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1 Abstract

The Navier Stokes equations govern the motion of
fluid in three dimensional space and time. They can
be applied to a wide range of fluid flow scenarios and
can be solved numerically or, if possible, analytically.
The case that we are considering in this paper is a set
of concentric cylinders with some viscous fluid in be-
tween them. Allowing the rotation of these cylinders
will enable us to observe the tangential motion of the
fluid throughout time. Similarly, applying a pressure
gradient in the axial direction will allow us to solve
for the axial motion of the fluid throughout time. The
goal of this paper is to analyze this problem using the
Navier Stokes equations and solve for the tangential,
and axial components of motion simultaneously. The
analysis allows us to see the decoupled nature of these
two components, which means that the problem is
able to be solved analytically, with one component
not influencing the other.

2 Nomenclature

• ri: Inner radius

• ro: Outer radius

• r: Radius

• Vθ: Tangential velocity

• Vz: Axial velocity

• P : Pressure

• µ: Kinematic viscosity

• ρ: Density

• ν: Dynamic viscosity

3 Introduction

In this paper, we analyze viscous fluid flow in the
annular region between concentric rotating cylinders.
Specifically where both the fluid and the cylinders
are initially at rest, then suddenly, at time t=0, the
outer cylinder begins rotating at some rate, ω. Also
at t=0, a pressure gradient, ∂P

∂z , is applied in the z
direction. The combination of these influences results
in a flow in the θ direction as well as in the z direction.
Our goal is to analyze these flows and see how they
interact.
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Figure 1. Visualization of radial coordinate system
used throughout the report. The inner diameter, ri,

and outer diameter ro are also indicated.

4 Methodology

We begin by outlining the assumptions necessary to
solve the problem. We assumed our fluid is incom-
pressible with a constant viscosity. This reduced the
Navier-Stokes Equations to the the following form:
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We then simplified the Navier-Stokes Equations
further by making the following assumptions:

1. No flow through walls → Vr = 0
2. Flow is axisymmetric (invariant in θ) → ∂

∂θ = 0
3. Gravity has a negligible influence→ gθ = gz = 0

Applying these assumptions yields the following
partial differential equations:

ρ∂Vθ

∂t = µ ∂
∂r (

1
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∂
∂r (rVθ))
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∂t = −∂P
∂z + µ[ 1r
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∂r (r
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∂r )]

The above PDEs are subject to the following
initial and boundary conditions:

Vz(r, 0) = 0
Vz(ri, t) = 0
Vz(ro, t) = 0

Vθ(r, 0) = 0
Vθ(ri, t) = 0
Vθ(ro, t) = roω(t)

Where ri is the inner radius, ro is the outer radius,
and ω(t) is the angular velocity of the outer cylinder.

Z-Direction: We begin by solving for flow in
the z-direction. To do this, we first find the steady
state solution (velocity profile at t=∞). At t=∞,
∂
∂t = 0. Therefore:

0 = −∂P
∂z + µ[ 1r

∂
∂r (r

∂Vz

∂r )]

This is now an ordinary differential equation which
can be solved by separating and integrating twice.
The solution is:

Vz,ss =
∂P
∂Z

r2

4µ + C1ln(r) + C2

Using boundary conditions, we find the constants
C1 and C2 to be the following:

C1 = ∂P
∂z

1
4µ (

r21−r22
ln

r0
ri

)

C2 = −∂P
∂z

r21
4µ − C1ln(ri)

Now we must also find the transient solution. We
assume the solution to be in the form of:

Vz(r, t) = R(r)T (t)

Separation of variables yields:

ρ
µ

T ′

T = R′′

R + 1
r
R′

R − 1
r2 = λ
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We can rearrange the R equation to the following
self adjoint form:

[rR′]′ + [0 + (−λ)r]R = 0

Thus:

r2R′′ + rR′ + (µ2r2 − 0)R = 0

Where µ2 = −λ. This is the Bessel equation for
which the solution is in the following form:

Rn(r) = C1nJ0(µnr) + C2nY0(µnr)

with eigenvalues µn being roots of the following
characteristic equation:

J0(µnri)Y0(µnro)− J0(µnro)Y0(µnri) = 0

From our boundary conditions it is possible to find:

C1n = 1
J0(µnro)

C2n = −1
Y0(µnro

)

Thus:

Rn(r) =
J0(µnr)
J0(µnro)

− Y0(µnr)
Y0(µnro)

We can now solve for T (t). Rearranging the T
side of the equation yields:

T ′ + νµ2
nT = 0

Note: In the above equation, the kinematic
viscosity, µ and the density, ρ were combined into
the dynamic viscosity, ν, in order to distinguish
the kinematic viscosity from the eigenvalue, both
represented by µ.

This differential equation can be solved to give

Tn(t) = e−νµ2
nt

Combining these equations back into the form
Vz,t = R(r)T (t) yields

Vz,t(r, t) =
∑

n Cn[
J0(µnr)
J0(µnro)

− Y0(µnr)
Y0(µnro)

]e−νµ2
nt

Where:

Cn =

∫ ro

ri
(uo−uss)Rnrdr

|Rn|2

And thus the final solution can be found by adding
together the steady state and transient solutions,
Vz,ss and Vz,t. The solution is then:

Vz(r, t) =
∂P
∂Z

r2

4µ +C1ln(r)+C2+
∑

n Cn[
J0(µnr)
J0(µnro)

−
Y0(µnr)
Y0(µnro)

]e−νµ2
nt

Tangential Direction: With the Z solution
solved, now we move on to the θ velocity profile.
Starting with our reduced Navier-Stokes equation in
the θ direction:

ρ∂Vθ

∂t = µ ∂
∂r (

1
r

∂
∂r (rVθ))

We can rearrange the equation to the following
form. Again, ν = µ

ρ

1
ν
∂Vθ

∂t = [∂
2Vθ

∂r2 + 1
r
∂Vθ

∂r − Vθ

r2 ]

The boundary conditions for the θ equation are
time variant, so we will need to apply an integral
transform.
In order to find out what this transform should be,
we will consider the differential operator:

Lu = ∂2u
∂x2 + 1

x
∂u
∂x − u

x2

Subject to boundary conditions of type I-I.

This operator can be put in self-adjoint form
with p = x

Lu = 1
x [(xu

′)′ − u
x ]

Then, we formulate the operator’s eigenvalue
problem and put it in Sturm-Liouville form:

Lu = λy Where λ = −µ2
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[xy′]′ + (− 1
x + µ2x)y = 0

We want to find the integral transform for
boundary conditions of type I-I, so the eigenvalue
problem’s boundary conditions become:

y(x = ri) = 0

y(x = ro) = 0

The solutions yn to this eigenvalue problem
can be found with the help of Bessel functions.

yn = J1(µnx)
J1(µnro)

− Y1(µnx)
Y1(µnro)

Where µn are roots of the characteristic equa-
tion:

J1(µnri)Y1(µnro)− J1(µnro)Y1(µnri) = 0

Now we define an integral transform ℑ for the
operator Lu with eigenvalues µn, eigenfunctions yn,
and weight function p = x.
Applying the operator to the Vθ equation yields:

∂Vθn

∂t = −ν[µ2
nVθn + y′n(ro)ro ∗ roω]

Then apply the Laplace Transform:

S ˆVθn = −νµ2
n

ˆVθn − νr2oY
′
n(ro)ω̂

ˆVθn =
−νr2oY

′
n(r2)ω̂

S+νµ2
n

Reverse the Laplace Transform:

Vθn =
∫ t

0
−ω(t− τ)νr2oy

′
n(ro)e

−νµ2
nτdτ

Then reverse the integral transform ℑ:

Vθ(r, t) =
∑∞

n=1 Vθn
yn∫ ro

ri
(yn(r))2rdr

Which is the equation for calculating Vθ.

5 Results

As derived above, we found the solution for flow
between two concentric cylinders with a pressure
gradient in the z direction by starting with the
Navier-Stokes Equations. What was most interesting
is we found that the flow’s velocity profile in the
z-direction and θ direction were independent of
each other. In other words, they do not affect one
another. So no matter how big or small the pressure
gradient, ∂P

∂z , the flow in the θ direction remains
the same. Likewise, flow in the z-direction remains
constant no matter the velocity of the outer wall.
What this means is that the complete, 3 dimensional
flow equation is simply:

V (r, t) = Vθ + Vz

This is at least true in the laminar regime. If the
flow were to transition to turbulence, our solution
would be insufficient. Random turbulent mixing
would result in Vr ̸= 0, invalidating our mathemati-
cal model.

Solving the PDE in the z direction with a positive
pressure gradient yields the following velocity profiles
taken at various points in time.

Figure 2. Z component of velocity solution, shown
at various instances in time.
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Figure 3. Three dimensional view of the radial
velocity after a brief moment.

Figure 4. Combined view of the velocity in the z and
θ directions. Note that ∂P

∂z is negative in this view.

6 Conclusion

The most relevant real world application of this
problem is perhaps in the lubrication of spinning
machinery. For example, both journal and piston
rod bearings allow a independent rotation of two
cylindrical surfaces while lubricant is pumped.

The most interesting part of our solution is
that it demonstrates that Vz is independent of Vθ

and vice versa. This means that in such a lubrica-
tion application, the pressure needed to pump the
lubricant would be the same regardless of the ma-
chine’s rotation rate so long as the flow stays laminar.
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8 Appendix

Some code as well as several animations were gener-
ated for this project (including moving versions of
some of the figures). You can find it all on this
project’s Github repository. The Github repository
for this project is available at https://github.com/
tysondanby/505_Project Feel free to download the
repository and change up the parameters to make
your own visualizations.
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