4.3 SHAPE FACTOR 2-D STEADY STATE CONDUCTION graphical method

- 1. Find lines of symmetry (to consider the smallest region) n = number of symmetric blocks
- 2. Sketch evenly distributed isotherms T = const: N = number of lanes between isotherms
- 3. Sketch heat flow lines (adiabates)
 to create a network with approximately square cells:
 M = number of lanes between adiabates

4. Calculate:

$$q_i = q_i'' \cdot A = k \cdot \frac{\Delta T}{\boxed{\Delta X}} \cdot \boxed{\Delta Y} \cdot L = k \cdot \frac{T_1 - T_2}{N} \cdot L$$

heat transfer from one lane

$$q = q_i \cdot M \cdot n = \left(k \cdot \frac{T_1 - T_2}{N} \cdot L\right) \cdot M \cdot n = k \cdot \left(T_1 - T_2\right) \cdot \left(\frac{\sum_{i=1}^{s} f_i}{N}\right) \cdot n \quad \text{total rate of heat transfer}$$

5. Calculate the **shape factor**:

$$S = \frac{M \cdot L}{N}$$

$$R_{t,2D} = \frac{1}{k \cdot S}$$

6. Calculate the heat transfer rate:

$$q = k \cdot S \cdot (T_1 - T_2) \cdot n$$

$$q = \frac{T_1 - T_2}{R_{t,2D}} \cdot n$$

TABLE 4.1 Conduction shape factors and dimensionless conduction heat rates for selected systems.

(a) Shape factors $[q = Sk(T_1 - T_2)]$

System	Schematic	Restrictions	Shape Factor
Case 1	Γ^{T_2}		
Isothermal sphere buried in a semi-infinite medium	T1 D	z > D/2	$\frac{2\pi D}{1 - D/4z}$
Case 2	72 7		
Horizontal isothermal cylinder of length L buried	1	$L \gg D$	$\frac{2\pi L}{\cosh^{-1}(2\pi D)}$
in a semi-infinite medium	1	$L \gg D$	$2\pi L$
	- 1	z > 3D/2	ln(4z/D)