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ABSTRACT 
 

The heat equation is applied to adjacent regions with an interior 

boundary condition which creates an insulator effect between 

the regions.  Regions are treated separately so that the interior 

boundary is transformed into two exterior, or regular, 

boundaries.  Results are found and compared using numerical 

approximations for different values of heat flow and insulation 

between regions.  It is shown that larger intervals of 

approximation are adequate for modeling systems with slower 

heat flow or greater insulation.  The largest interval that does 

not diverge should be used to prevent excessive time for 

computation. 

 

NOMENCLATURE 
 

α = Thermal conductivity 

u = temperature distribution 

uss = steady state temperature distribution 

Ut = transient temperature distribution 

 

 

INTRODUCTION 
 

The heat equation (1) is regularly applied during analysis of heat 

flow through a single region of consistent thermal conductivity.  

In typical use, this region can be idealized based on the number 

of dimensions present.  These problems typically fall under 

either a rectangular coordinate system or some type of polar 

coordinate system.  This region has associated boundary 

conditions and initial conditions which both influence the flow 

of heat through the region.  The setup for such a problem is seen 

in figure 1 for a 2D rectangular case. 

 

 

 

 

 

1)  𝛻2𝑢 =
1

𝛼

𝜕𝑢

𝜕𝑡
 

 

 

 

 [𝑢]|𝑦=𝑀 = 𝑓4(𝑥)  

[𝑢]|𝑥=0 = 𝑓1(𝑦) α [𝑢]|𝑥=𝐿 = 𝑓2(𝑦) 

 [𝑢]|𝑦=0 = 𝑓3(𝑥) 𝑢(𝑥, 𝑦, 0) = 𝑢0 

Figure 1. A typical setup for a standard heat equation problem in two 

dimensions. Boundary conditions can be of Dirichlet, Neuman, or Robin 
type. 

 

 

2)  𝛼(𝑥) = 𝛼1 + 𝐻(𝑥 − 1)(𝛼2 − 𝛼1) + 𝑘𝛿(𝑥 − 1) 

 

 

However, in some cases it may be desirable to know how heat 

flows through multiple regions in contact with each other, such 

as in figure 2.  These regions may have similar or different 

coefficients of thermal conductivity.  Additionally, it is generally 

appropriate to include an insulating condition in the form of an 

interior boundary condition between two regions of interest.  

Such a condition would create a discontinuity in temperature 

between the two regions at the boundary between them.  This 

could be modelled by using a position-dependent function for 

thermal conductivity (2) by using heaviside and dirac-delta 

functions, however, the heat equation (1) can only be applied for 

constant values of α.  In order to solve problems such as these by 

using the heat equation, numerical approximation methods must 

be utilized.  The accuracy of these methods is largely dependent 

on any values that determine the rate at which models change 

with respect to time. 
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 𝑢|𝑦=1 = 0  

𝑢|𝑥=0 = 𝑓1(𝑦) α1 α2 
𝜕𝑢

𝜕𝑥
|𝑥=2 = 0 

 
𝜕𝑢

𝜕𝑦
|𝑦=0 = 0 𝑢(𝑥, 𝑦, 0) = 0 

Figure 2. Two regions in contact with each other containing an interior 

boundary condition at x=1 (the interface between regions).  Initial condition 
and exterior boundary conditions are chosen arbitrarily. 

 

MODELING 
 

Using numerical approximation methods allows the two regions 

to be treated individually, transforming the interior boundary 

condition into two equivalent exterior boundary conditions.  For 

region 1, this would appear as in figure 3.  Region 2 can be 

defined similarly.  The constant ‘k’ can be given physical 

significance based on its value.  A value of k=0 would be 

equivalent to perfect insulation between the regions, at which 

point numerical approaches would be unnecessary.  Larger 

values of ‘k’ would correspond to ‘weaker’ insulation and higher 

rates of heat transfer between regions 1 and 2.  While evaluating 

a numerical approach, the new boundary conditions can be 

treated as regular Neuman conditions, however, they must be re-

evaluated at every interval of time.  Similarly, the initial 

conditions for each successive time interval must also be re-

evaluated at every interval.  As a result of this, the initial 

conditions shown in figures 2 and 3 are only applicable to the 

very first approximation interval. 

 

 𝑢1|𝑦=1 = 0  

𝑢1|𝑥=0 = 𝑓1(𝑦) α1 

𝜕𝑢1

𝜕𝑥
|𝑥=1

= 𝑘(𝑢2|𝑥=1 − 𝑢1|𝑥=1) 

 
𝜕𝑢1

𝜕𝑦
|𝑦=0 = 0 𝑢1(𝑥, 𝑡, 0) = 0 

Figure 3. Region 1 with interior boundary condition transformed into an 
equivalent exterior boundary condition.  Region 2 can be similarly 

constructed. 

 

 

SOLVING 
 

From this point, regions 1 and 2 can be solved as independent 

heat equations (1).  For each region, this can be divided into a 

steady-state solution, and a transient solution.  The full solutions 

of the heat equations for each region will be given by adding the 

steady state and transient solutions (see equations 6 and 13).  The 

objective of this paper is not to show extensive derivations that 

can be easily found elsewhere, so discussion of derivations will 

be limited. Derivations will also only be shown for region 1.  

Equations are contained in appendix A. 

 
Steady State Solution 

For the steady state solutions, 
𝜕𝑢

𝜕𝑡
 is set equal to zero, and the 

principle of superposition is applied so that non-homogeneous 

boundaries can be handled one at a time.  For each case, all 

boundaries except for one are set to be homogeneous.  Steady 

state solutions for region 1 and region 2 are given by equations 

7-9, 12 and 14-15, 19, respectively. 

 
Transient Solution 

For transient solutions, all boundaries are set to be homogeneous 

as these conditions were handled by the steady state solution.  

The full solution 𝑢(𝑥, 𝑦, 𝑡) must be equal to the initial condition 

at t=0, therefore the initial condition for the transient solution is 

defined by equation (3).  Ut1 can then be solved using two 

separations of variables given by equations (4) and (5).  These 

separations lead to three eigenvalue problems that can be solved 

to yield a solution for Ut1 in terms of a double summation 

containing a constant that is dependent on both variables of 

summation.  This constant is solved for by setting 𝑡 = 0 and 

performing a double integration.  Transient solutions for region 

1 and region 2 are given by equations 10-12 and 16-19, 

respectively. 

 

3)  𝑈𝑡1|𝑡=0 = 𝑢1|𝑡=0 − 𝑢𝑠𝑠1 

 

4)  𝑈𝑡1(𝑥, 𝑦, 𝑡) = 𝜙(𝑥, 𝑦)𝑇(𝑡) 

 

5)  𝜙(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) 

 

 

RESULTS AND ANALYSIS 
 

Full solutions for the heat flow through regions 1 and 2 are given 

by equations 6-12 and 13-19 in appendix A, respectively.  As this 

is a numerical approximation, however, some variables should 

be interpreted differently than they typically would be.  Here, ‘t’ 

refers to the interval of time between successive approximations.  

Similarly, 𝑢1|𝑡=0 actually represents 𝑢1 as given by the previous 

approximation interval.  The term: (𝑢2|𝑥=1 − 𝑢1|𝑥=1) also 

represents the boundary values given by the previous 

approximation interval. 

 

In practice, numerical approaches use computer software to 

generate data as computations are typically quite complex and 

numerous.  This paper uses a code written in python, which can 

be found in appendix B. 

 

Two approximations were calculated and graphed to show the 

importance of appropriate choice of interval.  Both of these used 

intervals of 0.05s, 0.025s, and 0.01s and took data at 3 different 

times.  The rightmost boundary was set as f1(y)=50 for 

simplicity.  As can be seen in figure 4, the first approximation 

used values of k=0.5, α1=0.4, and α2=2.  These values were 

chosen to simulate relatively slow rates of heat transfer.  

Although each graph contains 3 lines of data, only one can be  
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seen.  The reason for this is that all approximation intervals are 

equally good at approximating slow rates of heat transfer. 

 

In contrast, figure 5 shows the second approximation that used 

values of k=1, α1=2, and α2=5.  These values were chosen to 

simulate much faster rates of heat transfer.  Here, it can be seen 

that approximation intervals of 0.025s and 0.01s both eventually 

converge to essentially the same values.  However, it is also 

observed that interval of 0.025s takes slightly longer to converge, 

although the difference is not of much consequence.  In this 

approximation, it is important to note that using an interval of 

0.05s leads to a diverging result.  This is directly caused by the 

boundary between regions.  As time progresses, the rate of heat 

transfer through this boundary increases and then decreases 

before reaching a constant (steady-state) value.  By using a larger 

approximation interval, this heat transfer is treated as a constant 

rate for each interval.  Here, the interval of 0.05s leads to 

diverging results because it sets this rate to be either too high or 

too low for too long, leading to far more or less heat transfer than 

actually occurs. 

 

It may reasonably be assumed that two regions in contact with 

each other will eventually have the same temperature at the 

shared surface, however this is not seen here.  The reason for this 

result arises from the homogenous boundary at y=1.  By holding 

the temperature here at 0, much of the heat introduced to the 

system at x=0 is lost through this boundary instead of being 

transferred to the second region.  As a result of this, there is 

always a heat difference between the two regions at the shared 

boundary. 

 

 
Figure 4. Curves shown for data at y=0 for the first approximation.  Graph 

at the top-right shows an enlarged section of the top-left graph.  

Approximation intervals are graphed in different colors; however, all are 
essentially the same as interval 0.01s, which is graphed in green on top of 

them. 

 

 

 

 

 

 

 

 

 
Figure 5. Curves shown for data at y=0 for the second approximation.  

Graph at the top-right shows an enlarged section of the top-left graph.  

Intervals 0.05s, 0.025s, and 0.01s are graphed in black, red, and green, 
respectively. 

 

 
CONCLUSIONS 
 

As seen earlier, it can be useful to utilize numerical methods in 

approximating the flow of heat between adjacent regions or 

materials.  Particularly, it has been noted that for slow rates of 

heat transfer and for interior boundaries having greater values of 

insulation, larger intervals of approximation are adequate.  For 

higher rates of heat transfer or for interior boundaries with low 

insulation to heat, however, larger intervals of approximation 

may cause simulations to diverge and yield useless data.  In 

general, when performing numerical approximations for heat 

flow between two regions, the largest interval of approximation 

that does not diverge should be used.  The reason for this is that 

computations take far longer to perform when using 

progressively smaller intervals.  If heat transfer rates are 

exceptionally high or if there is very little insulation between 

regions, other methods of solution should be considered. 
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APPENDIX A – FULL SOLUTIONS 
 

6)  𝑢1 = 𝑢𝑠𝑠1 + 𝑈𝑡1 

 

 

7)  𝑢𝑠𝑠1 = ∑[𝑎𝑙 cos(𝜇𝑙𝑦) cosh(𝜇𝑙(𝑥 − 1)) + 𝑏𝑙 cos(𝜇𝑙𝑦) sinh(𝜇𝑙𝑥)]

∞

𝑙=1

 

 

8)  𝑎𝑙 =
2

cosh(−𝜇𝑙)
∫ 𝑓1(𝑦) cos(𝜇𝑙𝑦)𝑑𝑦

1

0

 

 

9)  𝑏𝑙 =
2𝑘

𝜇𝑙 cosh(𝜇𝑙)
∫(

1

0

𝑢2|𝑥=1 − 𝑢1|𝑥=1) cos(𝜇𝑙𝑦)𝑑𝑦 

 

10)  𝑈𝑡1 = ∑ ∑ 𝐴𝑛𝑚 cos(𝜆𝑛𝑦) sin(𝜈𝑚𝑥)𝑒−𝛼1(𝜆𝑛
2 +𝜈𝑚

2 )𝑡

∞

𝑚=1

∞

𝑛=1

 

 

11)  𝐴𝑛𝑚 = 4 ∫ ∫(𝑢1|𝑡=0 − 𝑢𝑠𝑠1) sin(𝜈𝑚𝑥) cos(𝜆𝑛𝑦)𝑑𝑦𝑑𝑥

1

0

1

0

 

 

12)  𝜇𝑙 = 𝜋 (𝑙 −
1

2
) , 𝜆𝑛 = 𝜋 (𝑛 −

1

2
) , 𝜈𝑚 = 𝜋 (𝑚 −

1

2
)    applicable to equations 6 to 11 

 

13)  𝑢2 = 𝑢𝑠𝑠2 + 𝑈𝑡2 

 

14)  𝑢𝑠𝑠2 = ∑ 𝑐𝑙 cos(𝜇𝑙𝑦) cosh(𝜇𝑙(𝑥 − 2))

∞

𝑙=1

 

 

15)  𝑐𝑙 =
4𝑘

𝜇𝑙 sinh(−𝜇𝑙)
∫ (𝑢2|𝑥=1 − 𝑢1|𝑥=1) cos(𝜇𝑙𝑦)𝑑𝑦

1

0

 

 

16)  𝑈𝑡2 = ∑[𝐵𝑛0 cos(𝜆𝑛𝑦)𝑒−𝛼2(𝜆𝑛
2 )𝑡

∞

𝑛=1

] + ∑ ∑ [𝐵𝑛𝑚 cos(𝜈𝑚(𝑥 − 1)) cos(𝜆𝑛𝑦)𝑒−𝛼2(𝜆𝑛
2 +𝜈𝑚

2 )𝑡]

∞

𝑚=1

∞

𝑛=1

 

 

17)  𝐵𝑛0 = 2 ∫ ∫(𝑢2|𝑡=0 − 𝑢𝑠𝑠2) cos(𝜆𝑛𝑦)𝑑𝑦𝑑𝑥

1

0

2

1

 

 

18)  𝐵𝑛𝑚 = 4 ∫ ∫(𝑢2|𝑡=0 − 𝑢𝑠𝑠2) cos(𝜆𝑛𝑦) cos(𝜈𝑚(𝑥 − 1))𝑑𝑦𝑑𝑥

1

0

2

1

 

 

19)  𝜇𝑙 = 𝜋 (𝑙 −
1

2
) , 𝜆𝑛 = 𝜋 (𝑛 −

1

2
) , 𝜈𝑚 = 𝑚𝜋     applicable to equations 13 to 18 
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APPENDIX B – PYTHON CODE 
 
import math 
import pytest 

import matplotlib.pyplot as plt 

from matplotlib import cm 
from matplotlib.animation import FuncAnimation 

from mpl_toolkits.mplot3d import Axes3D 

import numpy as np 
 

def volume_list_approx(x_list, y_list, z_list, x_f=lambda x: 1, 

                           y_f=lambda y: 1): 
   # used for approximating double integrals with 2D arrays as a basis 

   total = 0 

   for j in range(1, len(y_list)): 
      for i in range(1, len(x_list[0])): 

         area = (x_list[j][i] - x_list[j][i-1]) * (y_list[j][i] - y_list[j-1][i]) 

 height = ( 
    (z_list[j][i]*x_f(x_list[j][i])*y_f(y_list[j][i])) +  

    (z_list[j][i-1]*x_f(x_list[j][i-1])*y_f(y_list[j][i-1])) +  

            (z_list[j-1][i]*x_f(x_list[j-1][i])*y_f(y_list[j-1][i])) +  
    (z_list[j-1][i-1]*x_f(x_list[j-1][i-1])*y_f(y_list[j-1][i-1])) 

    ) / 4 

 total += area * height 
   return total 

 

def area_list_approx(x_l, y_l, z_list, x_f=lambda x: 1, y_f=lambda y: 1,  
type='x'): 

   # used for approximating single integrals with 1D lists as a basis 

   total = 0 
   if type == 'x': 

      for i in range(1, len(x_l)): 

         base = x_l[i] - x_l[i-1] 
 height = (z_list[i]*x_f(x_l[i]) + z_list[i-1]*x_f(x_l[i-1])) / 2 

 total += base*height 

elif type == 'y': 
   for j in range(1, len(y_l)): 

      base = y_l[j] - y_l[j-1] 

      height = (z_list[j]*y_f(y_l[j]) + z_list[j-1]*y_f(y_l[j-1])) / 2 
      total += base*height 

return float(total) 

 
def approx_integral(start, stop, function, step=0.01): 

   # used for approximating single integrals 

   x = start + step 
   y0 = function(start) 

   area = 0.0 

   while x <= stop: 
      y1 = function(x) 

      area += (y0 + y1)/2*step 
      y0 = y1 

      x += step 

return area 
 

def single_summation(x, y, u_list, constant_list, x_f=lambda x,u: 1,  

y_f=lambda y,u: 1): 
   # for single summations that contain separate functions of x and y 

   # that both depend on u_l 

   # for a given set of x and y 
   # constant_list is a_l, b_l, and B_n0 

   # (should account for e^(stuff) as necessary) 

   total = 0 
   for l in range(len(u_list)): 

      total += x_f(x, u_list[l]) * y_f(y, u_list[l]) * constant_list[l] 

   return total 
 

 

 

 

 

def double_summation(x, y, nu_list, lam_list, constant_array,  

x_f=lambda x,nu: 1, y_f=lambda y,lam: 1): 
   # for double summations that contain separate functions of 

   # x (depending on nu) and y (depending on lam) 

   # for a given set of x and y 
   # constant_array should account for A_nm, B_nm, and e^(stuff) as necessary 

   total = 0 

   for n in range(len(lam_list)): 
      for m in range(len(nu_list)): 

         total += x_f(x, nu_list[m]) * y_f(y, lam_list[n]) * constant_array[n][m] 

   return total 
 

def update(zz1, zz2, t): 

   y11 = lambda y: 2 / math.cosh(-u) * math.cos(u*y) * y_bound(y) 
   y12 = lambda y: 2*k / (u*math.cosh(u)) * math.cos(u*y) 

   y13 = lambda y, u: math.cos(u*y) 

   x13a = lambda x, u: math.cosh(u*(x-1)) 
   x13b = lambda x, u: math.sinh(u*x) 

   y14 = lambda y: math.cos(lam*y) 

   x14 = lambda x: math.sin(nu*x) 
   y15 = lambda y, lam: math.cos(lam*y) 

   x15 = lambda x, nu: math.sin(nu*x) 

 
   y21 = lambda y: 4*k * math.cos(u*y) / (u * math.sinh(-u)) 

   y22 = lambda y, u: math.cos(u*y) 

   x22 = lambda x, u: math.cosh(u*(x-2)) 
   y23 = lambda y: math.cos(lam*y) 

   x23a = lambda x: math.cos(nu*(x-1)) 

   y24 = lambda y, lam: math.cos(lam*y) 
   x24 = lambda x, nu: math.cos(nu*(x-1)) 

 

   a_l = [] 
   b_l = [] 

   y_l = [] 

   z_list = [] 
   for j in range(len(yy)): 

      y_l.append(yy[j][-1]) 

      z_list.append(zz2[j][0] - zz1[j][-1]) 
   for u in u_list: 

      a_l.append(approx_integral(0, 1, y11)) 

      b_l.append(area_list_approx(1, y_l, z_list, y_f=y12, type='y')) 
   u_ssa = [] 

   for j in range(len(zz1)): 

      u_ssa.append([]) 
      for i in range(len(zz1[j])): 

         x = xx1[j][i] 

         y = yy[j][i] 
         u_ssa[j].append(single_summation(x, y, u_list, a_l, x13a, y13)  

+ single_summation(x, y, u_list, b_l, x13b, y13)) 
   u_ssa = np.array(u_ssa) 

   A_nm = [] 

   for n in range(len(lam_list)): 
      lam = lam_list[n] 

      A_nm.append([]) 

      for m in range(len(nu_list)): 
         nu = nu_list[m] 

         A_nm[n].append(volume_list_approx(xx1, yy, zz1 - u_ssa, x14, y14)  

* (4) * math.e**(-alpha1*((lam**2) + (nu**2))*t)) 
   Ua = [] 

   for j in range(len(zz1)): 

      Ua.append([]) 
      for i in range(len(zz1[j])): 

         x = xx1[j][i] 

         y = yy[j][i] 
         Ua[j].append(double_summation(x, y, nu_list, lam_list, A_nm,  

x15, y15)) 

   Ua = np.array(Ua) 
 

   c_l = [] 

   for u in u_list: 

      c_l.append(area_list_approx(1, y_l, z_list, y_f=y21, type='y')) 

   u_ssb = [] 
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   for j in range(len(zz2)): 

      u_ssb.append([]) 

      for i in range(len(zz2[j])): 

         x = xx2[j][i] 

         y = yy[j][i] 
            u_ssb[j].append(single_summation(x, y, u_list, c_l, x22, y22)) 

   u_ssb = np.array(u_ssb) 

   B_n0 = [] 
   B_nm = [] 

   for n in range(len(lam_list)): 

      lam = lam_list[n] 
      B_n0.append(volume_list_approx(xx2, yy, zz2 - u_ssb, y_f=y23)  

* 2 * math.e**(-alpha2*(lam**2)*t)) 

      B_nm.append([]) 
      for m in range(len(nu_list2)): 

         nu = nu_list2[m] 

         B_nm[n].append(volume_list_approx(xx2, yy, zz2 - u_ssb, x23a, y23)  
* 4 * math.e**(-alpha2*((lam**2) + (nu**2))*t)) 

   Ub0 = [] 

   Ub = [] 
   for j in range(len(zz2)): 

      Ub.append([]) 

      Ub0.append([]) 
      for i in range(len(zz2[j])): 

         x = xx2[j][i] 
         y = yy[j][i] 

         Ub[j].append(double_summation(x, y, nu_list2, lam_list, B_nm, 

 x24, y24)) 
         Ub0[j].append(single_summation(1, y, lam_list, B_n0, y_f=y24)) 

   Ub0 = np.array(Ub0) 

   Ub = np.array(Ub) 
 

   return u_ssa + Ua, u_ssb + Ub0 + Ub 

 
class gridSave: 

   # used purely for saving data in between frames 

   def __init__(self, grid): 
      self.data = grid 

 

 
def animateFunc(frame): 

   # this gets called at every frame of the animation 

   ax1.cla() 
   ax2.cla() 

   ax3.cla() 

   ax4.cla() 
   if frame == 0: 

 #code redacted here because of similarity to other code sections 

 #mostly just formatting for graphs 
   # for ax1 with change in time as 0.05s 

   t = 0.05 

   zz01_1.data, zz01_2.data = update(zz01_1.data, zz01_2.data, t) 
   ax1.plot_surface(xx1, yy, zz01_1.data, cmap=cm.coolwarm,  

vmin=-1, vmax=51) 

   ax1.plot_surface(xx2, yy, zz01_2.data, cmap=cm.coolwarm, 
vmin=-1, vmax=51) 

   # for ax2 with change in time as 0.025s 

   t = 0.025 
   for i in range(2): 

      zz001_1.data, zz001_2.data = update(zz001_1.data, zz001_2.data, t) 

   ax2.plot_surface(xx1, yy, zz001_1.data, cmap=cm.coolwarm, 
vmin=-1, vmax=51) 

   ax2.plot_surface(xx2, yy, zz001_2.data, cmap=cm.coolwarm,  

vmin=-1, vmax=51) 
   # for ax3 with change in time as 0.01s 

   t = 0.01 

   for i in range(5): 
      zz0001_1.data, zz0001_2.data = update(zz0001_1.data, zz0001_2.data, t) 

   ax3.plot_surface(xx1, yy, zz0001_1.data, cmap=cm.coolwarm,  

vmin=-1, vmax=51) 

   ax3.plot_surface(xx2, yy, zz0001_2.data, cmap=cm.coolwarm,  

vmin=-1, vmax=51) 

 

   # for plotting ax4 based on data from the other plots at y=0 

   ax4.plot(xx1[0], zz01_1.data[0], color='black') 

   ax4.plot(xx2[0], zz01_2.data[0], color='black') 

   ax4.plot(xx1[0], zz001_1.data[0], color='red') 

   ax4.plot(xx2[0], zz001_2.data[0], color='red') 
   ax4.plot(xx1[0], zz0001_1.data[0], color='green') 

   ax4.plot(xx2[0], zz0001_2.data[0], color='green') 

   ax4.set_ylim(-1, 51) 
 #other sections of code redacted as they are purely formatting for graphs 

 

 
 

fps = 20 

time = 2 
step = 0.05 

k = 0.5 

alpha1 = 0.4 
alpha2 = 2 

y_bound = lambda y: 50 

terms = 20 
 

eigen_u_l = lambda l: math.pi*(l-0.5) 

eigen_lam_n = lambda n: math.pi*(n-0.5) 
eigen_nu_m1 = lambda m: math.pi*(m-0.5) 

eigen_nu_m2 = lambda m: math.pi*m 
u_list = [eigen_u_l(l) for l in range(1, terms+1)] 

lam_list = [eigen_lam_n(n) for n in range(1, terms+1)] 

nu_list = [eigen_nu_m1(m) for m in range(1, terms+1)] 
nu_list2 = [eigen_nu_m2(m) for m in range(1, terms+1)] 

 

xx1 = np.arange(0, 1 + step/2, step) 
yy = np.arange(0, 1 + step/2, step) 

xx1, yy = np.meshgrid(xx1, yy) 

xx2 = xx1 + 1 
zz01_1 = gridSave(yy * 0) 

zz01_2 = gridSave(zz01_1.data + 0) 

zz001_1 = gridSave(yy * 0) 
zz001_2 = gridSave(zz001_1.data + 0) 

zz0001_1 = gridSave(yy * 0) 

zz0001_2 = gridSave(zz0001_1.data + 0) 
 

Fig = plt.figure(figsize=(16, 12)) 

ax1 = Fig.add_subplot(2, 2, 1, projection = '3d') 
ax2 = Fig.add_subplot(2, 2, 2, projection = '3d') 

ax3 = Fig.add_subplot(2, 2, 3, projection = '3d') 

ax4 = Fig.add_subplot(2, 2, 4) 
Fig2, ((ax5, ax6), (ax7, ax8)) = plt.subplots(2, 2) 

Fig.subplots_adjust(wspace = 0.5, hspace = 0.5) 

Fig2.subplots_adjust(wspace = 0.5, hspace = 0.5) 
vid = FuncAnimation(Fig, animateFunc, frames=fps*time+1, 

interval=1000/fps) 

vid.save(f'Project{k}.gif') 
Fig2.savefig(f'k{k}.png') 

 


