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ABSTRACT 
 

Rotating Detonation Engines are experimental combustion 

engines being researched for their projected improvements in 

thermodynamic cycle efficiency. They facilitate rapid 

combustion by rotating shocks. This paper proposes an 

analytical method derived from the Heat Diffusion Equation 

using integral transform methods. A 1-D and 2-D solution are 

developed to model the transient temperature field inside an 

annular chamber during combustion and examine the effects 

different parameters have on heating inside the chamber. 

 

NOMENCLATURE 
 

T = Temperature distribution 

θ = Angular coordinate 

t = Time 

r = Radial coordinate 

k = Conduction coefficient 

S0 = Combustion source power 

tb = Burn time 

ω = Flame front angular speed 

ρ = Density 

cp = Specific heat 

α = Thermal diffusivity 

 

INTRODUCTION 
 

Rotating Detonation Engines offer a primary advantage over 

traditional combustion engines in that they can sustain long 

duration burns with less fuel. Though these engines have shown 

experimental promise, quantifying characteristics including 

flame propagation in these engines has proven to be 

extraordinarily difficult.  

 

Rotating Detonation Engines operate on the working principle 

that fuel is axially fed through an annular chamber with pre-fed 

oxidizer. At engine detonation, a strong shock immediately 

traverses the annular chamber providing the necessary pressure 

and temperature rise to facilitate combustion reactions between 

the fuel and oxidizer. Though shocks are modeled as adiabatic, 

when coupled with a detonation event, they dissipate energy 

through the combustion chamber.  
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The purpose of this study is to visualize the temperature response 

of the combustion chamber due to a moving shock. Standard in 

most heat transfer problems, the Heat Diffusion Equation (1) is 

used to predict temperatures and temperature gradients in any 

domain. Though modeling would require the simultaneous 

solution of other conservation equations, the model is simplified 

by ignoring coupled equations. This simplification would allow 

the possibility of obtaining a closed-form analytical solution for 

visualization.  

 

MODEL 
 

Formulation 1-D 
 

To begin modeling the system, the 1-D heat equation in 

cylindrical coordinates (1) was simplified. Because Rotating 

Detonation Engines are thin and insulated at the walls, 

temperature dependence with radius and height was neglected.  

 

Boundary conditions were developed so that the interface points 

between 0 radians and 2π radians would have the same 

temperature and temperature gradient (2) (3).  
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The shock wave is represented as a moving heat source in the 

tangential direction by angular rate ω. To simulate the effect of 

combustion duration, an energy decay was implemented by way 

of the decaying exponential 𝑒
−

3𝑡

𝑡𝑏   in the source term (5) (6).  
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Solution 1-D 

Circular Transform 
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Laplace Transform 
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After both transformations have been made, the equation is 

solved for the transformed temperature variable. The resulting 

equation (11) can then be input into MATLAB to invert each of 

the transformations and be plotted. 
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Figure 1. Temperature distribution in the combustion chamber 

after 11.82 seconds, using 1D model. 

 

Formulation 2-D 
 

The 2-D system derivation was not all that much different from 

the 1-D derivation. The 2-D heat equation in cylindrical 

coordinates was taken and simplified (1). Temperature was 

assumed to not depend on radius. 

12)     𝑇(𝜃, 𝑧, 𝑡) = 𝑇(𝜃 + 2𝜋, 𝑧, 𝑡) 
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Different from the 1-D formulation, an axial Robin boundary 

condition was used to model the convection out of the top (z = 

L) of the engine (14). Two separate boundary conditions were 

formulated for the base (z = 0) of the engine: Neumann (15) and 

Dirichlet (16).  
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The shock wave is represented as a moving heat source with 

some wave angle 𝜀 that varies helically with height (17). This 

would be representative of an oblique shock that traverses the 

chamber during combustion.  
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Solution 2-D 

Circular Transform 
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Fourier Transform 
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Dirichlet-Robin BC  

20)  𝑍𝑛 = sin (𝜇𝑛𝑧) 
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Neumann-Robin BC  
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 Laplace Transform  
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After both transformations have been made, the equation is 

solved for the transformed temperature variable. The 

resulting equation (27) can then be input into MATLAB to 

invert each of the transformations and be plotted. 
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Figure 2. Temperature distribution in the combustion chamber 

after 11.82 seconds, using a Neumann boundary condition at z 

= 0. 

 

 
Figure 3. Temperature distribution in the combustion chamber 

after 11.82 seconds, using a Dirichlet boundary condition at z = 

0. 

 

RESULTS 
 

1-D 

After 11.8 seconds, the temperature distribution in the 

combustion chamber began to homogenize (see Figure 1). For 

simplified, macroscopic applications, such a model could be 

useful to model the temperature within the combustion chamber 

of a rotating detonation engine. This model could also be useful 

if only a model of a thin cross section of the combustion chamber 

is required. 

 

2-D 

After a burn duration of 11.82 seconds, Figure 3 showed the 

greatest increase in average temperature over the upper half of 

the annular domain.  Meanwhile, Figure 2 showed the greatest 

increase in average temperature over the lower half of the 

annular domain. Both figures visually show noticeably greater 

heat transfer in the axial direction over the rotational direction. 

However, when the aspect ratio of the figure is considered, the 

rate of heat transfer in the axial direction is deceptively higher. 

Temperature striations in Figure 2 indicate net heat transfer from 

the bottom of the chamber to the top of the chamber. 

Temperature striations in Figure 3 indicate net heat transfer from 

the top of the chamber to the bottom of the chamber. These 

differences were expected since the bottom boundary was 

insulated in Figure 2 and isothermal in Figure 3.   

 

CONCLUSIONS 
 

As can be seen by the results obtained above, a simplified heat 

transfer problem can be formulated for a Rotating Detonation 

Engine. The two-dimensional model allowed for the variation of 

the wave angle and the visualization of the heat gradient in both 

the rotational and axial directions. The solutions, as presented in 

the figures, are dependent on boundary conditions in the 

cylindrical domain. They are standalone and represent the best 

attempt of the authors to obtain closed form models using 
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integral transform methods. On admission, developed solutions 

in this text do not consider the coupled nature of conservation 

laws. For more accurate modeling, numerical methods would 

need to be employed to visualize the coupled nature of heat and 

mass transfer. 
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APPENDIX A 
 

1-D MATLAB Code 

 
 
%% Setup 
dim = 100; 
tdim = 100; 
a = 1; 
pcp = 1; 
s0 = 100; 
T_in = 300; %K 
tb = 30; %s burn time 
sig = 3/tb; %decay exponent 
rot = 2; %rotations of combusion 
om = rot*2*pi/tb; %rad/s 
r1 = 0.5; %m 
nf = 5; %fourier term count 
 
%% Inverse integral tranformations 
syms s n th t; 
T_il = 
(s0/(pcp*(s+n^2*a/r1)))*((cos(n*th)*(s+sig)+n*
om*sin(n*th))/((s+sig)^2+n^2*om^2)); 
T_i = ilaplace(T_il); 
T_i0 = (s0/(pcp*sig))*(1-exp(-t/sig)); 
T_isum = symsum(T_i,n,1,nf); 
T = (1/(2*pi))*T_i0+(1/pi)*T_isum; 
thl = linspace(0,2*pi,dim); 
tl = linspace(0,tb,tdim); 
r = linspace(0,r1,dim); 
 
T_out = zeros(length(thl),length(tl)); 
T_out = T_out +T_in; 
f = waitbar(0,"Computing solution..."); 
for thi = 1:length(thl) 
    th = thl(thi); 
    waitbar(thi/length(thl)); 
    for ti = 1:length(tl) 
        waitbar(thi/length(thl),f,"Computing 
solution...("+ti+"/"+length(tl)+")"); 
        t = tl(ti); 
        T_out(thi,ti) = T_out(thi,ti) + 
double(subs(T)); 
    end 
end 
close(f); 
 
%% Plotting 
 
figure(1); 
light 
lighting gouraud 
 

for ii = 1:length(tl) 
     
clf; 

T_mat = zeros(length(thl),length(r)) + 
T_in; 
    T_mat(:,length(r)) = T_out(:,ii); 
    T_mat(:,1:end-1) = NaN; 
    [x,y,z] = pol2cart(thl,r1,T_mat); 
    plot3(x,y,z); 
    zlim([T_in,max(max(T_out))]) 
    pause(0.1) 
end 
 
%% Cylindrical Plot 
figure(2) 
[X,Y,Height] = cylinder(r1,dim-1); 
[angle,radius] = cart2pol(X,Y); 
L = max(max(T_out))-T_in; 
Height = Height*L; 
 
s = surf(X,Y,Height/50,[T_out(:,1)'; 
T_out(:,1)'], 'FaceAlpha', 0.8, 'EdgeColor', 
'none'); 
colorbar; 
clim([0.88*max(max(T_out)),max(max(T_out))]) 
colormap(jet); 
s.FaceColor = 'interp'; 
for ii = 1:length(tl) 
    s.CData = [T_out(:,ii)'; T_out(:,ii)']; 
    pause(0.15) 
end 
colorbar; 
 
%% Static Cylindrical Plot 
figure(3) 
[X,Y,Height] = cylinder(r1,dim-1); 
[angle,radius] = cart2pol(X,Y); 
L = max(max(T_out))-T_in; 
Height = Height*L; 
 
s = surf(X,Y,Height/50,[T_out(:,40)'; 
T_out(:,40)'], 'FaceAlpha', 0.8, 'EdgeColor', 
'none'); 
xlabel("x"); 
ylabel("y"); 
zlabel("z"); 
colorbar; 
clim([0.88*max(max(T_out)),max(max(T_out))]) 
colormap(jet); 
s.FaceColor = 'interp'; 
colorbar; 
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APPENDIX B 
 
2-D MATLAB Code 

 

%% Setup 
syms z theta omega t m 
L = 4; 
R = 0.5; 
H = 2; 
S0 = 100; 
alpha = 1; 
lambda = 0:0.01:20; 
 
% Eigenvalue problem for different BC 
 
%val = -lambda.*sin(lambda*L) + 
H*cos(lambda*L); 
val =   lambda.*cos(lambda*L) + 
H*sin(lambda*L); 
 
% Roots of Eigenvalue problem 
j = 1; 
for i = 2:length(lambda) 
    if val(i) == 0 
        lamn(j) = lambda(i); 
        j = j + 1; 
    elseif val(i)/abs(val(i)) ~= val(i-
1)/abs(val(i-1)) 
        lamn(j) = (lambda(i) + lambda(i-1))/2; 
        j = j + 1; 
    else 
       
    end 
end 
 
syms s  
 
% Eigenvalue functions for different BC 
 
%Zn = cos(lamn*z); 
Zn = sin(lamn*z); 
 
%Nn = (L/2 + sin(2*lamn*L)./(4*lamn)); 
Nn = (L/2 - sin(2*lamn*L)./(4*lamn)); 
 
 
source = S0*alpha*cos(m*(theta-
omega*t+0.7*z)); 
 
source_fourier = int(Zn*source,z,[0 L]); 
T_laplace = laplace(source_fourier)./(s + 
m^2*alpha/R + alpha*lamn.^2); 
 
T_fourier_circular = ilaplace(T_laplace,s,t); 

 
 
T_circular = sum(T_fourier_circular.*Zn./Nn); 
T_circular_0 = subs(T_circular,m,0); 
 
T_circular_m = subs(T_circular,m,1:1:10); 
 
N = 15; 
T = T_circular_0/(2*pi) + 
sum(T_circular_m)/pi; 
T = subs(T,omega,2*pi/N); 
matlabFunction(T,"File","t_ret"); 
 
%% Function Iteration 
dim = 100; 
tdim = 100; 
T_in = 300; 
tb = 30; 
r1 = R; 
thl = linspace(0,2*pi,dim); 
zl = linspace(0,L,dim); 
tl = linspace(0,tb,tdim); 
 
r = linspace(0,r1,dim); 
 
T_out = 
zeros(length(thl),length(zl),length(tl)); 
T_out = T_out +T_in; 
f = waitbar(0,"Computing solution..."); 
for thi = 1:length(thl) 
    for zi = 1:length(zl) 

T_out(thi,zi,ti) = T_out(thi,zi,ti) + 
t_ret(tl(ti),thl(thi),zl(zi)); 

        end 
    end 
end 
 
close(f); 
 
 
 
 


