
Ethan Cleaver | Numerical Approximations for Heat Flow Between Adjacent Regions / JAEM 11 (2024) p. 1-6

Journal of Applied Engineering Mathematics December 2024, Vol. 11 1 Copyright © 2024 by ME505 BYU

Journal of Applied Engineering Mathematics

 Volume 11, December 2024

NUMERICAL APPROXIMATION FOR HEAT FLOW BETWEEN ADJACENT REGIONS

 Ethan Cleaver

Mechanical Engineering Department
Brigham Young University

Provo, Utah 84602
epcleaver12@comcast.net

ABSTRACT

The heat equation is applied to adjacent regions with an interior

boundary condition which creates an insulator effect between

the regions. Regions are treated separately so that the interior

boundary is transformed into two exterior, or regular,

boundaries. Results are found and compared using numerical

approximations for different values of heat flow and insulation

between regions. It is shown that larger intervals of

approximation are adequate for modeling systems with slower

heat flow or greater insulation. The largest interval that does

not diverge should be used to prevent excessive time for

computation.

NOMENCLATURE

α = Thermal conductivity

u = temperature distribution

uss = steady state temperature distribution

Ut = transient temperature distribution

INTRODUCTION

The heat equation (1) is regularly applied during analysis of heat

flow through a single region of consistent thermal conductivity.

In typical use, this region can be idealized based on the number

of dimensions present. These problems typically fall under

either a rectangular coordinate system or some type of polar

coordinate system. This region has associated boundary

conditions and initial conditions which both influence the flow

of heat through the region. The setup for such a problem is seen

in figure 1 for a 2D rectangular case.

1) 𝛻2𝑢 =
1

𝛼

𝜕𝑢

𝜕𝑡

 [𝑢]|𝑦=𝑀 = 𝑓4(𝑥)

[𝑢]|𝑥=0 = 𝑓1(𝑦) α [𝑢]|𝑥=𝐿 = 𝑓2(𝑦)

 [𝑢]|𝑦=0 = 𝑓3(𝑥) 𝑢(𝑥, 𝑦, 0) = 𝑢0

Figure 1. A typical setup for a standard heat equation problem in two

dimensions. Boundary conditions can be of Dirichlet, Neuman, or Robin
type.

2) 𝛼(𝑥) = 𝛼1 + 𝐻(𝑥 − 1)(𝛼2 − 𝛼1) + 𝑘𝛿(𝑥 − 1)

However, in some cases it may be desirable to know how heat

flows through multiple regions in contact with each other, such

as in figure 2. These regions may have similar or different

coefficients of thermal conductivity. Additionally, it is generally

appropriate to include an insulating condition in the form of an

interior boundary condition between two regions of interest.

Such a condition would create a discontinuity in temperature

between the two regions at the boundary between them. This

could be modelled by using a position-dependent function for

thermal conductivity (2) by using heaviside and dirac-delta

functions, however, the heat equation (1) can only be applied for

constant values of α. In order to solve problems such as these by

using the heat equation, numerical approximation methods must

be utilized. The accuracy of these methods is largely dependent

on any values that determine the rate at which models change

with respect to time.

Ethan Cleaver | Numerical Approximations for Heat Flow Between Adjacent Regions / JAEM 11 (2024) p. 1-6

Journal of Applied Engineering Mathematics December 2024, Vol. 11 2 Copyright © 2024 by ME505 BYU

 𝑢|𝑦=1 = 0

𝑢|𝑥=0 = 𝑓1(𝑦) α1 α2
𝜕𝑢

𝜕𝑥
|𝑥=2 = 0

𝜕𝑢

𝜕𝑦
|𝑦=0 = 0 𝑢(𝑥, 𝑦, 0) = 0

Figure 2. Two regions in contact with each other containing an interior

boundary condition at x=1 (the interface between regions). Initial condition
and exterior boundary conditions are chosen arbitrarily.

MODELING

Using numerical approximation methods allows the two regions

to be treated individually, transforming the interior boundary

condition into two equivalent exterior boundary conditions. For

region 1, this would appear as in figure 3. Region 2 can be

defined similarly. The constant ‘k’ can be given physical

significance based on its value. A value of k=0 would be

equivalent to perfect insulation between the regions, at which

point numerical approaches would be unnecessary. Larger

values of ‘k’ would correspond to ‘weaker’ insulation and higher

rates of heat transfer between regions 1 and 2. While evaluating

a numerical approach, the new boundary conditions can be

treated as regular Neuman conditions, however, they must be re-

evaluated at every interval of time. Similarly, the initial

conditions for each successive time interval must also be re-

evaluated at every interval. As a result of this, the initial

conditions shown in figures 2 and 3 are only applicable to the

very first approximation interval.

 𝑢1|𝑦=1 = 0

𝑢1|𝑥=0 = 𝑓1(𝑦) α1

𝜕𝑢1

𝜕𝑥
|𝑥=1

= 𝑘(𝑢2|𝑥=1 − 𝑢1|𝑥=1)

𝜕𝑢1

𝜕𝑦
|𝑦=0 = 0 𝑢1(𝑥, 𝑡, 0) = 0

Figure 3. Region 1 with interior boundary condition transformed into an
equivalent exterior boundary condition. Region 2 can be similarly

constructed.

SOLVING

From this point, regions 1 and 2 can be solved as independent

heat equations (1). For each region, this can be divided into a

steady-state solution, and a transient solution. The full solutions

of the heat equations for each region will be given by adding the

steady state and transient solutions (see equations 6 and 13). The

objective of this paper is not to show extensive derivations that

can be easily found elsewhere, so discussion of derivations will

be limited. Derivations will also only be shown for region 1.

Equations are contained in appendix A.

Steady State Solution

For the steady state solutions,
𝜕𝑢

𝜕𝑡
 is set equal to zero, and the

principle of superposition is applied so that non-homogeneous

boundaries can be handled one at a time. For each case, all

boundaries except for one are set to be homogeneous. Steady

state solutions for region 1 and region 2 are given by equations

7-9, 12 and 14-15, 19, respectively.

Transient Solution

For transient solutions, all boundaries are set to be homogeneous

as these conditions were handled by the steady state solution.

The full solution 𝑢(𝑥, 𝑦, 𝑡) must be equal to the initial condition

at t=0, therefore the initial condition for the transient solution is

defined by equation (3). Ut1 can then be solved using two

separations of variables given by equations (4) and (5). These

separations lead to three eigenvalue problems that can be solved

to yield a solution for Ut1 in terms of a double summation

containing a constant that is dependent on both variables of

summation. This constant is solved for by setting 𝑡 = 0 and

performing a double integration. Transient solutions for region

1 and region 2 are given by equations 10-12 and 16-19,

respectively.

3) 𝑈𝑡1|𝑡=0 = 𝑢1|𝑡=0 − 𝑢𝑠𝑠1

4) 𝑈𝑡1(𝑥, 𝑦, 𝑡) = 𝜙(𝑥, 𝑦)𝑇(𝑡)

5) 𝜙(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦)

RESULTS AND ANALYSIS

Full solutions for the heat flow through regions 1 and 2 are given

by equations 6-12 and 13-19 in appendix A, respectively. As this

is a numerical approximation, however, some variables should

be interpreted differently than they typically would be. Here, ‘t’

refers to the interval of time between successive approximations.

Similarly, 𝑢1|𝑡=0 actually represents 𝑢1 as given by the previous

approximation interval. The term: (𝑢2|𝑥=1 − 𝑢1|𝑥=1) also

represents the boundary values given by the previous

approximation interval.

In practice, numerical approaches use computer software to

generate data as computations are typically quite complex and

numerous. This paper uses a code written in python, which can

be found in appendix B.

Two approximations were calculated and graphed to show the

importance of appropriate choice of interval. Both of these used

intervals of 0.05s, 0.025s, and 0.01s and took data at 3 different

times. The rightmost boundary was set as f1(y)=50 for

simplicity. As can be seen in figure 4, the first approximation

used values of k=0.5, α1=0.4, and α2=2. These values were

chosen to simulate relatively slow rates of heat transfer.

Although each graph contains 3 lines of data, only one can be

Ethan Cleaver | Numerical Approximations for Heat Flow Between Adjacent Regions / JAEM 11 (2024) p. 1-6

Journal of Applied Engineering Mathematics December 2024, Vol. 11 3 Copyright © 2024 by ME505 BYU

seen. The reason for this is that all approximation intervals are

equally good at approximating slow rates of heat transfer.

In contrast, figure 5 shows the second approximation that used

values of k=1, α1=2, and α2=5. These values were chosen to

simulate much faster rates of heat transfer. Here, it can be seen

that approximation intervals of 0.025s and 0.01s both eventually

converge to essentially the same values. However, it is also

observed that interval of 0.025s takes slightly longer to converge,

although the difference is not of much consequence. In this

approximation, it is important to note that using an interval of

0.05s leads to a diverging result. This is directly caused by the

boundary between regions. As time progresses, the rate of heat

transfer through this boundary increases and then decreases

before reaching a constant (steady-state) value. By using a larger

approximation interval, this heat transfer is treated as a constant

rate for each interval. Here, the interval of 0.05s leads to

diverging results because it sets this rate to be either too high or

too low for too long, leading to far more or less heat transfer than

actually occurs.

It may reasonably be assumed that two regions in contact with

each other will eventually have the same temperature at the

shared surface, however this is not seen here. The reason for this

result arises from the homogenous boundary at y=1. By holding

the temperature here at 0, much of the heat introduced to the

system at x=0 is lost through this boundary instead of being

transferred to the second region. As a result of this, there is

always a heat difference between the two regions at the shared

boundary.

Figure 4. Curves shown for data at y=0 for the first approximation. Graph

at the top-right shows an enlarged section of the top-left graph.

Approximation intervals are graphed in different colors; however, all are
essentially the same as interval 0.01s, which is graphed in green on top of

them.

Figure 5. Curves shown for data at y=0 for the second approximation.

Graph at the top-right shows an enlarged section of the top-left graph.

Intervals 0.05s, 0.025s, and 0.01s are graphed in black, red, and green,
respectively.

CONCLUSIONS

As seen earlier, it can be useful to utilize numerical methods in

approximating the flow of heat between adjacent regions or

materials. Particularly, it has been noted that for slow rates of

heat transfer and for interior boundaries having greater values of

insulation, larger intervals of approximation are adequate. For

higher rates of heat transfer or for interior boundaries with low

insulation to heat, however, larger intervals of approximation

may cause simulations to diverge and yield useless data. In

general, when performing numerical approximations for heat

flow between two regions, the largest interval of approximation

that does not diverge should be used. The reason for this is that

computations take far longer to perform when using

progressively smaller intervals. If heat transfer rates are

exceptionally high or if there is very little insulation between

regions, other methods of solution should be considered.

Ethan Cleaver | Numerical Approximations for Heat Flow Between Adjacent Regions / JAEM 11 (2024) p. 1-6

Journal of Applied Engineering Mathematics December 2024, Vol. 11 4 Copyright © 2024 by ME505 BYU

APPENDIX A – FULL SOLUTIONS

6) 𝑢1 = 𝑢𝑠𝑠1 + 𝑈𝑡1

7) 𝑢𝑠𝑠1 = ∑[𝑎𝑙 cos(𝜇𝑙𝑦) cosh(𝜇𝑙(𝑥 − 1)) + 𝑏𝑙 cos(𝜇𝑙𝑦) sinh(𝜇𝑙𝑥)]

∞

𝑙=1

8) 𝑎𝑙 =
2

cosh(−𝜇𝑙)
∫ 𝑓1(𝑦) cos(𝜇𝑙𝑦)𝑑𝑦

1

0

9) 𝑏𝑙 =
2𝑘

𝜇𝑙 cosh(𝜇𝑙)
∫(

1

0

𝑢2|𝑥=1 − 𝑢1|𝑥=1) cos(𝜇𝑙𝑦)𝑑𝑦

10) 𝑈𝑡1 = ∑ ∑ 𝐴𝑛𝑚 cos(𝜆𝑛𝑦) sin(𝜈𝑚𝑥)𝑒−𝛼1(𝜆𝑛
2 +𝜈𝑚

2)𝑡

∞

𝑚=1

∞

𝑛=1

11) 𝐴𝑛𝑚 = 4 ∫ ∫(𝑢1|𝑡=0 − 𝑢𝑠𝑠1) sin(𝜈𝑚𝑥) cos(𝜆𝑛𝑦)𝑑𝑦𝑑𝑥

1

0

1

0

12) 𝜇𝑙 = 𝜋 (𝑙 −
1

2
) , 𝜆𝑛 = 𝜋 (𝑛 −

1

2
) , 𝜈𝑚 = 𝜋 (𝑚 −

1

2
) applicable to equations 6 to 11

13) 𝑢2 = 𝑢𝑠𝑠2 + 𝑈𝑡2

14) 𝑢𝑠𝑠2 = ∑ 𝑐𝑙 cos(𝜇𝑙𝑦) cosh(𝜇𝑙(𝑥 − 2))

∞

𝑙=1

15) 𝑐𝑙 =
4𝑘

𝜇𝑙 sinh(−𝜇𝑙)
∫ (𝑢2|𝑥=1 − 𝑢1|𝑥=1) cos(𝜇𝑙𝑦)𝑑𝑦

1

0

16) 𝑈𝑡2 = ∑[𝐵𝑛0 cos(𝜆𝑛𝑦)𝑒−𝛼2(𝜆𝑛
2)𝑡

∞

𝑛=1

] + ∑ ∑ [𝐵𝑛𝑚 cos(𝜈𝑚(𝑥 − 1)) cos(𝜆𝑛𝑦)𝑒−𝛼2(𝜆𝑛
2 +𝜈𝑚

2)𝑡]

∞

𝑚=1

∞

𝑛=1

17) 𝐵𝑛0 = 2 ∫ ∫(𝑢2|𝑡=0 − 𝑢𝑠𝑠2) cos(𝜆𝑛𝑦)𝑑𝑦𝑑𝑥

1

0

2

1

18) 𝐵𝑛𝑚 = 4 ∫ ∫(𝑢2|𝑡=0 − 𝑢𝑠𝑠2) cos(𝜆𝑛𝑦) cos(𝜈𝑚(𝑥 − 1))𝑑𝑦𝑑𝑥

1

0

2

1

19) 𝜇𝑙 = 𝜋 (𝑙 −
1

2
) , 𝜆𝑛 = 𝜋 (𝑛 −

1

2
) , 𝜈𝑚 = 𝑚𝜋 applicable to equations 13 to 18

Ethan Cleaver | Numerical Approximations for Heat Flow Between Adjacent Regions / JAEM 11 (2024) p. 1-6

Journal of Applied Engineering Mathematics December 2024, Vol. 11 5 Copyright © 2024 by ME505 BYU

APPENDIX B – PYTHON CODE

import math
import pytest

import matplotlib.pyplot as plt

from matplotlib import cm
from matplotlib.animation import FuncAnimation

from mpl_toolkits.mplot3d import Axes3D

import numpy as np

def volume_list_approx(x_list, y_list, z_list, x_f=lambda x: 1,

 y_f=lambda y: 1):
 # used for approximating double integrals with 2D arrays as a basis

 total = 0

 for j in range(1, len(y_list)):
 for i in range(1, len(x_list[0])):

 area = (x_list[j][i] - x_list[j][i-1]) * (y_list[j][i] - y_list[j-1][i])

 height = (
 (z_list[j][i]*x_f(x_list[j][i])*y_f(y_list[j][i])) +

 (z_list[j][i-1]*x_f(x_list[j][i-1])*y_f(y_list[j][i-1])) +

 (z_list[j-1][i]*x_f(x_list[j-1][i])*y_f(y_list[j-1][i])) +
 (z_list[j-1][i-1]*x_f(x_list[j-1][i-1])*y_f(y_list[j-1][i-1]))

) / 4

 total += area * height
 return total

def area_list_approx(x_l, y_l, z_list, x_f=lambda x: 1, y_f=lambda y: 1,
type='x'):

 # used for approximating single integrals with 1D lists as a basis

 total = 0
 if type == 'x':

 for i in range(1, len(x_l)):

 base = x_l[i] - x_l[i-1]
 height = (z_list[i]*x_f(x_l[i]) + z_list[i-1]*x_f(x_l[i-1])) / 2

 total += base*height

elif type == 'y':
 for j in range(1, len(y_l)):

 base = y_l[j] - y_l[j-1]

 height = (z_list[j]*y_f(y_l[j]) + z_list[j-1]*y_f(y_l[j-1])) / 2
 total += base*height

return float(total)

def approx_integral(start, stop, function, step=0.01):

 # used for approximating single integrals

 x = start + step
 y0 = function(start)

 area = 0.0

 while x <= stop:
 y1 = function(x)

 area += (y0 + y1)/2*step
 y0 = y1

 x += step

return area

def single_summation(x, y, u_list, constant_list, x_f=lambda x,u: 1,

y_f=lambda y,u: 1):
 # for single summations that contain separate functions of x and y

 # that both depend on u_l

 # for a given set of x and y
 # constant_list is a_l, b_l, and B_n0

 # (should account for e^(stuff) as necessary)

 total = 0
 for l in range(len(u_list)):

 total += x_f(x, u_list[l]) * y_f(y, u_list[l]) * constant_list[l]

 return total

def double_summation(x, y, nu_list, lam_list, constant_array,

x_f=lambda x,nu: 1, y_f=lambda y,lam: 1):
 # for double summations that contain separate functions of

 # x (depending on nu) and y (depending on lam)

 # for a given set of x and y
 # constant_array should account for A_nm, B_nm, and e^(stuff) as necessary

 total = 0

 for n in range(len(lam_list)):
 for m in range(len(nu_list)):

 total += x_f(x, nu_list[m]) * y_f(y, lam_list[n]) * constant_array[n][m]

 return total

def update(zz1, zz2, t):

 y11 = lambda y: 2 / math.cosh(-u) * math.cos(u*y) * y_bound(y)
 y12 = lambda y: 2*k / (u*math.cosh(u)) * math.cos(u*y)

 y13 = lambda y, u: math.cos(u*y)

 x13a = lambda x, u: math.cosh(u*(x-1))
 x13b = lambda x, u: math.sinh(u*x)

 y14 = lambda y: math.cos(lam*y)

 x14 = lambda x: math.sin(nu*x)
 y15 = lambda y, lam: math.cos(lam*y)

 x15 = lambda x, nu: math.sin(nu*x)

 y21 = lambda y: 4*k * math.cos(u*y) / (u * math.sinh(-u))

 y22 = lambda y, u: math.cos(u*y)

 x22 = lambda x, u: math.cosh(u*(x-2))
 y23 = lambda y: math.cos(lam*y)

 x23a = lambda x: math.cos(nu*(x-1))

 y24 = lambda y, lam: math.cos(lam*y)
 x24 = lambda x, nu: math.cos(nu*(x-1))

 a_l = []
 b_l = []

 y_l = []

 z_list = []
 for j in range(len(yy)):

 y_l.append(yy[j][-1])

 z_list.append(zz2[j][0] - zz1[j][-1])
 for u in u_list:

 a_l.append(approx_integral(0, 1, y11))

 b_l.append(area_list_approx(1, y_l, z_list, y_f=y12, type='y'))
 u_ssa = []

 for j in range(len(zz1)):

 u_ssa.append([])
 for i in range(len(zz1[j])):

 x = xx1[j][i]

 y = yy[j][i]
 u_ssa[j].append(single_summation(x, y, u_list, a_l, x13a, y13)

+ single_summation(x, y, u_list, b_l, x13b, y13))
 u_ssa = np.array(u_ssa)

 A_nm = []

 for n in range(len(lam_list)):
 lam = lam_list[n]

 A_nm.append([])

 for m in range(len(nu_list)):
 nu = nu_list[m]

 A_nm[n].append(volume_list_approx(xx1, yy, zz1 - u_ssa, x14, y14)

* (4) * math.e**(-alpha1*((lam**2) + (nu**2))*t))
 Ua = []

 for j in range(len(zz1)):

 Ua.append([])
 for i in range(len(zz1[j])):

 x = xx1[j][i]

 y = yy[j][i]
 Ua[j].append(double_summation(x, y, nu_list, lam_list, A_nm,

x15, y15))

 Ua = np.array(Ua)

 c_l = []

 for u in u_list:

 c_l.append(area_list_approx(1, y_l, z_list, y_f=y21, type='y'))

 u_ssb = []

Ethan Cleaver | Numerical Approximations for Heat Flow Between Adjacent Regions / JAEM 11 (2024) p. 1-6

Journal of Applied Engineering Mathematics December 2024, Vol. 11 6 Copyright © 2024 by ME505 BYU

 for j in range(len(zz2)):

 u_ssb.append([])

 for i in range(len(zz2[j])):

 x = xx2[j][i]

 y = yy[j][i]
 u_ssb[j].append(single_summation(x, y, u_list, c_l, x22, y22))

 u_ssb = np.array(u_ssb)

 B_n0 = []
 B_nm = []

 for n in range(len(lam_list)):

 lam = lam_list[n]
 B_n0.append(volume_list_approx(xx2, yy, zz2 - u_ssb, y_f=y23)

* 2 * math.e**(-alpha2*(lam**2)*t))

 B_nm.append([])
 for m in range(len(nu_list2)):

 nu = nu_list2[m]

 B_nm[n].append(volume_list_approx(xx2, yy, zz2 - u_ssb, x23a, y23)
* 4 * math.e**(-alpha2*((lam**2) + (nu**2))*t))

 Ub0 = []

 Ub = []
 for j in range(len(zz2)):

 Ub.append([])

 Ub0.append([])
 for i in range(len(zz2[j])):

 x = xx2[j][i]
 y = yy[j][i]

 Ub[j].append(double_summation(x, y, nu_list2, lam_list, B_nm,

 x24, y24))
 Ub0[j].append(single_summation(1, y, lam_list, B_n0, y_f=y24))

 Ub0 = np.array(Ub0)

 Ub = np.array(Ub)

 return u_ssa + Ua, u_ssb + Ub0 + Ub

class gridSave:

 # used purely for saving data in between frames

 def __init__(self, grid):
 self.data = grid

def animateFunc(frame):

 # this gets called at every frame of the animation

 ax1.cla()
 ax2.cla()

 ax3.cla()

 ax4.cla()
 if frame == 0:

 #code redacted here because of similarity to other code sections

 #mostly just formatting for graphs
 # for ax1 with change in time as 0.05s

 t = 0.05

 zz01_1.data, zz01_2.data = update(zz01_1.data, zz01_2.data, t)
 ax1.plot_surface(xx1, yy, zz01_1.data, cmap=cm.coolwarm,

vmin=-1, vmax=51)

 ax1.plot_surface(xx2, yy, zz01_2.data, cmap=cm.coolwarm,
vmin=-1, vmax=51)

 # for ax2 with change in time as 0.025s

 t = 0.025
 for i in range(2):

 zz001_1.data, zz001_2.data = update(zz001_1.data, zz001_2.data, t)

 ax2.plot_surface(xx1, yy, zz001_1.data, cmap=cm.coolwarm,
vmin=-1, vmax=51)

 ax2.plot_surface(xx2, yy, zz001_2.data, cmap=cm.coolwarm,

vmin=-1, vmax=51)
 # for ax3 with change in time as 0.01s

 t = 0.01

 for i in range(5):
 zz0001_1.data, zz0001_2.data = update(zz0001_1.data, zz0001_2.data, t)

 ax3.plot_surface(xx1, yy, zz0001_1.data, cmap=cm.coolwarm,

vmin=-1, vmax=51)

 ax3.plot_surface(xx2, yy, zz0001_2.data, cmap=cm.coolwarm,

vmin=-1, vmax=51)

 # for plotting ax4 based on data from the other plots at y=0

 ax4.plot(xx1[0], zz01_1.data[0], color='black')

 ax4.plot(xx2[0], zz01_2.data[0], color='black')

 ax4.plot(xx1[0], zz001_1.data[0], color='red')

 ax4.plot(xx2[0], zz001_2.data[0], color='red')
 ax4.plot(xx1[0], zz0001_1.data[0], color='green')

 ax4.plot(xx2[0], zz0001_2.data[0], color='green')

 ax4.set_ylim(-1, 51)
 #other sections of code redacted as they are purely formatting for graphs

fps = 20

time = 2
step = 0.05

k = 0.5

alpha1 = 0.4
alpha2 = 2

y_bound = lambda y: 50

terms = 20

eigen_u_l = lambda l: math.pi*(l-0.5)

eigen_lam_n = lambda n: math.pi*(n-0.5)
eigen_nu_m1 = lambda m: math.pi*(m-0.5)

eigen_nu_m2 = lambda m: math.pi*m
u_list = [eigen_u_l(l) for l in range(1, terms+1)]

lam_list = [eigen_lam_n(n) for n in range(1, terms+1)]

nu_list = [eigen_nu_m1(m) for m in range(1, terms+1)]
nu_list2 = [eigen_nu_m2(m) for m in range(1, terms+1)]

xx1 = np.arange(0, 1 + step/2, step)
yy = np.arange(0, 1 + step/2, step)

xx1, yy = np.meshgrid(xx1, yy)

xx2 = xx1 + 1
zz01_1 = gridSave(yy * 0)

zz01_2 = gridSave(zz01_1.data + 0)

zz001_1 = gridSave(yy * 0)
zz001_2 = gridSave(zz001_1.data + 0)

zz0001_1 = gridSave(yy * 0)

zz0001_2 = gridSave(zz0001_1.data + 0)

Fig = plt.figure(figsize=(16, 12))

ax1 = Fig.add_subplot(2, 2, 1, projection = '3d')
ax2 = Fig.add_subplot(2, 2, 2, projection = '3d')

ax3 = Fig.add_subplot(2, 2, 3, projection = '3d')

ax4 = Fig.add_subplot(2, 2, 4)
Fig2, ((ax5, ax6), (ax7, ax8)) = plt.subplots(2, 2)

Fig.subplots_adjust(wspace = 0.5, hspace = 0.5)

Fig2.subplots_adjust(wspace = 0.5, hspace = 0.5)
vid = FuncAnimation(Fig, animateFunc, frames=fps*time+1,

interval=1000/fps)

vid.save(f'Project{k}.gif')
Fig2.savefig(f'k{k}.png')

