
Journal of Applied Engineering Mathematics  April 2005, Vol. 1 1 Copyright © 2005 by EngT503 BYU 

Journal of Applied Engineering Mathematics 
 

                                                   Volume 1  

A REVIEW OF INTEGRAL EQUATIONS DESCRIBING THE  

RADIAL DISTRIBUTION FUNCTION OF FLUIDS 
 

 
 Craig Peterson  

 
Chemical Engineering Department 

Brigham Young University 
Provo,Utah 84602 

 

 
 
ABSTRACT 
 
 The radial distribution function is of primary importance in 
statistical mechanics both for calculating thermodynamic 
properties as well as for investigating structure.  However, the 
mathematical description of the radial distribution function is 
difficult.  Several descriptions involving integral equations 
have been developed.  This paper examines some of the integral 
equations and details some points of their derivations.  The 
most popular family of integral equations, developed from the 
Ornstein Zernike integral equation, receives the most attention.  
In addition, this paper describes the application of these integral 
equations to electrolyte solutions. 

 

NOMENCLATURE 
 

c(r):   The direct correlation function 
g(r):   The radial distribution function 
h(r):   Equal to g(r)-1 
J:     Any thermodynamic property 
k:    Boltmann’s Constant 
N:    The number of molecules and ions in a system 
p:    The probability associated with a state 
q:    A position coordinate in 3-dimensional space 
Q:    The partition function 
r:    Used to denote some distance 
T:    Temperature 
u(r):   Pair potential  
Uc   :    The configurational internal energy 
V:    Volume 
w(n)(r):   The mean force 
Z:    The configurational partition function 
β:    A constant equal to kT 
ρ:    Number density of system 
σ:    Hard sphere diameter 
 
 

INTRODUCTION 
 
In statistical mechanics, a theoretical description of 

thermodynamic properties based upon molecular phenomena is 
obtained through the use of probability.  Any thermodynamic 
property can be described using the summation of individual 
property values, Ji, multiplied by their probability, pi, as below: 

   
  <J> = Σ Ji pi                                                        (1) 

 
The probability term in (1) is calculated from the partition 

function, Q, which is comprised of several parts. Some parts of 
Q, including the translational and internal contributions, can be 
obtained fairly easily. The most difficult portion of Q to obtain 
is the configurational contribution, Z.  

Z is defined by  
 
  U 3NZ ... e dqβ−= ∫ ∫                                              (2)   

 
where β is a temperature dependent constant, U is the 
molecular potential energy, and q3N are the position coordinates 
for all the molecules in the system being described.  
 Z, the configurational contribution to Q, can be related to 
the configurational contribution to any of the thermodynamic 
functions.  For example, the configurational potential energy, 
Uc, can be related to Z by  
 

   2
c

N ,V

ln ZU kT
T

∂ =  ∂ 
                                         (3) 

 
where k is Boltzmann’s Constant, T, is temperature, N is the 
number of molecules being examined, and V is the volume.  
 When Uc  is calculated in this manner, it yields an equation 
that can be manipulated with various assumptions to yield 
 

   ( ) ( ) ( )2
c 1 2 1 2 1 2

1U u r r r r dr dr
2

ρ= ∫ ∫                     (4) 
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where u(r1,r2) is the potential energy between two molecules 
(described by some model) and ρ(2) (r1,r2) is the probability of  
two molecules being at the positions designated by r1 and r2.  In 
reaching the form of (4), a transition was made to a spherical 
coordinate system so radii (r1 and r2) can be used to describe 
positions. 
 If there is no correlation in position between the molecules, 
then ρ(2) (r1,r2) is simply equal to the density of the system 
squared.  That is, the probability of finding molecules in a 
certain volume is uniform throughout the system and is equal to 
the density of the system.  It is sensible therefore to define a 
function that describes how strongly correlated the positions of 
molecules are. It is called the pair correlation function: 
 

  ( )
( 2 )

2g r ρ
ρ

=                                                               (5) 

 
where ρ is the density of the solution.  If there is radial 
symmetry in the system, g(r) is called the radial distribution 
function.  Any thermodynamic function can be derived in terms 
of g.  Using (5), the form of (4) may further be reduced to  
 

  ( ) ( ) 2
c

0

U 2 N u r g r r drπρ
∞

= ∫                                      (6) 

 
where the location of one molecule was set at the origin thereby 
reducing one integral to the volume of a sphere.   

When g(r) is equal to 1, there is no correlation between the 
molecule at the origin and the molecules at radius r. When g(r) 
is greater or less than 1, the density of molecules at radius r is 
greater or less than the bulk density and there is correlation.  
The g(r) function is a measure of how much affect one 
molecule has on the positions of other molecules. 
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Figure 1: Plot of the radial distribution function obtained 
by the author through Monte Carlo simulation of a NaCl 
solution.  This plot shows g(r) for the interactions between 
Na+ ions and water.  The high peak at r ≈ 1 indicates Na+ 
has a strong effect on water molecules at this distance.  The 
smaller peak at r ≈ 2 indicates an influence on water 
molecules at this distance, but this influence is not as strong.  

 

 The pair potential, u(r), can be calculated using any of a 
large group of models that are simple in form. For example, the 
Hard-Sphere Model and the Lennard-Jones Model are among 
the most popular.  
 
 
INTEGRAL EQUATIONS FOR RADIAL DISTRIBUTION 
FUNCTION 
 

The challenge in using this approach to calculate 
thermodynamic properties is in determining a function for g(r).  
Several methods have been derived yielding various integral 
equations.  
 
Kirkwood Equation 
 
 The derivation of the Kirkwood Equation is long and 
beyond the scope of this paper. However, the form of the 
equation is interesting and is shown below for completeness. 
 
  ( ) ( )12 12kT ln g r , u r ....ξ ξ− = +     

  ( ) ( ) ( )13 13 23 3V
o

u r g r ; g r 1 dr d
ξ

ρ ξ ξ′ ′ − ∫ ∫                   (7) 

 
A coupling parameter, ξ, was introduced in the development of 
the equation. The ξ variable is a “switch” of sorts that changes 
the function between different particles.  The equation is a 
nonlinear integral equation and must be solved numerically.  
No analytic solution is available.   
 Another integral equation, the Born-Green-Yvon Equation , 
is similar but is not derived using a coupling parameter. It too is 
complicated and nonlinear, and it will not be shown here.  
 
Direct Correlation Function Equations 
 
 In 1914, Ornstein and Zernike proposed another 
formulation of g(r) through a direct correlation function.  In 
doing so, they define a function h(r) such that 
 
  ( ) ( )h r g r 1= −                                                          (8) 
 
The advantage to h(r) versus g(r) is that h(r) approaches zero as 
the local density of a fluid tends towards the bulk density.   
 The function h(r) is divided into two theoretical parts; one 
part is called the indirect correlation, and the other part is called 
the direct correlation.  The direct correlation function, c(r), 
describes the influence of one molecule directly on another.  
The indirect portion of h(r) is a measure of the influence on a 
molecule broadcast through the influence of a third molecule. 
 In other terms, h12(r), describes the total influence 
molecule 1 exerts on molecule 2 at a distance r.  The direct 
correlation function, c12(r), describes only the direct pairwise 
influence that molecule one exerts on molecule 2.  The indirect 
portion of h12(r) describes the influence exerted by a third 
molecule, molecule 3, on molecule 2 as a result of the influence 
of molecule 1 on molecule 3.  See Figure 2 for an illustration. 
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Figure 2:  The direct influence on molecule 2 is described by 
c12(r).  The indirect influence is described by (9) and is the 
influence from molecule 1 propagated through molecule 3. 

 
 The function h12(r) may then be described by summing the 
direct correlation function, c12(r), with all the indirect 
interactions from all the other molecules in the system.  The 
summation of the indirect interactions is described using an 
integral.  If we call the indirect influence function I3(r3), then 
the integral representation can be described as: 
 
   ( )3 3 13 23 3I ( r ) c ( r )h r drρ= ∫                               (9) 
 
This formulation makes conceptual sense.  The c13(r) function 
describes the effect that molecule 1 has on molecule 3.  This is 
the indirect effect that will be propagated onto molecule 2.  The 
h23(r) function describes how strongly molecule 3 interacts with 
molecule 2 and therefore how much the effect described by 
c13(r) will be felt by molecule 2.  The integral sums the effects 
over all positions for molecule 3.  

Put together, these terms constitute the Ornstein-Zernike 
Integral Equation (10).  This equation is the basis for the most 
commonly used integral equations when describing the radial 
distribution function.  

 
  ( ) ( ) ( )12 12 13 23 3h r c r c ( r )h r drρ= + ∫               (10) 
 

 
Equations Derived From Ornstein-Zernike Equation 
 
 The Ornstein-Zernike equation, (10), is not solvable as 
given because there are two separate unknown functions, h and 
c.  It is necessary, therefore, to provide a closure to this 
equation in a form that will relate the two unknown functions to 
each other.  There are several theoretical methods for doing so. 
 One closure yields the Percus-Yevick equation.  In defining 
this closure, a new function is defined, w(r).   
 

   ( ) ( )
( ) ( )n

1 nn
ln g r ,....,r

w r
β

 
 =

−
                           (11) 

 
 
The function w(i) is the mean force acting on molecule 1 from 
molecule i with the averaged forces from all the other 
molecules in the solution added.  If the g(r) function is broken 
into a direct and indirect component, the following formulation 
for c(r) is obtained: 
 

  ( ) ( ) ( ) ( )w r u rw rc r e e ββ − − −  = −                                     (12) 
 
or 
 
  ( ) ( ) ( )( )u rc r g r 1 eβ= −                                            (13) 

 
 
The first term in (12) is a rearranged form of (11) equaling to 
g(r).  The second term is g(r) with the pairwise, direct, potential 
removed thereby describing the indirect influence.  Thus, (12) 
describes only the direct interaction part of g(r).   This relates 
c(r) to g(r) as in (13) and only requires a model for the pair 
potential, u(r).  The approximation inherent in the Percus-
Yevick closure is in assuming that the direct interaction can be 
removed from the total interaction by subtracting the pair 
potential. 
 The Hyper-netted Chain Equation is obtained similarly 
through an expansion on (12).  In this case, c(r) is related to g(r) 
by the following closure: 
 
  ( ) ( ) ( ) ( )c r g r 1 u r ln g rβ= − − −                     (14) 
 
 Introduction of either of these closures into the Ornstein 
Zernike equations yield a closed integral equation.  Again, 
these nonlinear equations can only be evaluated numerically 
because no analytical solution is available.  
 The Percus-Yevick integral equation can be solved 
analytically if one introduces a hard-sphere approximation.  
This approximation affects only the pair potential, u(r), in the 
equation.  According to the hard sphere approximation: 
 
  ( )u r = ∞              for  r σ≤  
                                                                                               (15) 
  ( )u r 0=               for  r 0>  
 

The solution using this approximation involves a Laplace 
Transform of the equation and then a lengthy proof to show that 
a piecewise analytic solution and an inverse Laplace Transform 
exist.  The end goal is to use the resultant g(r) description to 
develop an equation of state from which all thermodynamic 
functions may be derived.   
 
Integral Equations for Electrolyte Solutions 
 

  This approach is extended in a method used to describe 
electrolyte solutions.  In doing so, the workers in this field have 
defined a model for solutions called the primitive model.  The 
primitive model assumes a hard sphere pair potential, as 
described in (15) and simply averages the σ for each molecule 
coming into contact with each other.  Thus, if a cation and an 
anion were to come into contact with each other then the s for 
the interaction would be defined as 

 
  ( )0.5σ σ σ+ −= +                                              (16) 

 
where the + and – designators refer to the cation and anion 
respectively.  In addition, a coulombic potential (17) is added to 
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the pair potential to describe the added attractions and 
repulsions from the charged species.   
 

   ( )
εr
qq

rucoulombic
21=                                       (17)  

 
The subscripts 1 and 2 in (17) refer to separate charged species, 
r refers to the distance between species 1 and 2, and ε is the 
dielectric constant of the solvent.   
 The restricted primitive model consists of all the same 
assumptions as the primitive model and also assumes the hard 
sphere diameters of all ions in solution are equal.  Both of these 
models are good in dilute solutions where the hard sphere 
approximation becomes close to exact.  
 A popular model for describing the radial distribution 
function of electrolyte solutions is the Mean Spherical Model.  
The mean spherical model utilizes either the primitive or the 
restricted primitive description of ions and makes two new 
assumptions. First, the model assumes that the radial 
distribution function is equal to zero at radii less than the hard 
sphere diameter (18). 
    
   ( ) 0=rg                    for   0<r                   (18) 
 
This assumption is exact for a hard sphere fluid and so is good 
at low densities.  
 The second approximation consists of defining a simple 
closure for the Ornstein Zernike equation: 
 
   ( ) ( )rurc β−=                                                (19) 
 
When σ goes to zero, this yields the same result as the Debye-
Huckel theory which describes the theoretical limit of dilute 
solutions.   
 Because the closure to this equation is simple in form, it 
can be solved analytically.  Forms of the solution to this 
equation have been developed that, while complicated, yield an 
explicit solution to the problem. 
 The Percus-Yevick and Hyper-netted Chain equations, 
when adjusted to describe electrolyte solutions, are more 
accurate, in general, than the Mean Spherical Model, but they 
are less useful in many engineering applications because they 
require a numeric solution. 
 
CONCLUSIONS 
 

Many integral equations have been derived for the 
description of the radial distribution function.  The Kirkwood 
and the Born-Green-Yvon Equations are older and, in general, 
more complicated than others.  The more popular integral 
equations have been derived from the Ornstein-Zernike 
equation.  These include the Percus-Yevick and Hyper-netted 
Chain equations.   

All of these equations are not solvable analytically.  
Though less accurate, except in dilute solutions, the Mean 
Spherical Model provides an analytical solution to the Ornstein 
Zernike equation.  This model is particularly useful when 
applied to electrolyte solutions.  
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