### 12.3 BLACKBODY RADIATION

# **BLACKBODY** $cavity \\ with the walls \\ at uniform \\ temperature T_b$ $incident \\ radiation$ $temperature T_b$ $I_{\lambda}(\phi, \theta) = I_{\lambda b}$ $emitted \\ radiation$

Blackbody is defined as an imaginary ideal surface, such that:

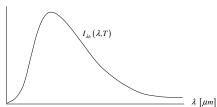
- it absorbs all incident radiation
- no other surface can emmit more energy than blackbody
  (at prescribed surface temperature and wavelength)
- diffuse surface (emmited radiation does not depend on direction)



Max Planck (1858-1947)

Blackbody is a perfect diffuse absorber and emitter

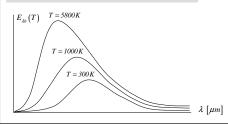
# **PLANCK DISTRIBUTION** Spectral intensity of radiation emitted by a blackbody at temperature T:



$$I_{\lambda b}(T) = \frac{2hc_0^2}{\lambda^5 \left(e^{\frac{hc_0}{\lambda kT}} - I\right)}$$

$$\left[\frac{W}{m^2 \cdot \mu m \cdot sr}\right]$$

### SPECTRAL EMISSIVE POWER OF BB

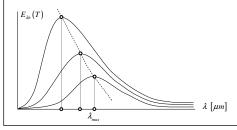


$$E_{\lambda b}(T) = \pi I_{\lambda b}(T)$$

$$E_{\lambda b}(T) = \frac{c_I}{\lambda^5 \left(e^{\frac{c_2}{\lambda T}} - I\right)}$$

$$\left[\frac{W}{m^2 \cdot \mu m}\right]$$

### WIEN'S DISPLACEMENT LAW



$$\lambda_{max} = \frac{c_3}{T}$$
 [ $\mu m$ ]

### RADIATION CONSTANTS

$$c_0 = 2.998e8 \left[ \frac{m}{s} \right]$$
 speed of light in the vacuum

$$c_1 = 2\pi h c_0^2 = 3.742e8 \left[ \frac{W \cdot \mu m^4}{m^2} \right]$$

$$c_2 = \frac{hc_0}{k} = 14,388 \ [\mu m \cdot K]$$

$$c_{\scriptscriptstyle 3} = 2897.8 \ \big[ \mu m \cdot K \big]$$

$$h = 6.626e - 34 [J \cdot s]$$

Planck constant

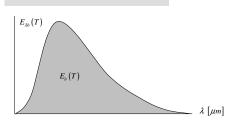
$$k = 1.381e - 23 \left\lceil \frac{J}{K} \right\rceil$$

Boltzmann constant

$$\sigma = 5.67e - 8 \left[ \frac{W}{m^2 \cdot K^4} \right]$$

Stefan-Boltzmann constant

### STEFAN - BOLTZMANN LAW



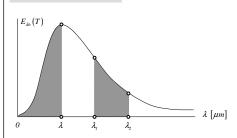
$$E_b(T) = \sigma T^4$$

$$\left[\frac{W}{m^2}\right]$$

$$I_b(T) = \frac{\sigma T^4}{\pi}$$

$$\left[\frac{W}{m^2 \cdot sr}\right]$$

### BAND EMISSION



Fractional blackbody emissive power:

$$F_{0\to\lambda}(T) = \frac{\int\limits_0^\lambda E_{\lambda b}(T)d\lambda}{\sigma T^4}$$

$$F_{\lambda_l o \lambda_2} \left( T \right) = F_{0 o \lambda_2} - F_{0 o \lambda_l}$$

### $F_{0\to\lambda}(T)$ is a function of $(\lambda T)$

## TABLE 12.1 Blackbody

| $\lambda T $ $(\mu \mathbf{m} \cdot \mathbf{K})$ | $F_{(0 	o \lambda)}$ |
|--------------------------------------------------|----------------------|
| 200                                              | 0.000000             |
| 2,800                                            | 0.227897             |
| 2,898                                            | 0.250108             |
| 3,000                                            | 0.273232             |



Fractional Blackbody Emissive Power Calculator