
Name.  Title / JAEM 10 (2023) p. 1-2 

Journal of Applied Engineering Mathematics  December 2023, Vol. 10 1 Copyright © 2023 by ME505 BYU 

 
Journal of Applied Engineering Mathematics 

 
                                                   Volume 10, December 2023  

IMPLEMENTATION OF CURVE-FITTING ALGORITHMS FOR EXTRAPOLATION OF THE 

INTERFACE TEMPERATURE IN ROTARY FRICTION WELDING 
 

 

 Bryce Harward & Ben Perry 
 

Mechanical Engineering Department 
Brigham Young University 

Provo, Utah 84602 
harwardbrycel@gmail.com  

  

 

 

ABSTRACT 
 

Friction welding is capable of quickly joining separate parts 

together, often at lower temperatures and with less manual 

work. Some of the issues surrounding friction welding include 

the quality of the weld due to the temperatures involved and 

therefore, the material properties. This paper will attempt to use 

mathematical methods to analyze the temperature at a friction 

welding joint between two round metal tubes by analyzing 

temperature values at thermocouples set on the specimen. 

 

NOMENCLATURE 
 

𝑥: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑙𝑑 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 

𝑇: 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒 

(𝑎𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥) 

 

 

INTRODUCTION 
 

Rotary Friction Welding (RFW) is a solid-state welding 

process that may be employed to join a wide variety of materials. 

Advantages of RFW processes include narrower heat-affected 

zones, leading to material properties that are generally more 

consistent with the base material than those yielded by other 

welding processes. Workpieces used in RFW processes are 

typically cylindrical and composed of metals, though other 

geometries and materials are also viable. An important 

component of RFW is the temperature at the interface of the 

weld, as it affects material properties such as grain size and yield 

strength in the completed weld. Determining the temperature at 

this interface presents several challenges due to the complex 

nature of RFW. The interface between the two workpieces 

moves as they are pressed together, producing a transient 

boundary condition. In addition, the rate of heat input is difficult 

to define, as it is dependent on many parameters of the weld 

process. The combination of these two challenges inhibits 

implementation of the standard heat equation to determine the 

temperature at the weld interface. A common approach in 

determining the temperature at the weld interface includes 

mounting thermocouples to specific locations on the outer 

surface of one of the workpieces. These thermocouples report 

temperature data, which can be used to approximate the interface 

temperature using mathematical models. Predictive models 

typically involve diligent validation and implement parameters 

to fit the model to experimental data as accurately as possible. 

This paper presents the implementation of simple curve-fitting 

algorithms in predicting the temperature at the weld interface. 

Data used in this paper was collected from welds produced with 

thin-walled cylindrical workpieces. 

 

METHODS 
 
Logarithmic Curve Fitt ing 

Logarithmic fitting involves calculating two parameters for a 

given, discrete value of time using the values reported by the 

thermocouples. This is done as follows: 

 

𝛼 =
𝑛∑(𝑥 ⋅ 𝑇) − ∑𝑥 ⋅ ∑𝑇

𝑛∑𝑥2 − (∑𝑥)2
 

 

𝛽 =
∑𝑥 − 𝛼∑𝑥

𝑛
 

 

These values are then implemented in the trendline equation: 

 

𝑦 = 𝛼𝑥 + 𝛽 

 

The position of the interface is equal to half the distance by 

which the two workpieces have been pressed together. The 

interface temperature can then be extrapolated by setting x equal 

to the interface position. This process is repeated for each 



Name.  Title / JAEM 10 (2023) p. 1-2 

Journal of Applied Engineering Mathematics  December 2023, Vol. 10 2 Copyright © 2023 by ME505 BYU 

discrete value of time to produce a plot of the interface 

temperature as a function of time. As the two workpieces are 

pressed together, flash is produced and the two thermocouples 

nearest to the weld interface become embedded in the flash. As 

such, the temperature values reported by these thermocouples are 

omitted from the fitting function as the weld interface passes 

their initial position.  

 

As can be seen in Figure 1 of the conclusion section, the 

omittance of temperature values reported by thermocouples 

outside the weld produces strong variation in the 

logarithmically-extrapolated interface temperature.  

 

Polynomial Curve Fitt ing 

Polynomial-based curve fitting involves the calculation of the 

coefficients required to produce a polynomial curve that fits a 

given dataset. These coefficients are calculated as follows: 

 

𝑝(𝑥) = 𝑝1𝑥𝑛 + 𝑝2𝑥𝑛−1 +  … + 𝑝𝑛𝑥 + 𝑝𝑛+1 

 

The unit standard deviation is calculated to center x at zero and 

scale the fitting curve: 

 

𝑥̂ =
𝑥 − 𝑥̅

𝜎𝑥

 

 

The fitting curve may be first order through the nth order, where 

n is the size of the dataset. The same approach is implemented of 

omitting data reported by thermocouples outside of the weld. As 

seen in Figure 1 of the conclusion section, this fitting algorithm 

results in a much more conservative estimate of the interface 

temperature. 

 

 

CONCLUSIONS 
 

 
Figure 1. The extrapolated temperature values as a function of 

time and position, reported by both logarithmic and polynomial 

curve-fitting algorithms. 

 

The proposed curve-fitting algorithms produce a seemingly 

appropriate approximation of the interface temperature at face 

value. Validation of these results could be better analyzed using 

different approximation methods. Finite-element analysis is a 

common approach that could be used. 

APPENDIX 
 

Matlab script: 

 

 

close all 
clear all 
clc 
tic; 
warning('off', 
'MATLAB:table:ModifiedAndSavedVarnames'); 
% Import data from .csv file 
data = readtable('10-16-23 600 S011 and S005', 
'ReadVariableNames', true); 
plotLineWidth = 1.5; 
start = 1; 
timestamp = 500; 
interface = 0; 
% Create plots of data 
for i = start:length(data.T1) 
   
   % figure(i) 
   tempGrad = [data.T1(i) data.T2(i) 
data.T3(i) data.T4(i) data.T5(i)]; 
   tempGrad = tempGrad - data.T1(1); 
   position = [1 2 3 4 5]; 
   if interface > 0.85 
       position(1) = []; 
       tempGrad(1) = []; 
       if interface > 1.8 
           position(1) = []; 
           tempGrad(1) = []; 
       end 
   end 
   
   scatter(position, tempGrad, 
'MarkerFaceColor', "#0066CC") 
   % set(gcf, 'units', 'normalized', 
'outerposition', [0 0 1 1]) 
   xlabel("Distance from initial weld 
interface, mm") 
   xlim([0 5]) 
   ylim([0 2200]) 
   ylabel("Temperature, " + char(176) + "F") 
   hold on 
   if data.ZPosition_mm_ > -5 
       interface = 
abs(data.ZPosition_mm_(i))/2; 
   else 
       interface = -5; 
   end 



Name.  Title / JAEM 10 (2023) p. 1-2 

Journal of Applied Engineering Mathematics  December 2023, Vol. 10 3 Copyright © 2023 by ME505 BYU 

   yValues = polyfit(position, tempGrad, 
length(tempGrad) - 1); 
  
   trendXValues_poly = linspace(0, 5, 100); 
   polyVals = polyfit(position, tempGrad, 
length(tempGrad) - 1); 
   y2 = polyval(polyVals, trendXValues_poly); 
   plot(trendXValues_poly, y2, "Color", 
"#E8702A", 'LineWidth', plotLineWidth) 
   T_int_poly(i - start + 1) = 
polyval(polyVals, interface); 
   x_int(i - start  + 1) = interface; 
   plot(x_int, T_int_poly, "color", "#FFA000") 
   logTempGrad = log(tempGrad); 
   alpha = 
(length(logTempGrad)*sum(logTempGrad.*position
) - 
sum(logTempGrad)*sum(position))/(length(logTem
pGrad)*sum(position.^2) - (sum(position))^2); 
   beta = (sum(logTempGrad) - 
alpha*sum(position))/length(logTempGrad); 
  
   trendXValues_log = linspace(0, 5, 100); 
   normalizedYValues = alpha.*trendXValues_log 
+ beta; 
   trendYValues = exp(normalizedYValues) + 
data.T1(1); 
   plot(trendXValues_log, trendYValues, 
"Color", "#008000", 'LineWidth', 
plotLineWidth) 
   T_int_log(i - start + 1) = 
exp(alpha*interface + beta) + data.T1(1); 
   plot(x_int, T_int_log, "color", "#BADA55") 
   xline(interface, "Color", "red", 
'LineWidth', plotLineWidth + 0.5) 
   title("Timestamp: " + 
round(data.AdjustedTime_s_(i), 2) + " s; " + 
newline + "Interface temperature (polyfit): " 
+ round(T_int_poly(i - start + 1), 1) + 
char(176) + "C;" + newline + "Interface 
temperature (log): " + round(T_int_log(i - 
start + 1), 1) + char(176) + "C") 
   hold off 
   legend("Experimental Data", "Polyfit 
Trendline", "Interface temperature (polyfit)", 
"Logarithmic Trendline", "Interface 
temperature (logarithmic)", "Weld Interface") 
   drawnow 
   
exportgraphics(gcf,'testAnimated.gif','Append'
,true); 
end 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


