{-2} . (d) DNE. (f) 10^{-3} .

5. Suppose L > M. Let ϵ be small enough that $M + \epsilon < L - \epsilon$. Then we can choose δ such that $0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon$ and $|g(x) - M| < \epsilon$. But then $g(x) < M + \epsilon < L - \epsilon < f(x)$, contradicting $f(x) \le g(x)$. Hence $L \le M$.

7. (a) 0. (b) 0. (c) 0. (d) For example, let $f(x) = \frac{1}{a} \sin ax$ and $g(x) = \sin^2 ax$ for two values of a. (e) can't tell.

- 8. (b) 0, 0, 0. (d) 0, -1, DNE.
- 10. (b) 1. (d) between -1 and 0.
- 11. (b) No. (d) No. (f) B = 1.
- 12. Yes. the limit is 0.

13. (b) $P_n = 2rn \sin \frac{\pi}{n}$. (d) $A_n = nr^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n} = \pi r^2 \frac{\sin(\pi/n)}{\pi/n} \cos \frac{\pi}{n} \to \pi r^2$.

Section 2.5

1. (b) $\frac{1}{2}$. (d) 0. (f) $\frac{\pi}{2}$. (h) 2. (j) $-\frac{1}{2}$. (l) 1. (n) 0. 5. (c) 0. (d) $-\frac{\pi}{2}$. (f) 1. (h) 1. 8. (b) y = 1. (d) $y = \pm \frac{\pi}{2}$. (f) y = 0. 9. (b) ∞ . (d) $-\infty$. (f) ∞ . (h) $-\infty$. (j) ∞ 10. (a) $f \to 2$ as $x \to \pm \infty$; $g \to 0$ as $x \to \pm \infty$. 11. (b) $f \to \infty$ as $x \to \pm \infty$. (d) $f \to \infty$ as $x \to \pm \infty$. (f) $f \to 0$ as $x \to \pm \infty$. (h) $f \to 0$ as $x \to \pm \infty$. (j) $f \to \infty$ as $x \to \infty$; $f \to -\infty$ as $x \to -\infty$. 12. (e) x = 0. (f) x = 1; x = -1. (g) none. (h) none. 13. (e) y = 0; x = 1, x = -1. (f) none; x = 0. (h) y = 1; x = 0.

Section 2.6

- 1. (b) Let f(3) = 6. (d) Let $f(\frac{\pi}{2}) = 0$. (f) Let $f(2) = \frac{1}{2}$.
- 2. (b) $\lim_{x\to n-} \lfloor x \rfloor = n-1; \lim_{x\to n+} \lfloor x \rfloor = n$. (d) $f \to 0$ as $x \to \pi-; f \to -1$ as $x \to \pi+$.
- 3. (b) $\lim_{x\to 3+} \frac{1}{x-3} = \infty$. (d) $f \to -\infty$ as $x \to 0+$.
- 4. (d) infinite discontinuity at $\frac{\pi}{2}$. (e) jump discontinuity at $\frac{\pi}{2}$. (f) removable discontinuity at 0.
- 5. (b) $x \neq -1$. (d) on \mathbb{R} . (f) on (-2, 2).
- 7. x in the domain requires x < c, so $x \to c^{-}$.

11. The discontinuity is essential because the limit of $\sin \frac{1}{x}$ as $x \to 0$ does not exist. It is not a jump discontinuity because neither one-sided limit exists; it is not infinite because neither one-sided limit is infinite.

12. $g(f(x)) = \frac{1}{x}$. g is not continuous at f(0).

13. The limit at 0 DNE, and neither do the one-sided limits; neither is a one-sided limit ∞ or $-\infty$.

Section 2.7

1. (b) No. (d) No. (f) Yes. (h) Yes.

2. (a) the interval is open. (b) the function is discontinuous (the discontinuities are removable).

3. (b) Let $\epsilon = \frac{1}{2}|f(c)|$. Then there is $\delta > 0$ such that $|x - c| < \delta \Rightarrow |f(x) - f(c)| < \epsilon \Rightarrow f(x) < \frac{1}{2}f(c) < 0$, so f is negative throughout $(c - \delta, c + \delta)$.

5. Let F be the amount of fuel left at time t and let D be the distance traveled by time t. Then F - D starts positive and ends negative, so must be zero at some point T, assuming continuity. Hence F(T) = D(T).

6. (b) Since f is continuous near c, we have $\lim_{x\to c} f(x) = f(c)$, so that for any $\epsilon > 0$ there exists $\delta > 0$ such that if $c - \delta < x < c + \delta$, then $|f(x) - f(c)| < \epsilon$, which means $f(c) - \epsilon < f(x) < f(c) + \epsilon$.

7. (b) g is continuous on [a, b], hence bounded by 6(d). (d) If x is such that $f(x) > M - \epsilon$, then $M - f(x) < \epsilon$ and $g(x) = \frac{1}{M - f(x)} > \frac{1}{\epsilon} > B$.

11. Let m, M be points at which f has its minimum and maximum. Then by Problem 7, there is c between m and M such f(c) = v, so the IV Theorem is true.

13. f is continuous at every point of (c, d). The two-sided limits of f at c and at d exist, so the appropriate one-sided limits do, too.

14. (a) Let x_1, x_2 be chosen so that $a < x_1 < x_2 < b$. Because f is one-to-one, we know $f(x_1) \neq f(x_2)$. Suppose $f(x_1) < f(x_2)$ (the other case is similar). Now we show that f is increasing in (x_1, x_2) ; if not, there exist points x_3, x_4 such that $x_1 < x_3 < x_4 < x_2$ and $f(x_3) > f(x_4)$. We now have three cases: (i) If $f(x_3) < f(x_1)$, then a horizontal line will meet the graph of f between x_1 and x_3 and again between x_3 and x_2 . (ii) If $f(x_4) > f(x_2)$, then a horizontal line will meet the graph of f between x_1 and x_4 and again between x_4 and x_2 . (iii) If $f(x_3) > f(x_1)$ and $f(x_4) < f(x_2)$, then a horizontal line will meet the graph of f between x_1 and x_2 . In all three cases, we contradict the fact that f is one-to-one. Finally, we show that f is increasing in (a, b). If not, then either f decreases somewhere between a and x_1 or somewhere between x_2 and b; since these cases are similar, we will demonstrate only the first. Suppose there are points x_5, x_6 such that $a < x_5 < x_6 < x_1$ and $f(x_5) > f(x_6)$. If $f(x_6) < f(x_1)$, then a horizontal line will meet the graph of f between x_6 and x_1 . If $f(x_6) > f(x_1)$, then a horizontal line will meet the graph of f between x_5 and x_6 and again between x_6 and x_1 . If $f(x_6) > f(x_1)$, then a horizontal line will meet the graph of f between x_5 and x_6 and again between x_6 and x_1 and x_2 . In both cases, we contradict the fact that f is one-to-one.

(b) Let y_1, y_2 be in the domain of f^{-1} , and suppose $y_1 < y_2$. Let $f(x_i) = y_i$. Then $f(x_1) < f(x_2) \Rightarrow x_1 < x_2$. For if $x_1 > x_2$, then f is increasing and has to preserve order, contradicting the order of y_1 and y_2 . Hence $f^{-1}(y_1) = f^{-1}(f(x_1)) = x_1 < x_2 = f^{-1}(f(x_2)) = f^{-1}(y_2)$, and f^{-1} is increasing.

(c) If f is increasing, then f^{-1} is also increasing. Hence $f(d-\epsilon) < x < f(d+\epsilon) \Rightarrow d-\epsilon < f^{-1}(x) < d+\epsilon \Rightarrow |f^{-1}(x) - d| < \epsilon$. If f is decreasing, we define δ by $f(d+\epsilon) < c-\delta < x < c+\delta < f(d-\epsilon)$,

and use the fact that f^{-1} is also decreasing. Hence $f(d+\epsilon) < x < f(d-\epsilon) \Rightarrow d+\epsilon > f^{-1}(x) > d-\epsilon$, as before.

16. (b) p(-2) = 12, p(-1) = -1. (d) p(0) = 4, p(1) = 2; can't tell.

17. (b) [0.6875,0.75].

18. $\frac{L}{2^n}$.