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ABSTRACT 

 
This provides a commentary on the methods used to solve and 
the application of the wave equation. Fourier and Laplace 
transforms were used to solve the wave equation for a one-
dimensional scenario. The surface of a pond was modeled as 
several points were perturbed, simulating a rock skipping 
across the surface. From this the resulting wave interactions 
and behavior at different boundary conditions were observed.  

 
INTRODUCTION 

 
In this study, the surface of a pond was approximated as a one-
dimensional line. Several points were agitated to simulate the 
skipping of a rock across the surface. This problem is set up 
under the assumption that the thrower is standing on the bank 
of the pond where x is equal to zero and throwing in the 
positive x direction. A small portion of the pond was observed 
where waves are fixed at the bank and free approaching the 
center of the pond. To capture this behavior, Dirichlet and 
Robin boundary conditions were selected to solve the wave  

 

 
 

equation [1]. Each of the  terms characterize the amplitude, 
position and time of the nth rock skip. 

 

 
 

 is the amplitude of the stone skip. The position and time of 

the point source are  and , respectively. 
 
APPLICATIONS 
 
The wave equation is used across multiple disciplines including 
fluid dynamics, acoustics, and structural vibrations. It is also 
used in many industries, such as aerospace, marine, and energy, 
to name a few. Though our fictitious scenario does not provide 

the benefit of any useful applications, the methods used, and 
solution obtained may apply to other situations with similar 
boundary conditions and moving point sources. 
 
METHODS 
 
The solution and accompanying visuals included two-point 

sources (e.g. , ). However, for simplicity and to 
accommodating limited space, only the first S1 term is shown 
here. If more skips or point sources are desired, add another Sn 
term multiplied by the appropriate Dirac Delta Functions. The 
first step in solving this function was to use a Finite Fourier 
transform [2] to convert from space or position to frequency. 
Equation 3 shows the intermediate step of taking the integral of 
the left side of the equation times the Eigen Function associated 
with the boundary condition. 
 

 

 
Not included are the many Heaviside functions that cancel out 
after integrating. Going from our initial equation, Equation 2, 
and performing the described Finite Fourier transform, yields 
Equation 4.  
 

 
 
Following this step, the function is converted from the time 
domain to the Laplace complex frequency domain.  

 
 
The equation can be rearranged as 
 
 

 
 

to isolate . Now we can perform inverse Fourier and inverse 

Laplace transforms where  is the Heaviside Function. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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The  from Equation 7 is the  in the final solution, Equation 
8.  
 

 
 
RESULTS  
 
From the boundary conditions and derived equation, a solution 
to the wave equation was obtained. Graphical representations 
have been created to observe the waves’ interactions with each 
other. The surface of the pond following the first skip of the 
rock is shown in Figure 1. The interactions are most noticeable 
near x=2.5, the location where the rock hits the surface. Figure 
2 shows the surface following the second skip of the rock. In 
this case, ripples in the surface extend further and interactions 
with the boundary condition at x=10 are observed. 
 

 
Figure 1. The surface of the pond immediately after the first 
skip. 
 

 
Figure 2. The surface of the pond immediately after the second 
skip. 
 
Because of the low fidelity of this model, the highest physical 
meaning can only be obtained very shortly after the second 
stone skip. No dampening was considered for the purpose of 
observing the waves interactions with each other and the 
boundaries. 
 
 
CONCLUSIONS 
 
This model shows the behavior of the waves interacting with 
each other and the boundaries. The assumptions made to 
observe this scenario are only valid for waves propagating near 
each other and early interactions with the boundaries. 
Dampening was not included in the model, and it is only 
physically accurate for a short period of time following 
perturbations. 
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APPENDIX 
 

Code used to create animation: 
 
% Constants 
L = 10;         % Length of the domain 
t_max = 10;     % Maximum time 
N = 100;        % Number of spatial points 

(7) 

(8) 
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M = 275;        % Number of time steps 
 
v = 1;          % Velocity 
 
S1 = .75;       % Source 1 amplitude 
x1 = L/4;       % Source 1 position 
t1 = t_max*0.05;         % Source 1 time 
 
S2 = 0.5;       % Source 2 amplitude 
x2 = 3*L/4;     % Source 2 position 
t2 = t_max*0.13;         % Source 2 time 
 
H2 = 1;       % Parameter in the              
% transcendental equation 
mu_n = 10; 
% Find up to the nth positive root of the     
% transcendental equation 
mu_roots = find_roots_up_to_n(mu_n, L, H2); 
 
% Spatial grid 
x = linspace(0, L, N); 
 
% Preallocate the matrix for storing the wave 
% at different time steps 
U = zeros(N, M); 
 
% Time loop 
for k = 1:M 
    t = (k-1) * t_max / M;  % Current time 
    % Evaluate the wave equation at each 
%spatial point 
    for i = 1:N 
        for j = 1:mu_n 
            ubar = v/mu_roots(j)*-
S1*heaviside(t-
t1)*sin(mu_roots(j)*x1)*sin(mu_roots(j)*v*(t-
t1)) + v/mu_roots(j)*-S2*heaviside(t-
t2)*sin(mu_roots(j)*x2)*sin(mu_roots(j)*v*(t-
t2)); 
            U(i, k, j) = ubar * 
(sin(mu_roots(j)*x(i))/(L/2-
sin(mu_roots(j)*L)/(4*mu_roots(j)))); 
            % Unew = squeeze(sum(U,3)); 
 
        end 
    end 
end 
Unew = sum(U,3); 
 
% Create a figure and axis for animation 
figure; 
axis tight manual; 
xlabel('X'); 
ylabel('U(x,t)'); 
% title('1D Wave Equation Animation'); 
 
% Update the plot at each time step 

for k = 1:M 
 
    plot(x, Unew(:, k), 'LineWidth', 2); 
    ylim([-1.5, 1.5]);  % Set the y-axis 
%limits as needed 
    title(['Time: ' num2str((k-1) * t_max / 
M)]); 
    xlabel('X'); 
    ylabel('U(x,t)'); 
    drawnow; 
end 
 
% Function to find up to the nth positive root 
%of the equation 
function mu_roots = find_roots_up_to_n(n, L, 
H2) 
    % Define the equation 
    eq = @(muu) muu * cos(muu * L) + H2 * 
sin(muu * L); 
 
    % Initialize an array to store the roots 
    mu_roots = zeros(1, n); 
 
    % Find the first n positive roots using 
%fzero 
    for i = 1:n 
        % Use fzero to find the root in the i-
%th interval 
        initial_guess = (i - 0.5) * pi / L;  % 
%Start with an initial guess in the middle of 
%the interval 
        mu_roots(i) = fzero(eq, 
initial_guess); 
    end 
end 
 
 
 
 
 
 
 
 
 


