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ABSTRACT

The purpose of this paper is to display a cymbal or other
annular plate with a wave emanating from an impulse point
source that is not at the boundary. This is achieved through the
application of a circular integral transform, a series of Hankel
transforms, and a laplace transform, with finite inverse Hankel
transforms for the dirichlet-robin boundaries. The annular plate
with dirichlet-robin boundaries was chosen to see if it gives a
more accurate representation of a cymbal over a simple circular
plate.
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INTRODUCTION

The goal of this paper is to model a cymbal as an annular plate,
rather than a circular plate. Other models of cymbals display the
cymbal as one complete, flat, circular plate, while true cymbals
consist of a flat or slightly curved disc called the surface or
body, a curved center called the bell, and a small hole in the
center, through which they are mounted on a stand[1]. The
modeling of the cymbal as an annular plate will produce a more
accurate model of the body of the cymbal, although it does not
address the curved shape of the bell at the center. The
visualizations and solutions can be treated as similar to, but not
representative of, the real world in that the way the waves travel
in the cymbal is similar to reality, but the amplitude, speed and
exact patterns will likely differ.

Note: The results of this paper are highly visual and the reader
is recommended to visit the link in the appendix to view the
associated animations for better visualization.

EQUATION DERIVATION

Wave Equation:
The model begins with the wave equation in circular
coordinates. In this equation, gamma and w are constants. Both
gamma and w were assigned values of 1 in the modeling of the
equation.
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The term S represents the impulse source, where the wave
originates. The constants r0 and θ0 represent coordinates of the
source of the wave function, and t0 implies the time at which
the wave starts. S0 is another constant that gives magnitude to
the point source. S0was assigned the value of 0.5. The points r0,
t0, and θ0 were assigned values of 0.5, 0, and 0, respectively.
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Boundary Condition:
Boundary conditions are set with Dirichlet (fixed) at the inner
radius, and Robin (free) at the outer radius, to represent the
center being mounted on a stand, with the outside free to move.
Boundaries with respect to θ are free. H1 is a constant, with
assigned value 2.
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Initial Conditions:
Initial conditions are set to 0 at t=0, such that the surface is flat
at the initial time.
𝑢
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Integral Transforms:
With the boundaries and conditions defined, the equation is
then transformed with several integral transforms, following the
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procedures in chapter 9 of Applied Engineering Mathematics[2].
Beginning with the circular integral transform gives the
equation in terms “n”.
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In this equation Ŝn is given by the equation below.
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The Hankel transforms are taken after the circular integral
transform, and must be solved at each term “n”. This results in
a transformed equation with terms “n”, and eigenvalues of
terms “m” for each transform of term “n”.

𝓗
𝑛

𝐼−𝐼𝐼𝐼{ } =  − 𝑤2λ2
𝑛,𝑚

𝑢
𝑛,𝑚

+ 𝑤2𝑆
𝑛,𝑚

=
∂2𝑢

𝑛,𝑚

∂𝑡2 + 2γ
∂𝑢

𝑛,𝑚

∂𝑡
[2]

[2]𝑆
𝑛,𝑚

= 𝑆
0

𝐽
𝑜

λ
𝑛,𝑚

𝑟
0( )

2π δ 𝑡 − 𝑡
0( )𝑐𝑜𝑠 𝑛 θ − θ

0( )[ ]
The eigenvalues calculated for the Hankel transforms are
derived from the Dirichlet-Robin boundary conditions[3]. The
eigenvalue equation is set to zero and solved for values of 𝜆n,m
at each eigenvalue equation of term “n”.
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The last transform to be done is the Laplace transform, which
transforms the variable for time such that we can rearrange the
equation and solve the for Un,m.
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Inverse Transforms and Solution:
After transforming the equations the inverse finite integral
transforms are taken to return Un,m to u.
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Where ȗ(r,θ,t) is given by the equation below.

[2]𝑢
𝑛

𝑟, θ, 𝑡( ) =
𝑚=1

∞

∑ 𝑢
𝑛,𝑚

θ, 𝑡( )
𝐽

𝑛
λ

𝑛,𝑚
𝑟( )

𝑁
𝑛,𝑚| || |2

The norm is given by a standard equation, where Rn,m is the
eigenfunction of the equation.
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The eigenfunction is derived from the boundary conditions, and
is given below.
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The last term to be defined is ūn,m(θ,t). This is determined from
the inverse Laplace transform.
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METHODS
The solution to the equation was coded and calculated in Julia
(see the appendix). It consists of an inner ( ) and outer ( )𝑢

𝑛,𝑚
𝑢

𝑛
summation. This means to calculate a single point on the𝑟, θ
plate at a point in time, the inner summation will run and then
the outer summation will run and the final value is (or𝑢
amplitude) at that point. The double summation causes this
problem to be quite calculation heavy. To add to the
computational load, the summation over m and n (inner and
outer summations) not only have unique eigenvalues for each
n,m point, but also a unique eigenfunction at each n, m point.
The integral of the eigenfunction also needed to be found in
order to calculate the norm. The math shown above was input
into code and the proper functions were created to obtain the u
values for each point at any moment in time. The results𝑟, θ
were then plotted and animated. Increasing n and m create a
higher resolution for the result of u, which is important for the
source function. The source function occurs at a single point on
the plate in a single moment of time and calculating u at low n
and m values loses the resolution necessary to see that point
and the resulting wave split behavior. A value of 76 was chosen
for both n and m. This captures the peak and the wave direction
split quite well. The code was left to run overnight (it is
estimated it took 3-4hrs).

RESULTS
The results of this study were quite interesting. In the animation
(see appendix) some interesting results can be seen. The initial
source function causes a high amplitude wave that quickly falls
and travels to both sides (t = .02s see Figure 1).

Figure 1: Just after the initial source is applied. Note: the scale
is different than in Figure 2 for better visualization of the center
hole.

The center of the plate is fixed, so the wave travels radially
around the hole to the opposite side from the source. The
amplitude is mostly negative and when the waves meet on the
other side they add together and form a large negative region
that pulls down that side of the plate, there is a large positive
amplitude region still by the source, causing the plate to tilt
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(around t = .4s). The main waves continue traveling around to
the other side (back towards the source) where they meet again
and a negative peak forms about where the source was and a
positive peak forms opposite to that (t = .89s see Figure 2).

Figure 2: A side and top view of the surface at t = .89s. Note
the coalescing of the waves on the side opposite of the source
into a peak, and on the side of the source into a well. Shortly
following this plot the plate begins to tilt back to equilibrium.

This pattern continues to repeat, for the length of the
simulation. A few interesting behaviors should be noted. The
“main” or peak wave seems to stay in the same general radial
location around the source and appears to not travel around the
center in a circular arc, but possibly in an elliptical type arc.
There are simultaneously smaller amplitude waves that appear
to travel radially outward from the source and reflect off of the
outer edge and come back in. That edge is free, so the reflection
and amplitude of the reflected wave is interesting. The very
center of the annular region does stay fixed as expected and
likely affects the speed at which the plate appears to recover
from its tilt and stabilize horizontally. The simulation ran for
two seconds and the wave amplitude as well as plate tilt
oscillation amplitude were largely reduced. It is assumed that
the tilting will stop relatively quickly followed eventually by
the waves damping out to nothing.

CONCLUSIONS
It can be seen that the behavior of the waves in the cymbal
appears to be more realistic. The waves do not travel over the
center of the plate like in a real cymbal, and the plate
tilts/oscillates in a manner similar to a real cymbal, as well. The
unique main wave behavior traveling around the center was
observed and the smaller radial waves also observed. While the
amplitude and exact values and behaviors of the plate are not
realistic, the general behaviors and trends are. Future work
needs to be done with a non Dirichlet boundary condition on
the inner radius as this will be closer to a real cymbal.
Correlating the constants H, w and to real world parametersγ
will also be helpful.
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APPENDIX
The source code, animations, plots, and data used can be found
here (https://github.com/JacobChild/ProjectCymbal)
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