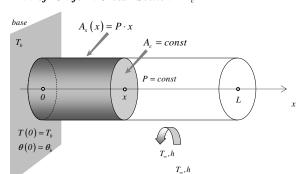

EXTENDED SURFACES - FINS fins are used to enhance heat transfer

Heat Equation for temperature distribution along a fin as a function of x


Control Volume

 $q_{cond}(x) = q_{cond}(x + \Delta x) + q_{conv}$ Energy balance:

$$k\frac{d}{dx}\left(A_c\frac{dT}{dx}\right) = h(T - T_{\infty})\frac{dA_s}{dx}$$

Fin of Uniform Cross - Section $A_c = const$

 $\theta(x) = T(x) - T_{\infty}$ excess temperature

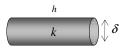
$$\theta_b = T(0) - T_{\infty}$$

Heat Equation:

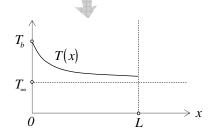
$$\frac{d^2\theta}{dx^2} - m^2\theta = 0$$

Notation:

$$m = \sqrt{\frac{hP}{kA_c}}$$


General solution:

$$\theta(x) = c_1 e^{-mx} + c_2 e^{mx}$$


TABLE 3.4 Temperature distribution and heat loss for fins of uniform cross section

Case	Tip Condition $(x = L)$	Temperature Distribution $ heta/ heta_b$		Fin Heat Transfer Rate $oldsymbol{q}_f$	
A	Convection heat	$\cosh m(L-x) + (h/x)$	mk) $\sinh m(L-x)$	$M = \frac{\sinh mL + (h/mk)}{h}$) cosh mL
	transfer: $h\theta(L) = -kd\theta/dx _{x=L}$	$\cosh mL + (h/mk) \sinh mL \tag{3.70}$		$\frac{M}{\cosh mL + (h/mk) \sinh mL}$ (3.72)	
В	Adiabatic $d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$		M tanh mL	
С	Prescribed temperature:	Cosiii	(3.75)		(3.76)
	$\theta(L) = \theta_L$	$(\theta_L/\theta_b)\sinh mx + \sinh m(L-x)$		$M\frac{(\cosh mL - \theta_L/\theta_b)}{\sinh mL}$	
		sinh		sinh mL	
D	Infinite fin $(I \rightarrow \infty)$: $mL \ge 4$.6 for T	(3.77)		(3.78)
	Infinite fin $(L \to \infty)$: $mL \ge 4$ $\theta(L) = 0$ $mL \ge 2$.65 for q e^{-n}	(3.79)	M	(3.80)

When elongated surface can be modeled as a fin?

$$\frac{h\delta}{k} < 0.2$$
 for error < 1%

Rate of heat transfer from a fin:

$$q_f = q''(0) \cdot A_b = -k \cdot \frac{dT}{dx}\Big|_{x=0} \cdot A_b$$

$$q''(0)A_b = -k \cdot \frac{dT}{dx}\Big|_{x=0} \cdot A_b$$