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Abstract
The Euler-Bernoulli beam theory is a simple model for
small lateral deflections in beams. This work derives the
solution to the Euler-Bernoulli equation using the gener-
alized finite integral transform method. The eigenvalue
problem is considered to find eigenfunctions, which are
used to define an integral transform, which, along with
the Laplace transform, is used to solve the PDE. The so-
lution is then evaluated numerically, simulating the re-
sponse of a cantilevered beam to various time-varying
point sources. Mode shapes of the cantilevered beam are
shown to be excited by a sinusoidal input near the modal
resonant frequency, with a superposition of modes also
being observed in the swept sine and impact simulations.

Nomenclature

u solution to Euler-Bernoulli beam equation
E elastic modulus of beam material
I second moment of area
ρ linear density
q distributed load
L length of beam
x0 location of point source
ωs frequency of point source
µ eigenvalues of supplementary problem

Introduction

Deriving and solving partial differential equations that
model beam vibrations accurately is an important and use-
ful skill when looking to model a system. Partial differ-
ential equations are an effective tool for modeling high
frequency responses and in determining parameters for
modal analysis. Analytical functions that express these
modal properties of simple systems can act as a guide or
benchmark in testing or in approximate simulation. De-
spite this, the complexity and difficulty of finding solu-
tions to partial differential equations increases greatly as
more complex systems are considered. Cross-sections that
are not constant, supports that are not at the ends of the
beam, or analyses of curved bars, plates or shells become
quite difficult to model [1].
The Euler-Bernoulli Beam theory is the basis for anal-

ysis of extensional and flexural motion, while ignoring
torsional motion. It is useful for very basic beam bend-
ing analyses and provides useful insight for responses of
beams under different loading conditions [1].

Problem Description

In [1], the equation of motion for flexural vibration of a
beam according to Euler-Bernoulli beam theory is given

Journal of Applied Engineering Mathematics December 2023, Vol. 10 1 Copyright ©2023 by ME505 BYU



Black, Blackham. Solution of Euler-Bernoulli Beam Equation by ... / JAEM 10 (2023) 2 of 6

as
∂2

∂x2
(EI

∂2u

∂x2
) = −ρ

∂2u

∂t2
+ q (1)

whereE is the elastic modulus, I is the second moment of
area (a.k.a. area moment of inertia), ρ is the linear density,
and q is the distributed load as a function of x and t.
This work will assume a homogeneous, constant cross

section beam, so that the equation simplifies as follows:

EI
∂4u

∂x4
= −ρ

∂2u

∂t2
+ q (2)

The beam is initially undergoing no deflection and is at
rest.

u(x, 0) =
∂u

∂t
(x, 0) = 0

The beam is cantilevered; in other words, one end is
fixed and the other end is free. These boundary conditions
can be described mathematically as follows:

u(0, t) =
∂u

∂x
(0, t) = 0

∂2u

∂x2
(L, t) =

∂3u

∂x3
(L, t) = 0

For our exploration of the solution we allow q to be a
point source. We consider the following three different
forcing conditions:

q1(x, t) = δ(x− x0)δ(t)

q2(x, t) = δ(x− x0)sin(ωst)

q3(x, t) = δ(x− x0)sin(ωs(t)t)

(3)

where ωs is a constant in q2 and ωs(t) is an arbitrary func-
tion of time in q3.

Eigenvalue Problem
We now solve the eigenvalue problem for the Euler-
Bernoulli equation in order to find the eigenvalues and
eigenfunctions. We first consider the supplementary
eigenvalue problem

d4X

dx4
= µX

Assuming X = eλx and solving the auxiliary equation
for λ gives

λ4 = µ

λ = ± 4√µ,±i 4√µ

The general solution can now be written as follows:

X(x) = c1cosh(λx) + c2sinh(λx)

+ c3cos(λx) + c4sin(λx)

We eliminate one of the coefficients by recognizing that
any scalar multiple of an eigenfunction is still an eigen-
function and use 3 of the 4 boundary conditions to solve
for the remaining unknown coefficients, resulting in the
following:

X(x) = cosh(λx)− cos(λx)

− β(sinh(λx)− sin(λx))
(4)

where
β =

cosh(λL) + cos(λL)

sinh(λL) + sin(λL)

From the fourth boundary condition, it is found that the
eigenvalues λ must satisfy the following equation:

1 + cos(λL)cosh(λL) = 0 (5)

This function is plotted in Figure 1. It can be seen that
there are infinitely many roots, as expected. The λ val-
ues that satisfy Equation 5 will hereafter be denoted λn,
and the corresponding eigenfunctions (according to Equa-
tion 4 will be denoted Xn.
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Figure 1: Plot of the function used to solve for eigenvalues
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The first 4 eigenfunctions can be seen in Figure 2 and
are the normal modes, or mode shapes, of the vibrating
cantilever beam. In [1], it was shown that the eigenfunc-
tions of this eigenvalue problem are orthogonal as long as
boundary conditions for both ends are either fixed or free.
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Figure 2: Plot of the first 4 eigenfunctions, normalized by
the square of their norm.

Finite Integral Transform
The eigenfunctions Xn will be used to define a gener-
alized finite integral transform, which will later be used
to eliminate the fourth derivative in the Euler-Bernoulli
beam equation.
Assuming a weight function of p(x) = 1, the inner

product and norm can be defined as follows:

(v, w) =

∫ L

0

v(x)w(x)dx

||v(x)||2 = (v, v) =

∫ L

0

v2(x)dx

With the inner product defined, the vector space
L2(0, L) is the Hilbert space and the eigenfunctions
Xn(x) from equation 4 can be used as a basis set for a
generalized Fourier series:

v(x) =

∞∑
n=1

(v,Xn)

∥Xn∥2
Xn (6)

The integral transform and its inverse are now defined

as follows:

I{v(x)} = (v,Xn) =

∫ L

0

v(x)Xn(x)dx = v̄n (7)

I−1{v̄n} =

∞∑
n=1

v̄n
Xn(x)

||Xn||2
= v(x) (8)

Operational Property
The operational property of the integral transform must
be derived to determine the effect of applying it to the 4th
order partial derivative, which is the main differential op-
erator in the Euler-Bernoulli beam equation.
We apply the integral transform to the 4th order partial

derivative term of the Euler-Bernoulli equation.

I

{
∂4u

∂x4

}
=

∫ L

0

∂4u

∂x4
Xndx

After performing integration by parts multiple times
and applying the boundary conditions, we have the fol-
lowing:

I

{
∂4u

∂x4

}
=

∫ L

0

u
d4Xn

dx4
dx

We solve for the 4th derivative of the eigenfunction.

d4Xn

dx4
= λ4

n(cosh(λnx)− cos(λnx)

− βn(sinh(λnx)− sin(λnx)) = λ4
nXn

We can now simplify the integral further, using the def-
inition of the integral transform (Equation 7).

I

{
∂4u

∂x4

}
=

∫ L

0

u
d4Xn

dx4
dx =

∫ L

0

λ4
nuXndx

= λ4
nūn

(9)

Solution of Euler-Bernoulli Equation
Now that the operational property has been defined for the
4th order derivative, we apply the finite integral transform.
We begin with the Euler-Bernoulli equation.

EI
∂u

∂x4
= −ρ

∂u

∂t2
+ q

Journal of Applied Engineering Mathematics December 2023, Vol. 10 3 Copyright ©2023 by ME505 BYU



Black, Blackham. Solution of Euler-Bernoulli Beam Equation by ... / JAEM 10 (2023) 4 of 6

We first apply the generalized integral transform, I, to
the function and initial conditions (which are zero).

EIλ4
nūn = −ρ

∂ūn

∂t2
+ q̄n

We next apply the Laplace transform, denoting L{v} =
v̂.

EIλ4
n
ˆ̄un = −ρs2 ˆ̄un + ˆ̄qn

We solve for the transformed solution, ˆ̄un.

ˆ̄un =
ˆ̄qn

EIλ4
n + ρs2

We now apply the inverse Laplace transform, L−1, us-
ing the convolution theorem.

ūn = q̄n ∗ 1

ρωn
sin(wnt)

ωn = λ2
n

√
EI

ρ

(10)

Finally, we apply the inverse finite integral transform,
I−1 (Equation 8).

u =

∞∑
n=1

ūn
Xn

||Xn||2
(11)

Implementation
A Python script was developed to implement eqs. (5), (10)
and (11) and to create animations of the response of the
beam to various forcing functions, q(x, t).
To improve performance, every factor in the summa-

tion in Equation 11 was pre-calculated and stored, instead
of re-calculating ūn,Xn, and ∥Xn∥2 at every combination
of n, x, and t. This resulted in two rank 2 tensors: ūnt and
X̃nx, where X̃ represents an eigenvector normalized by
the square of its norm. In these expressions, x and t repre-
sent indices in discretized space and time vectors instead
of continuous variables. Once these two tensors were cal-
culated, all that remained was to perform the summation,
which is re-written using Einstein tensor summation nota-
tion as follows:

uxt = untX̃nx (12)

For the simpler forcing functions, q1 and q2, the convo-
lution integral in Equation 10 was evaluated analytically.
For the forcing function with time varying frequency, q3,
the convolution integral was evaluated numerically using
the adaptive quadrature method scipy.integrate.quad.

Results

All results presented use the parameters EI = 1, L = 1,
and ρ = 1.

The first four roots of Equation 5 and the corresponding
natural frequencies ωn are presented in Table 1.

n λn ωn

1 1.8751 3.5160
2 4.6941 22.0345
3 7.8548 61.6972
4 10.9955 120.9019

Table 1: Eigenvalues and natural frequencies of the first 4
modes.

We successfully simulated the response of the beam to
all three loading conditions described in Equation 3. All
of the animations can be found in the GitHub repository,
as presented in the Supplementary Files section.

First, we will discuss the results of a swept sine an-
imation, where the time-varying frequency is given by
ωs = 40 − 4t and the simulation was carried out with
t ∈ [0, 10] such that all frequencies between 40 and 0 are
reached. For the first 2 seconds of the simulation, when
the source frequency is above 30, almost no response is
seen (see Figure 3), which is to be expected because there
are no modes that resonate near those frequencies.
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Figure 3: A frame from the swept sine excitation simu-
lation, with ωs above the natural frequencies of modes 1
and 2.

As the forcing frequency nears the resonant frequency
of the second mode, however, the animation displays be-
havior dominated by the second mode shape (see Figure 4
and compare Figure 2).
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Figure 4: A frame from the swept sine excitation simula-
tion, with ωs near the natural frequency of mode 2.

Later, as the source frequency continues to drop, we see
a superposition of modes 1 and 2 (see Figure 5), as the en-
ergy that was put into mode 2 has no way of being dissi-
pated since no damping terms were included in our model.
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Figure 5: A frame from the swept sine excitation simula-
tion, with ωs near the natural frequency of mode 1. Note
the superimposed behavior of modes 1 and 2.

The impulse input, q1, was used to explore the effect of
excitation position, x0. An impulse imparts energy at ev-
ery frequency (the Fourier transform of a delta function is
a constant), so we expect every mode to be excited, unless
the impulse is placed at the node of the mode. To observe
this behavior, an impulse was applied at the node of mode
2, which is x0 = 0.7834. One frame from that simulation
is shown in Figure 6. As expected, the response included
mode 1 and many higher frequency modes, but did not in-
clude the mode 2 behavior.
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Figure 6: A frame from the impulse excitation simulation
with the input being placed at the node ofmode 2. Observe
the superimposedmode shapes of several modes, most no-
ticeably modes 1 and 3.
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Conclusions
The solutions found for the Euler-Bernoulli equation are
able to accurately show the mode shapes and frequen-
cies of the modeled cantilever beam. We also reasonably
model the response of the cantilever beam to the different
forcing functions and are able to see the interactions of
mode shapes due to the impact and throughout the swept
sine. Future work may include building on the three input
functions to simulate other and more complicated inputs,
and investigation on modal interactions due to various in-
puts. The model could also be updated to include other
boundary conditions or damping terms to more accurately
model a wider range of real structures.
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Supplementary Files
The Python code, together with figures and animations,
is hosted on GitHub: https://github.com/jonkb/
beam_EB.
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