$x_{fd,t} = x_{fd,h} \cdot Pr$

properies at $\overline{T}_m = \frac{T_{m,i} + T_{m,o}}{2}$

averaged mean temperature of the fluid

 μ_s at T_s

criterium for fully developed conditions

$$S = \left[\frac{Re_D \cdot Pr}{L/D}\right]^{1/3} \cdot \left[\frac{\mu}{\mu_s}\right]^{0.14}$$

 $x_{fd,h} = D \cdot 0.05 Re_D$

$$Re_{D} = \frac{\rho u_{m}D}{\mu} = \frac{4\dot{m}}{\pi \mu D}$$

 T_{s}

$$Nu_D = \frac{hD}{k}$$

$$h = \frac{k \cdot Nu_D}{D}$$

Developing Flow

Fully Developed Flow

combined entry length

velocity and temperature profiles $x_{\mathit{fd},h} \approx x_{\mathit{fd},h} \geq 1$ are deloping simulteneously

$$(8.57) \overline{Nu_D} = 1.86 \cdot \left[\frac{Re_D \cdot Pr}{L/D} \right]^{1/3} \cdot \left[\frac{\mu}{\mu_s} \right]^{0.14} = 1.86 \cdot S$$

 $for T_s = const$ 0.48 < Pr < 16,700 $0.0044 < \frac{\mu}{u} < 9.75$

thermal entry length

velocity profile is developed temperature profile is developing $x_{fd,h} < L$ $x_{fd,t} \ge L$

 $for T_s = const$ also good gor large Pr > 5 (oils)

runy Developeu riow

$$h = \frac{k \cdot Nu_D}{D}$$

Non - Circular Tubes

Hydrolic Diameter:

$$D_h = \frac{4A_c}{P}$$

$$u_{m} = \frac{\dot{m}}{\rho A_{c}}$$

$$Re_{D_{h}} = \frac{\rho u_{m} D_{h}}{\mu} = \frac{4\dot{m}}{\mu P}$$

$$Re_{D_h} < 2300 \ laminar \implies Table \ 8.1$$

$$Re_{D_h} > 2300 \text{ turbulent } \Rightarrow \begin{array}{c} Use (8.61) \\ with Pr \ge 0.7 \end{array}$$

Table 8.1 Nusselt numbers and friction factors for fully developed laminar flow in tubes of differing cross section

Cross Section		$Nu_D = \frac{hD_h}{k}$		
	$\frac{b}{a}$	(Uniform q_s'')	(Uniform T_s)	$f Re_{D_h}$
	1-1	4.36	3.66	64
a	1.0	3.61	2.98	57
a	1.43	3.73	3.08	59
ab	2.0	4.12	3.39	62
a	3.0	4.79	3.96	69
a	4.0	5.33	4.44	73
b	8.0	6.49	5.60	82
	00	8.23	7.54	96
Heated Insulated	00	5.39	4.86	96
	_	3.11	2.49	53

Used with permission from W. M. Kays and M. E. Crawford, Convection Heat and Mass Transfer, 3rd ed. McGraw-Hill, New York, 1993.