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ABSTRACT 

 
Chladni plates are known for their beautiful salt patterns that 
seem to magically appear when excited by a sound. When 
driven by vibrating source, a Chladni plate develops 2D 
standing wave patterns that can be visualized when salt is 
poured onto the plate. In this paper, a mathematical model for a 
Chladni plate is developed and solved to find these mode 
shapes mathematically. Although the solutions resemble 2D 
mode shapes, they do not match up very well with the mode 
shapes observed experimentally on a Chladni plate. Possible 
reasons for this discrepancy are discussed. It is concluded that 
the mathematical model used is not accurate enough to produce 
a solution identical to the physical plate.  

NOMENCLATURE 
 

γ           Damping Constant 
ν           Transverse Wave Speed 
S           Source Function 
s0                Source Amplitude 

L           Length of Plate 
M         Width of Plate 
δ           Dirac Delta Function 
ω          Source Frequency 
Mode     Standing wave shape that occurs at a natural frequency 
Node      Location of no displacement in a standing wave. 
 

 
INTRODUCTION 
 
Ernst Chladni first discovered in the late 1700s that he could 
make beautiful patterns appear on a powder-covered piece of 
metal by playing its edge with his bow, but at the time, little 
was known about this fascinating phenomenon. His trick 
impressed people enough that before long, many well-known 
mathematicians raced to discover the explanation for these 
Chladni patterns, at the promise of a monetary reward [1].  
 

Today, although the physical process behind the Chladni plate 
is well understood, it is still used frequently as a demonstration 
to fascinate both scientists and laymen alike. The thin metal 
plate, when excited by a vibrating source, develops 2D standing 
waves at its natural frequencies. When salt is poured onto the 
plate, the grains settle into the nodes of the standing wave, 
allowing the user to visualize the standing wave patterns. 
 
This paper seeks to model a Chladni plate mathematically using 
the 2D wave equation. A model will be presented for a square 
Chladni plate driven at the center, and the solution process will 
be explained. Then the theoretical mode shapes will be 
compared to the patterns observed on a real Chladni plate of 
similar dimensions.  
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A modern Chladni plate driven at the center. 
 

 
MATHEMATICAL MODEL FOR A CHLADNI PLATE 
 
Equation (1) shows the equation chosen to model the plate, 

where ν is the transverse wave speed in the plate and γ is a 
damping term. This equation does not account for the thickness 
of the plate but approximates it as a membrane. The plate is 
relatively thin, so this approximation was assumed to be 
appropriate. 
 
 

                                                                                          (1) 
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Some Chladni plates are driven in the center with a harmonic 
source, while others are played along the edge with a bow. The  
 
former is modeled here. The source, S, is a sinusoidal impact 

force in the center of the plate, with amplitude s0. The impact 
force is modeled using Dirac Delta functions, as shown in 
equation (2). 
 
 
                                                                                                 (2) 
 
 
Most Chladni plates are fixed at the center with the edges free. 
To simulate this, Neumann boundary conditions were used 
along each edge. This means that the derivative of the function 
at the plate boundaries is always equal to zero (see figure 2). 
 
 
 
 
 
 
 
    
 
 
 
 
 

Figure 2. Boundary conditions of Chladni plate model. 
 
Finally, to simulate a plate driven from rest, the initial position 
and velocity were set to zero (equation 3). This greatly 
simplifies the solution process. 
                         
                                                                                                 (3) 
 
 
SOLVING THE WAVE EQUATION 
 
The solution to the 2D wave equation is broken down into six 
steps. 
 
Step 1: Identify the eigenvalues and eigenfunctions. 

The eigenvalues and eigenfunctions depend on the boundary 
conditions. The eigenvalues and eigenfunctions corresponding 
to Neumann boundary conditions in both the x and y directions 
are summarized in Table 1. 
 
Table 1. Eigenvalues and eigenfunctions for Neumann-Neumann 
boundary conditions. 

 
 
 
 
 
 
 
 
 

 
Step 2: Take the Fourier transform in both the x and y 
directions.  

This will eliminate the second-order partial derivatives in x and 
y. The Fourier transform of equation (1) in both x and y 
becomes the following: 
 
                                                                                                 (4) 
 
 

Step 3: Take the Laplace transform. 
The Laplace transform eliminates the time derivatives so that 
the equation can be solved for u. Equation (5) shows the 
transformed function. 
 

    (5)    
                                                                                                  
 
 
Step 4: Solve for U in the Laplace domain. 

Solving for U yields equation (6): 
 
 
                                                                                                 (6) 
 
 
where  
 
                                                                                                 (7) 
 
 
Step 5: Take the inverse Laplace Transform. 
 After completing the square in the denominator and 
introducing another variable β, the equation is in a recognizable 
form for the inverse Laplace transform (equations 8 and 9). The 
inverse Laplace transform is shown in (10), where * denotes the 
convolution.  
 
 
                                                                                                 (8)  
 
 
where     
 
 
                                                                                                 (9) 
 
 
                  
                                                                                               (10) 
 
 
Step 6: Take the inverse Fourier transform in x and y using 
a sum. 
The finite inverse Fourier transform is carried out using a sum 
in x and y. The result obtained in the previous step is multiplied 
by the eigenfunctions and divided by the squared norms (see 
Table 1) to get the final solution (equation 11). 
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                                                                                               (11) 
 
 
 
 
VISUALIZING THE MODE SHAPES 

 
By plotting the solution derived above, we can visualize the 
theoretical mode shapes of our approximated Chladni plate. 

First, physical values must be assigned to the constants γ, ν, s0, 

ω, M, and L. The length (L) and width (M) of the plate were 
both set to 0.22 m to match the dimensions of a real Chladni 

plate found at BYU. The amplitude, s0, does not affect the 
mode shapes in the analytical solution, however at 0.01 m it is 
much smaller than the dimensions of the plate, which is 

realistic. Experimentally, s0 would control how much the salt is 
bounced around on the plate. 
 

The value of ω needs to be set to the natural frequencies of the 
plate, because those are the frequencies where the mode shapes 
occur. The natural frequencies are the eigenvalues of the 

function, so ω was set to be the eigenvalue for each mode. 
Conveniently, the eigenvalues are the same in x and y because 
the plate is square (M and L are the same). 
 

Wave speed ν and damping γ depend on the physical properties 
of the Chladni plate such as its stiffness or tension, which are 
not easily measured. A damping value of 0.02 was chosen, 
which is in the normal range for metal plates. The transverse 

wave speed was set to ν=0.5 m/s, which is much slower than 
the transverse wave speed in a metal plate. When the wave 
speed was set to a more realistic value, the code broke down 
and plotted the same mode shape for every frequency. It was 

found that setting ν to a much smaller value allowed the mode 
shapes to plot well. This is likely because a higher wave speed 
corresponds to a much stiffer plate and the frequencies being 
used are too low to excite complex mode shapes in a plate of 
this stiffness. Potentially, this could be corrected by choosing 
higher frequency values. However, higher values for frequency 
or wave speed greatly increase the time it takes for the solution 
code to run, so this option was not explored. 
 
Finally, the number of terms in the summation is an important 
parameter; it must be sufficient to capture the mode shape, but 
not much larger because adding terms increases the run time of 
the code. For modes 1 through 5, it was found that 10 terms 
were sufficient and that adding more terms did not change the 
solution. For modes 6 through 8, 20 terms were used. With this 
choice of parameters, the first 8 mode shapes are shown in 
figure 3. 
 
 
 
 
 

 
       
        Mode 1                         Mode 2                        Mode 3                        Mode 4 

    
       Mode 5                          Mode 6                       Mode 7                        Mode 8 

    
Figure 3. First 8 mode shapes found using solution to the 2D wave equation. 

 
 
For comparison, the first ten mode shapes observed on a real 
Chladni plate [2] are shown in figure 4.  
 
 

 
Figure 4. Mode shapes observed esperimentally on a square 

Chladni plate of similar size 
 
 
DISCUSSION 

 
The 8 modes in figure 3 resemble Chladni patterns in general, 
but they are significantly different than those observed on a real 
Chladni plate. Mode 2 is the only mode shape that matches 
between the mathematical and the experimental. Some of the 
other modes have similar features, such as mathematical mode 
3 with experimental mode 5, and mathematical mode 5 with 
experimental mode 9.  
 
There are many possible reasons that the model used in this 
study was insufficient to predict the mode shapes of a Chladni 
plate. One significant reason may be that the model assumes 
that the plate is a membrane, rather than a plate. Perhaps if 
thickness was accounted for, the solutions would be more 
accurate. Perhaps this would require a different model than the 
2D wave equation (for example, the Kirchoff-Love plate 
theory). 
 
Another source of the discrepancy could be that none of the 
physical constants in the equation matched the experimental 
plate. These parameters would likely have to be measured to 
find their correct values. Possibly an optimization algorithm 
could be used to match the solutions to the experimental data 
by varying the parameters in question. 
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The source excitation in the model was also slightly different 
than the real Chladni plate. The model uses a Dirac Delta 
function, which is infinitesimally narrow, but on the real plate 
there is a finite area excited by the driver and bolt. Inertial 
effects could also influence the modes of the plate as the plate 
vibrates up and down. The 2D wave equation does not account 
for this. 
 
A plate free on all edges is a problem that is known for being 
difficult or even impossible to solve analytically and get 
solutions identical to physical experiments. People often resort 
to numerical methods such as finite-element analysis methods 
to solve a Chladni plate. With this history in mind, the solution 
presented in the paper was a noble attempt, though perhaps 
overly simplistic. 
 
CONCLUSIONS 
 
This experiment explores one of the interesting applications of 
the 2D wave equation. With some approximations, solutions 
were found that resemble the standing wave patterns in a 
Chladni plate. However, as this paper demonstrates, modeling 
physical phenomena accurately can be complicated. This is 
why more sophisticated modeling methods such as FEA are 
often used. To improve the solutions found in this paper, 
perhaps a different modeling approach other than the 2D wave 
equation could be used that better accounts for the physical 
intricacies of the Chladni plate. Still, this paper demonstrates 
how to solve a 2D wave equation and displays the beautiful 
solutions that result. 
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APPENDIX 
 

Code used the generate solution plots: 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


