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Abstract

Thermal Gradient Gas Chromatography (TGGC) is rec-
ognized as a pivotal separation technique in the advance-
ment of contemporary chemical research. An inherent
challenge in the application of TGGC lies in the precise
modeling and control of column temperature, along with
the determination of optimal microchannel spacings on
the column. This paper aims to report the outcomes of
an analytical model devised to evaluate the temperature
distribution and spacings for microchannels employed in
gas chromatography, specifically focusing on microchan-
nels enveloping a cylindrical column. This paper also dis-
cusses the temperature variation along the length of the
column for four different separation distances for specific
boundary conditions.

Methodology

An analytical model for different boundary conditions is
developed and resulting profiles are compared for multi-
ple cases. The setup incorporated a solid cold cylinder to
maintain a constant surface temperature at the top side of
the vertical column, and a hollow cylinder equipped with
cartridge heaters to establish a constant heat flux boundary
condition at the bottom side.[6, 1] Given that the heated air

could only ascend due to a reduction in density and had no
other exit, the cylinder was assumed to be insulated inter-
nally.

Analytical Modeling

The comprehensive modeling of the setup posed a com-
plex challenge, necessitating its division into three distinct
regions for the sake of simplification. The column was
segmented along its length into these regions. The first re-
gion is characterized by a constant heat flux boundary con-
dition at the inner surface of the cylinder and insulation on
the outer surface.[4] The second region is insulated both
inside and outside the cylinder. The third region main-
tains a constant surface temperature on the inside and an
insulated boundary condition on the outer surface. This di-
visional approach facilitated a more manageable and effi-
cient modeling process. The corresponding geometry and
3D model is illustrated in Figure 1 and Figure 2.
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Figure 1: Geometry of the column

Figure 2: Geometry of the column

The external surface of the setup is assumed to be fully
insulated. Given the hollow nature of the cylinder, the as-
sumption of insulation on the inside might initially appear
to be an overreach. However, in practical applications,
the column would be oriented vertically along its length,
with the cold solid side positioned at the top and the hot
hollow side at the bottom. The heated air ascends due to
the density differences induced by temperature variations.
However, the upward movement of the air is impeded by
the solid part at the top of the cylinder, preventing its es-
cape. Consequently, it is reasonable to assume that the
internal portion of the cylindrical column, which is not in
contact with either the hot or cold cylinder, is insulated.
This assumption aids in the simplification and accuracy
of the modeling process.[5]

Constant Heat Flux Section
In the model, all lengths were rendered dimensionless by
the length of the boundary exhibiting constant heat flux.
This approach was adopted to facilitate the variation of
length for the same model without necessitating multiple
alterations of the length. The boundary conditions for the
model are illustrated in Figure 3.

Figure 3: Front view of bottom right corner of the vertical
column (Constant heat flux section)

The setup is presumed to exhibit symmetry around its
central axis. The boundary conditions are non- homoge-
neous for the resulting homogeneous partial differential
equation (PDE), as shown in equation 1. Both the radial
and axial directions are normalized by the length L of the
segment. Consequently, the variable r is substituted with
the variable Γ and the variable z is substituted with x after
normalization. This normalization process simplifies the
model.

1

r

∂

∂r

(
r
∂T

∂r

)
+

∂2T

∂z2
= 0 (1)

The solution to the partial differential equation (PDE) (1)
is provided below. This solution is derived by solving two
scenarios, each with a non-homogeneous boundary condi-
tion, and subsequently employing superposition principle
to obtain the overall result as shown in Figure 4.
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Analytical modelling for heat flux side of the setup
Non-dimensionalizing: x = z

L ; Γ = r
L
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Energy Balance: Heat in = Heat out
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Note: x = 1 represents the boundary in the hot region
and center region; (L1)

A

TA = R (Γ)X (x) : X ′ (0) = 0; X (1) = 0

Make a SLP in X:
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R (Γ) = c1J0 (λΓ) + c2Y0 (λΓ)} 2⃝ : R′ (Γ1) = 0
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Rearranging: Y1 (λΓ2) J1 (λΓ1)−J1 (λΓ2)Y1 (λΓ1) = 0

R (Γ) = −c2
Y1 (λΓ2)

J1 (λΓ2)
J0 (λΓ) + . . .

c2Y0 (λΓ) = c′2 [Y1 (λΓ2) J0 (λΓ)− . . .

J1 (λΓ2)Y0 (λΓ)]

Solving for x:

X (x) = c1 cosh (λx) + c2 sinh (λx)

X ′ (x) = −c1λ sinh (λx) + c2λ cosh (λx)
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The equation yields modified Bessel functions[3] as the
solution in the radial direction and a cosine function in the
axial direction when homogeneity is assumed in the ax-
ial direction, as depicted in equation 2. When the bound-
ary conditions are homogeneous in the radial direction, the
constant λ is determined such that the resulting solution is
an ordinary Bessel function in the radial direction and a

hyperbolic cosine function in the axial direction, as illus-
trated in equation 3. This approach is adopted to lever-
age the periodicity and orthogonality of Bessel functions
to determine the constant in the equation using the non-
homogeneous boundary condition.

TA =
∑
n

cn (k1 (λnΓ2) I0(λnΓ)+

I1 (λnΓ2) k0 (λnΓ) cos (λx) (2)

TB =
∑
n

cn (Y1 (λnΓ2) J0(λnΓ)+

J1 (λnΓ2)Y0 (λnΓ) cosh (λx) (3)

Figure 4: Superposition Principle

Middle Segment of the Column
The segment of the column that is situated in the mid-
dle and is not in contact with either the cold or hot side
is assumed to be insulated both externally and internally.
Given that energy is coming in from the hot side and exit-
ing from the cold side, an energy balance can be applied,
as demonstrated in equation 4.
By employing this energy balance, we can determine

the flux at the boundary between the hot and middle sec-
tions. Under steady-state conditions, we can assume that
there is no variation of flux in the radial direction, lead-
ing to a linear temperature profile in the axial direction.
The temperature gradient of this profile remains constant
which is equivalent to the gradient determined from equa-
tion 4. Consequently, it can be inferred that the gradient at
the boundary between the middle and cold sections will be
identical, owing to the linear temperature profile. It should
be noted that all aspects of this analysis are predicated on
the assumption of constant material properties.
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2qsπR1L1 = q0π
(
R2

2 −R2
1

)
(4)

Where qs is the flux at the hot side, q0 is the flux at the
boundary of hot side and the middle section, R1 is the in-
ternal radius and R2 is the external radius, and L1 is the
length of the hot section.

Constant Surface Temperature Section
The cold side of the column was modeled with boundary
conditions as depicted in Figure 5.
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X (x) = c3 sinh (λx) + c4 cosh (λx)} 3⃝ c3 = 0
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A change of variable was implemented to render the
constant surface temperature boundary condition homo-
geneous which allows the elimination of the usage of su-
perposition principle. The governing partial differential
equation (PDE) for the cold side is identical to that for the
hot side. The solution resulting from the constant surface
temperature condition is presented in equation 5.

T =
∑
n

cnY1 (λnΓ2) J0 (λnΓ)−

J1 (λnΓ2)Y0 (λnΓ) cosh (λx) + Tc (5)
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Figure 5: Front view of top right corner of the vertical
column (constant surface temperature section)

Results

In a particular scenario with an Outer Diameter (OD) of 4
inches, an Inner Diameter (ID) of 2 inches, and a column
length of 10 inches, results were computed and graphi-
cally represented for four different separation distances—
namely, 2 inches, 4 inches, 6 inches, and 8 inches as shown
in Figure 6. The solid hot cylinder maintains a consistent
heat flux of 1000 W/m2, and the cold cylinder is set to a
constant surface temperature of 25 degrees Celsius, with
all other surfaces of the cylinder being insulated. The ma-
terial is assumed to be copper with a thermal conductivity
of 400 W/mK. The temperature at the hot side changes
from 25.8 deg C for a 2-inch separation distance to 25 deg
C as we go move in length from 0 to 10 inches. The low-
est change in temperature is from 25.4 deg c to 25 for an
8-inch separation distance which shows the trend for the
temperature difference between cold and hot side, which
decreases as we move from a smaller separation distance
to a greater one.[2] Figure 7 depicts the graphical repre-
sentation of these conditions.

Conclusions
This research paper presents an analytical model to study
the temperature distribution and spacings of microchan-
nels utilized in Thermal Gradient Gas Chromatography
(TGGC) with specific boundary conditions. Four dif-
ferent separation distances were investigated for a spe-
cific Outer Diameter, Inner Diameter, and Column length
which served as a concrete example to illustrate the impact
of separation distances on the temperature distribution. Fi-
nally, the results and the effect of separation distance to the
temperature profile is discussed.

Figure 6: Dimensions for the Specific Case

Figure 7: Temperature Profiles for four different Separa-
tion Distances
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