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Abstract 
This paper discusses the use of a Finite Fourier 
Transform Method and an Eigenvalue Expansion 
Method to calculate analytical solutions for 
microchannel flow, in which you have alternate 
regions of no-slip and no-shear.  In this paper 
solutions will be obtained for the steady state 
scenario.  A comparison is made between the 
solutions achieved using the Finite Fourier Transform 
Method and the Eigenvalue Expansion Method.   
 
Introduction 
Microfluidic transport has recently found importance 
in a number of emerging technologies in micropower 
generation, chemical separation processes, integrated 
microscale heat sinks, cell analysis, and other 
biomedical diagnostic techniques. As the scale of 
physical devices decreases, however, surface forces 
become more important. Classical analysis shows 
that the required driving pressure to maintain a given 
flow rate in a circular duct is proportional to the 
inverse of the channel diameter to the fourth power, 
∆P ~ D−4. Thus, at physical scales smaller than 100 
µm, generating fluid motion in a microchannel can 
pose a considerable challenge. Consequently, there 
has been much recent attention addressing the 
dynamics of liquid flows through microchannels. 
 
Recently, it has been found that the amount of 
pressure required to push a fluid though a 
microchannel can greatly be reduced by the use of 
micro-riblets coated with a hydrophobic coating.  The 
combination of the micro-riblets and the hydrophobic 
coating create an ultrahydrophobic surface.  When 
the surface is ultrahydrophobic, the liquid will not 
penetrate the cavity but will form a meniscus 
interface that extends slightly into the cavity (as 
shown below).   

 
Figure 1.  Schematic of liquid flowing over an 
ultrahydrophobic solid substrate with micro-engineered rigs 
and cavities. 
 

 At the liquid-vapor interface, velocity does not 
vanish, and thus flow through such a channel can be 
modeled as a two dimensional microchannel have 
regions of no-slip and no-shear.  
 
Numerical and experimental data has been collected 
for the case in which fluid flow is running parallel 
with the direction of the micro-riblets.  Previous work 
in developing an analytical solution for channel flow 
with mixed no-slip and no-shear boundary conditions 
has been limited to a conformal mapping technique 
that was presented in 1972[1].  In this analytical 
approach a conformal mapping technique was used to 
calculate the effects of the no-slip and the no-shear 
boundary conditions on the flow domain. The paper 
presented a few results for the case of repeating no-
slip, and no-shear boundary conditions, but lacked 
sufficient detail to make definite conclusions.   The 
purpose of this paper is to show how analytical 
solutions for the no-slip, no-shear boundary channel 
flow can be easily obtained by solving the governing 
equations using one of two methods: an eigenvalue 
expansion method (EVE) or a Finite Fourier 
Transform method (FFT).  Both of these methods 
will allow the flow field to be predicted and 
visualized.   
 
Development of  the Analytical Solutions 

Assuming constant viscosity, the general Navier-
Stokes equations can be reduced to the equation 
shown below for channel flow in the z direction, 
where g is the pressure gradient divided by the fluid 
viscosity. 
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Both methods obtain analytical solutions for the 
governing equation given above in equation 1.  The 
governing equation requires prior knowledge of the 
boundary conditions at x=0, x=L, y=0, and y=M.  
The bottom and top walls were set as Dirichlet-
Dirichlet boundary conditions with the velocity along 
each of these walls being functions of location along 
the surface to account for the no-slip and no-shear 
boundary conditions.  The side walls at x=0 and x=M 
had periodic boundary conditions applied to them.  
Figure 2 depicts the general setup for the channel 
used in calculating the analytical solutions in both 
methods. 
 



 
 
 
 

 
Figure 2 Boundary conditions and geometry used for the 
analytical solutions with flow into the page. 
 
The solutions for both the FFT method and EVE 
method are given in the appendix in full detail.  A 
brief summary of how the analytical solution was 
obtained for both the FFT and EVE methods is given 
below.   
 
In the FFT method, operational properties are used to 

transform 
2
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 into a function that is independent of 

y.  The Dirichlet-Dirichlet boundary conditions are 
also transformed.  The transformed form of the 
equation is given as 
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An assumed solution in the form of 
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 was used for the period boundary conditions.  By 
differentiating the assumed solution twice with 

respect to x, 
2

m
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 is determined and can be 

substituted into the transformed governing equation.  
With this substitution the new transformed governing 
equation is 
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Euler’s equations can be used to find the coefficients 
for periodic boundary conditions.  The eigenvalues 
are given for periodic boundary conditions.  The 
equation is then transformed back into u(x,y) by 
using the inverse FFT transform. 
 
The EVE method separates the problem into two 
different simpler problems.  The solutions to these 

problems are determined and then the two solutions 
are added together to give the complete solution.   

I IIu( x, y ) u ( x, y ) u ( x, y )= +  

For the ),( yxuI problem the periodic boundary 
conditions are set to zero along with any source 
terms.  The governing equation for this first problem 
is  
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and can be solved through separation of variables.    
 
For the yxuII ,( ) problem f2 and f1 are set to zero 
and the governing equation is given as 
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A periodic solution is assumed once again, but in this 
case the assumed solution will have to be 
differentiated twice with respect to both x and y.  
These new equations can be substituted into the part 
2 governing equation.  The solution is simplified and 
coefficients are found, which are used in the solution.  
Both part 1 and part 2 are added together to give the 
complete solution for the flow field. 
 
In order to apply the no-slip, no-shear boundary 
conditions along the top and bottom walls of the 
channel the heaviside function is used.   This function 
allows zero velocity to be applied along the 
determined no slip fraction and than a value of one 
along the no-shear fraction.  The problems that arise 
when a value of one is assumed for the no-shear 
fraction will be addressed in the results section of the 
paper. 
 
Results and Discussion 
A graphical comparison is shown below between the 
analytical solutions using the FFT method and the 
EVE method.  In this case a 50% no-slip, no shear 
fraction was used. 

 
Figure 3 Velocity profiles and contour maps for solutions 
obtained by both the FFT method and the EVE method 
 



For both cases, very similar graphical results are 
obtained as would be expected.  By integrating over 
the entire fluid domain and dividing by the length and 
height of a periodic section of channel the average 
velocity for that periodic channel section was 
calculated.  It appears that as the amount of no-shear 
on the bottom and top wall is increased the difference 
between the average velocities calculated in the FFT 
method and the EVE increase.  This may be a result 
of the number of terms that are used in the infinite 
series expansion.  The table given below gives 
average velocity results for the FFT method as the 
no-shear gap is increased. 
 
Table 1 shows average velocity results calculated for the fluid 
domain using both the EVE method and the FFT 

 
 
For no-slip along both the top and bottom walls the 
average velocities obtained from the EVE method 
and the FFT method can be compared to an exact 
solution.  The exact solution gives an average 
velocity value of 0.668333 m/s for the same 
dimensions and source term used in the EVE and 
FFT solutions.  The percent error between this value 
and the values calculated in the EVE and FFT are 
0.004% and 0.0002% respectively.  So for the case of 
complete no-slip both the EVE method and FFT 
method give very accurate results.  
 
 An exact solution can also be determined for the 
case where the bottom wall is no-shear and the top 
wall is set as no-slip.  When the values calculated for 
the similar situation using the EVE method and FFT 
method large discrepancies in the average velocities 
are shown to arise.  These discrepancies arise 
primarily to the use of the heaviside function for the 
no-shear condition.  The heaviside function assigns a 
value of one to the no-shear region, which is 
basically setting the velocity along the entire shear 
region to 1 m/s.  This problem can be seen better by 
comparing the two dimensional velocity profiles 
obtained using the exact solution and the FFT 
solution. 

 
Figure 4 compares the exact solution to the FFT solution for 
no-slip on top wall no-shear bottom wall 
 
The FFT method does not reach the correct profile 
because it has the 1 m/s boundary condition at the 
bottom wall that it is driven to.   This same effect is 
seen as the no-shear to no-slip fraction is increased.  
The significance of this is that in order to use the FFT 
or EVE method, as outlined in this paper, to get 
accurate estimates of the velocity profile in the 
microchannel the velocity that will exist along the 
no-shear regions need to be determined.  Future work 
needs to be done in determining these velocities or 
implementing a different way to apply the boundary 
conditions instead of using the heaviside function.   
 
Conclusions 
 
The FFT and EVE methods can be used to give quick 
results to the scenario of fluid flow through a 
microchannel with mixed no-slip and no-shear 
boundary conditions.  These results are dependent on 
how the boundary conditions are set, which needs to 
be investigated further.  If an accurate method can be 
determined for applying the boundary conditions then 
the results can be assumed to be quit accurate as was 
shown for the case of no-slip on both walls using the 
FFT and EVE methods when comparing against the 
exact solution. 
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APPENDIX I 
 
Eigenfunction Expansion Method for 
Periodic Two Dimensional Channel with No-slip and No-shear Boundary Conditions  
 
 
Initial Setup:  Geometry of the cavity is given below.  A pressure gradient in the z direction 
drives the flow in this direction.  The no shear boundary condition runs parallel to the flow. 
 
 
 
 
 
 
 
 
 
 
 
The z momentum equation can be reduced to the form below, where u is the velocity in the z 
direction. 
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Periodic solution will repeat the solution given in one segment. 
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The solution can be obtained by splitting the problem into two parts and solving the partial 
differential equations for those parts separately and then adding these parts together to get the 
complete solution. 
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Solution for ),( yxuI :  Neglect the source term G and solve the PDE   
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Use separation of variables  
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Solve for X 
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Second order ODE solution for X 
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For periodic solution p=L2/2 and eigenvalues are given as 
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Substituting the eigenvalues into the solution for X the following is obtained 
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Now, solve the second order ODE for Y using the same technique shown above 
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Construction of the solution for ),( yxuI  can now be made in the form of an infinite series. 
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Substitute and expand terms 
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Find coefficients by applying boundary conditions )()0,( 1 xfxuI = and )(),( 2 xfMxuI = to 
equation 1. 
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It should be noted that to get a solution ∫ ∫= dxfdxf 21 , if this is not the case then a solution can 
not be achieved. 
 
Substitute a0,n, a1,n, a2,n, a3,n, a4,n, into equation 1 to give solution to part I 
 
 
Solution for ),( yxuII :  Assume a periodic solution for governing equation which includes the 
source term and sets f1,f2 equal to zero. 
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Assumed periodic solution is given below as equation 2. 
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where  yyY mm Μ= sin)(  which comes from the Sturm-Liouville problem for Dirichlet-Dirichlet 

boundary conditions.  The eigenvalues of Mm are given as
M
mπ .  The nΛ eigenvalues come from 

the periodic boundary condition and are given by
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The coefficients can be determined by setting the left-hand side of the equation above to  
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∫ ∫

∫ ∫

∫ ∫

Λ
Μ+Λ

=

Λ
Μ+Λ

=

Μ
=

2

2

2

0 02
22

0 02
22

0 0
2

2

sin
)(

2

cos
)(

2

2

L M

nm
mn

nm

L M

nm
mn

nm

M L

m
om

xdydxGY
ML

b

xdydxGY
ML

a

dyGdx
ML

a

 

The coefficients can now be substituted back into equation 2 to give the solution for ),( yxuII . 
 
 
As stated above the final solution for ),( yxu  is obtained when ),( yxuI and ),( yxuII are 
added together. 
 
 
 
 
 
 
 
 



APPENDIX II 
 
Integral Transform Method for periodic channel flow with no-slip no-shear boundary 
conditions 
Setting of the problem:   
 
 
 
 
 
 
 
 
 
 
 
Z momentum equation reduced to the equation below 
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Apply Finite Fourier Transform to 2
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Boundary conditions are Dirichlet-Dirichlet give as: 
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These boundary conditions give the following Finite Fourier Transform operational properties.  
(Found in 503 text pg. 145) 
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Apply Finite Fourier Transform to governing equation: 
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Solution to Periodic boundary condition 

Assume the following form for mu (given on page 210 of 502 text) 
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Differentiate assumed periodic solution twice, simplify, and than substitute into transformed 
form of govern equation. 
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Combine terms and coefficients: 
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Derive equations for the coefficients.  The equations are given by Euler’s formulas. (or is it by 
the orthogonality of the periodic equation.) 
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New periodic solution for mu  is given below with the coefficients replaced with those derived 
above. 
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Transform mu  to ),( yxu  by applying the Inverse Finite Fourier Transform to give the solution of 
the velocity profile in a channel. 
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Do the f1 and f2 functions need to be transformed? 


