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ABSTRACT 
 

Friction Stir Welding (FSW) is a solid-state joining process 

used widely in the automotive and aerospace industries. Here, a 

2-D heat diffusion model was used to determine the effects of 

weld speed and thermal properties on the thermal history of the 

welded material. It was found that as weld speed went up the 

heat wake decreased in width and the average temperature went 

down. 

NOMENCLATURE 
 

𝑇∞= Ambient Temperature 

𝑣𝑐 = Crossover Weld Speed 

𝛼 = Thermal Diffusivity 

 

INTRODUCTION 
 

The intent of this work is to develop a model for heat diffusion 

through an aluminum plate undergoing friction stir welding 

(FSW). The resulting conduction through the plate can be used 

to see the effects of weld speed on the heat wake and average 

temperature. 

 

When using FSW, the peak temperature and the cooling rate of 

the material are the primary factors that affect the properties of 

the weld, because time and temperature drive the metallurgical 

response of the welded metal [1]. Therefore, it is important to 

know how changes to the FSW process affect the temperature 

history.  

 

The developed model was used to determine the crossover weld 

speed when the FSW tool starts moving faster than the heat in 

the plate can propagate. 

METHODS 
 

To model the aluminum plate, the 2D Heat Equation was used 

with an included source term to model the heat input from the 

welding process: 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+ 𝑆(𝑥, 𝑦, 𝑡) =

1

𝛼

𝜕𝑢

𝜕𝑡
 

To adequately model the heat transfer from the aluminum plate, 

the following boundary conditions were chosen: 

 

[
𝜕𝑢

𝜕𝑥
]

𝑥=0
= 0,       [

𝜕𝑢

𝜕𝑥
]

𝑥=𝐿
= 0 

[
𝜕𝑢

𝜕𝑦
]

𝑦=0

= 0,       [
𝜕𝑢

𝜕𝑦
]

𝑦=𝑀

= 0 

𝑆(𝑥, 𝑦, 𝑡) = 𝜙0 ⋅ 𝛿(𝑥 − 𝑣𝑡) ⋅ 𝛿 (𝑦 −
𝑀

2
) 

The boundaries of the aluminum were modeled by insulated 

faces in both the x and y direction. These boundary conditions 

correspond with Neumann-Neumann boundaries in the x-

direction and y-directions. The source term was then applied to 

the centerline of the plate and moved the x-direction at a given 

speed. 

 

The initial conditions used corresponded with the following 

equations where 0 is considered the ambient temperature as seen 

below: 

 

𝑢|𝑡=0 = 0 

𝑢(𝑥, 𝑦, 𝑡) = 𝑇(𝑥, 𝑦, 𝑡) − 𝑇∞ 
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By using the integral transform method, the model described can 

be solved for the function 𝑢(𝑥, 𝑦, 𝑡) where 𝑢 represents the 

temperature of the aluminum block. A detailed description of the 

solution can be found in the Appendix along with code to show 

how the Fourier and Laplace transforms were created. 

RESULTS 
 

The resulting equation gave the temperature of the aluminum 

block undergoing friction stir welding (u) as a function of 

position (x, y, z) and time (t). All components can be found in 

detail within the Appendix. 

 

𝑢(𝑥, 𝑦, 𝑡) = ∑ ∑
𝑋𝑛(𝑥)

‖𝑋𝑛(𝑥)‖2

𝑚𝑛

𝑌𝑚(𝑦)

‖𝑌𝑚(𝑦)‖2
 ⋅ �̿�𝑛,𝑚(𝑡) 

 

In the example aluminum block chosen, a sharp temperature rise 

was seen at the block’s edge that moves along the middle of the 

block at the same speed as the friction stir weld. As the heat input 

from the welding process moves along in the x-direction, it was 

seen that the heat diffused faster than the welder moved leading 

to higher temperatures at the welding location. There was also a 

trailing temperature increase behind the weld that flattened out 

the farther away it was from the source of the heat input. 

 

Four different weld speeds were chosen for evaluation with the 

thermal properties of Al 7075-T6: 50 mm/min, 100 mm/min, 300 

mm/min, and 500 mm/min. Each weld speed was evaluated 

when it reached the middle of the plate in the x direction. 

 

 
Figure 1: Temperature distribution of 50 mm/min (left) and 100 mm/min (right) 

weld speeds. 

 

Because of this choice, the average temperatures of the plates for 

each welding speed were different, but the overall characteristics 

of the temperature gradient could still be seen. The slower weld 

speed of 50 mm/min has a higher average temperature and a 

wider heat wake than the 100 mm/min weld speed. This makes 

sense because the slower weld speed takes longer to complete 

the weld which will give more time for heat generation. The 

wider heat wake can be explained by the additional time for heat 

diffusion. 

 

Similar trends are seen in Figure 2. Additionally, it was observed 

that the heat wake became narrower as welding speed increased 

which does not allow the heat to propagate to edge of the  

 

plate as compared to Figure 1. The temperature in front of the 

source term is also lower than in Figure 1 potentially due to the 

boundary conditions chosen and number of terms used in the 

summation. It was concluded that the crossover speed was 

100
𝑚𝑚

𝑚𝑖𝑛
< 𝑣𝑐 < 300 

𝑚𝑚

𝑚𝑖𝑛
.  

 

 
Figure 2: Temperature distribution of 300 mm/min (left) and 500 mm/min 

(right) weld speeds. 

 

More analysis could be done with the existing model, but due to 

the model uncertainty, a more specific crossover velocity was 

not determined. 30 terms were used for the creation of this 

model, and it is unclear if this was enough terms for a precise 

determination of the crossover speed. Additionally, the exact 

definition of 𝑣𝑐  would need to be something relatively simple to 

evaluate in a model and real life to be practical. Another factor 

to be considered is the weld path. In this model, it was assumed 

to be straight, but other welds paths need to be taken into 

consideration. 

CONCLUSIONS 
 

As mentioned previously, the developed model was created in 

order to find the crossover speed at which the FSW tool moves 

faster than the heat propagates allowing for more control over 

the thermal history of the plate which ultimately drives post-weld 

mechanical properties.  

 

It was found that  100𝑚𝑚

𝑚𝑖𝑛
< 𝑣𝑐 < 300𝑚𝑚

𝑚𝑖𝑛
 for Al 7075-T6. 

 

Further work can be done to improve the model. A 3D heat 

diffusion model with different boundary conditions would more 

accurately represent true welding conditions. This model could 

also be compared to real welds and/or a validated FEA model.  
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APPENDIX 

Denote    𝑢(𝑥, 𝑦, 𝑡) = 𝑇(𝑥, 𝑦, 𝑡) − 𝑇∞ 

Thermal diffusivity: 𝛼 =
𝜅

𝜌𝑐𝑝
 

𝐻 =
ℎ

𝜅
 

Heat Equation: 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+ 𝑆(𝑥, 𝑦, 𝑡) =

1

𝛼

𝜕𝑢

𝜕𝑡
 

Boundary Conditions: 

[
𝜕𝑢

𝜕𝑥
]

𝑥=0
= 0,       [

𝜕𝑢

𝜕𝑥
]

𝑥=𝐿
= 0 

[
𝜕𝑢

𝜕𝑦
]

𝑦=0

= 0,       [
𝜕𝑢

𝜕𝑦
]

𝑦=𝑀

= 0 

𝜙(𝑥, 𝑦, 𝑡) = 𝜙0 ⋅ 𝛿(𝑥 − 𝑣𝑡) ⋅ 𝛿 (𝑦 −
𝑀

2
) 

Initial Condition: 

𝑢|𝑡=0 = 0 
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𝑋′′ −  𝜁𝑋 = 0 

Boundary 

Conditions 

N   𝑢′(0) = 𝑓0 = 0 

N   𝑢′(𝐿) = 𝑓𝐿 = 0 

Eigenvalues 

𝛾𝑛,   𝛽𝑚 

𝛾𝑛 =
𝑛𝜋

𝐿
 

𝑛 = 0,1,2, … 

Eigenfunctions 𝑐𝑜𝑠(𝛾𝑛𝑥) 

Norm 
𝐿, 𝑛 = 0 ;  

𝐿

2
 𝑛 = 1,2, … 

Operational Property 

∫ (
𝜕2𝑢

𝜕𝑥2
) 𝑋𝑛(𝑥)𝑑𝑥

𝐿

0

 

 

𝑓𝐿𝑋𝑛(𝐿) − 𝑓0𝑋𝑛(0) − 𝛾𝑛
2�̅�𝑛 

 

𝑌′′ −  𝜂𝑌 = 0 

Boundary 

Conditions 

N   𝑢′(0) = 𝑓0 = 0 

N   𝑢′(𝑀) = 𝑓𝑀 = 0 

Eigenvalues 

𝛾𝑛,   𝛽𝑚, 

𝛽𝑚 =
𝑚𝜋

𝑀
 

𝑛 = 0,1,2, … 

Eigenfunctions 𝑐𝑜𝑠(𝛽𝑚𝑦) 

Norm 
𝑀, 𝑛 = 0 ;  

𝑀

2
 𝑛 = 1,2, … 

Operational Property 

∫ (
𝜕2𝑢

𝜕𝑥2
) 𝑋𝑛(𝑥)𝑑𝑥

𝐿

0

 

 

𝑓𝑀𝑌𝑚(𝑀) − 𝑓0𝑌𝑚(0) − 𝛽𝑚
2 �̅�𝑚 

 

 

 

 

 

 

 

 

 

 

 

 

 



Joel Gibb, Joshua Taylor | Effects of Weld Speed and Thermal Conductivity / JAEM 11 (2024) p. 1-3 

Journal of Applied Engineering Mathematics  December 2024, Vol. 11 5 Copyright © 2024 by ME505 BYU 

 

Integral Transform x: 

−𝛾𝑛
2�̅�𝑛(𝑦, 𝑡) +

𝜕2�̅�𝑛(𝑦, 𝑡)

𝜕𝑦2
+ 𝑆̅(𝑦, 𝑡) =

1

𝛼

𝜕�̅�𝑛(𝑦, 𝑡)

𝜕𝑡
 

𝑆̅(𝑦, 𝑡) = 𝜙0 ⋅ ℑ𝑥{𝛿(𝑥 − 𝑣𝑡)} ⋅ 𝛿 (𝑦 −
𝑀

2
) 

 

Integral Transform y: (3 line to 2 lines) 

−𝛾𝑛
2�̿�𝑛,𝑚(𝑡) − 𝛽𝑚

2 �̿�𝑛,𝑚(𝑡) + 𝑆̅̿(𝑡) =
1

𝛼

𝜕�̿�𝑛,𝑚(𝑡)

𝜕𝑡
 

𝑆̅(𝑡) = 𝜙0 ⋅ ℑ𝑥{𝛿(𝑥 − 𝑣𝑡)} ⋅ ℑ𝑦 {𝛿 (𝑦 −
𝑀

2
)} 

 

Laplace Transform: 3 lines to 2 

−𝛾𝑛
2�̂̿�𝑛,𝑚(𝑠) − 𝛽𝑚

2 �̂̿�𝑛,𝑚(𝑠) + 𝑆̿̂(𝑠) =
1

𝛼
𝑠�̂̿�𝑛,𝑚(𝑠) 

𝑆̿̂(𝑠) = 𝜙0 ⋅ ℒ{ℑ𝑥{𝛿(𝑥 − 𝑣𝑡)}} ⋅ ℑ𝑦 {𝛿 (𝑦 −
𝑀

2
)} 

Rearrange Terms: 

𝑆̿̂(𝑠) =
1

𝛼
𝑠�̂̿�𝑛,𝑚(𝑠) + 𝛾𝑛

2�̂̿�𝑛,𝑚(𝑠) + 𝛽𝑚
2 �̂̿�𝑛,𝑚(𝑠) 

𝛼𝑆̿̂(𝑠) = (𝑠 + 𝛼𝛾𝑛
2 + 𝛼𝛽𝑚

2 ) �̂̿�𝑛,𝑚(𝑠) 

�̂̿�𝑛,𝑚,𝑘(𝑠) = 𝛼𝑆̿̂(𝑠)
1

(𝑠 + 𝛼𝛾𝑛
2 + 𝛼𝛽𝑚

2 )
  

𝑆̿̂(𝑠) = 𝜙0 ⋅ ℒ{ℑ𝑥{𝛿(𝑥 − 𝑣𝑡)}} ⋅ ℑ𝑦 {𝛿 (𝑦 −
𝑀

2
)} 

 

Inverse Laplace Transform: 

�̿�𝑛,𝑚(𝑡) = 𝛼𝑆̿(𝑡) ∗ ℒ−1 {
1

(𝑠 + 𝛼𝛾𝑛
2 + 𝛼𝛽𝑚

2 )
} 

𝑆̿(𝑡) = 𝜙0 ⋅ ℑ𝑥{𝛿(𝑥 − 𝑣𝑡)} ⋅ ℑ𝑦 {𝛿 (𝑦 −
𝑀

2
)} 

𝑤ℎ𝑒𝑟𝑒 ∗ 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
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Inverse Integral Transforms: 

𝑢(𝑥, 𝑦, 𝑡) = ∑ ∑
𝑋𝑛(𝑥)

‖𝑋𝑛(𝑥)‖2

𝑚=0𝑛=0

𝑌𝑚(𝑦)

‖𝑌𝑚(𝑦)‖2
 ⋅ �̿̅�𝑛,𝑚(𝑡) 

�̿�𝑛,𝑚(𝑡) = 𝛼𝑆̿(𝑡) ∗ ℒ−1 {
1

(𝑠 + 𝛼𝛾𝑛
2 + 𝛼𝛽𝑚

2 )
} 

𝑆̿(𝑡) = 𝜙0 ⋅ ℑ𝑥{𝛿(𝑥 − 𝑣𝑡)} ⋅ ℑ𝑦 {𝛿 (𝑦 −
𝑀

2
)} 

𝑤ℎ𝑒𝑟𝑒 ∗ 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑛𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑎𝑡 𝑛 = 0, 𝑋0(𝑥) = 1, ‖𝑋0(𝑥)‖2 = 𝐿, 𝑌0(𝑦) = 1, ‖𝑌0(𝑦)‖2 = 𝑀 

 

Physical Properties Value Units 

𝜅  

(Thermal Conductivity) 

130 𝑊

𝑚 ⋅ 𝐾
 

𝑐𝑝 

(Heat Capacity) 

960 𝐽

𝑘𝑔 ⋅ 𝐾
 

𝜌 

(Density) 

2810 𝑘𝑔

𝑚3
 

𝜙0 

(Heat Flux) 

1500 𝑊

𝑚2
 

𝐿 0.5 𝑚 

𝑀 0.25 𝑚 

 



(10)(10)

(1)(1)

(3)(3)

(4)(4)

(8)(8)

(11)(11)

(9)(9)

(2)(2)

(5)(5)

(6)(6)

(7)(7)

restart;

Constants:
local gamma :local beta :

X Eigenvalue/Eigenfunction (II-II):
 g 0 d 0;

g0d 0

 X 0 d 1;
X0d 1

normsqX0d L;
normsqX0d L

g n d
n$p
L

;

gnd
n p
L

X n d cos g n $x ;

Xnd cos
n p x
L

normsqXd
L
2

;

normsqXd
L
2

Y Eigenvalue/Eigenfunction (II-II):
 b 0 d 0;

b0d 0

 Y 0 d 1;
Y0d 1

normsqY0dM;
normsqY0dM

b m d
m$p
M

;

bmd
m p
M

Y m d cos b m $y ;

Ymd cos
m p y
M

normsqYd
M
2

;



(12)(12)

(16)(16)

(15)(15)

(13)(13)

(14)(14)

(17)(17)

normsqYd
M
2

Transforms:
Fxd int X n $Dirac xL v$t , x = 0 .. L ;

Fxd Heaviside Lv tC L LHeaviside Lv t  cos
n p v t
L

Fyd int Y m $Dirac yL
M
2

, y = 0 .. M ;

Fyd 2 Heaviside M L 1  cos
m p
2

Sd f0$Fx$Fy;

Sd f0 Heaviside Lv tC L LHeaviside Lv t  cos
n p v t
L

 2 Heaviside M

L 1  cos
m p
2

 
with inttrans :
assume 0! a
Sd laplace S, t, s ;

Sd 2 L cos
n p v t
L

 Heaviside Lt vC L , t, s  cos
m p
2

 Heaviside M  f0

L 2 L cos
n p v t
L

 Heaviside Lv t , t, s  cos
m p
2

 Heaviside M  f0

LL cos
n p v t
L

 Heaviside Lt vCL , t, s  cos
m p
2

 f0

CL cos
n p v t
L

 Heaviside Lv t , t, s  cos
m p
2

 f0

Ud invlaplace
a$S

sCa$g n 2Ca$b m 2 , s, t ;

Ud Lp lim
_U1→0C

p LHeaviside L_U1 v CHeaviside Lv t  e
Lt a p2 

m2

M2
C

n2

L2
 L2 m2

CM2 n2  signum v  aL L M2 sin
n p v _U1

L
 n vCa cos

n p v _U1
L

 p L2 m2

CM2 n2  e
L

p2 a L2 m2CM2 n2  tL_U1

M2 L2
 Heaviside L_U1 v C n v M2 L sin

n p v t
L

C p a L2 m2CM2 n2  cos
n p v t
L

 Heaviside Lv t  L2 M2 p L4 p
2
 a

2
 m4



(18)(18)

(19)(19)

C 2 L2 M2 p
2
 a

2
 m2 n2CM4 p

2
 a

2
 n4C n2 v2 M4 L2  L4 p

2
 a

2
 m4C 2 L2 M2 p

2
 a

2
 m2 n2

CM4 p
2
 a

2
 n4C n2 v2 M4 L2 C L p a L2 m2CM2 n2  e

Lt a p2 
m2

M2
C

n2

L2
C p a L2 m2

CM2 n2  cos n p v C L sin n p v  M2 n v  e
L

p2 a L2 m2CM2 n2  Lsignum v  LCt

M2 L2
 signum v

 Heaviside L C n v M2 L sin
n p v t
L

C p a L2 m2CM2 n2  cos
n p v t
L

C p a L2 m2CM2 n2  cos n p v

C L sin n p v  M2 n v  e
L

p2 a L2 m2CM2 n2  Lsignum v  LCt

M2 L2
 signum v  Heaviside Lv tC L

 L2 M2  cos
m p
2

 2 Heaviside M L 1  a f0 p L4 p
2
 a

2
 m4C 2 L2 M2 p

2
 a

2
 m2 n2

CM4 p
2
 a

2
 n4C n2 v2 M4 L2

nd 0 : md 0 :

U0d invlaplace
a$S

sCa$g n 2Ca$b m 2 , s, t ;

U0d LHeaviside L  LCHeaviside Lv tC L  tCL L lim
_U1→0C

L_U1 Heaviside

L_U1 v C t Heaviside Lv t  2 Heaviside M L 1  a f0

  Ld 0.5 : Md 0.25 : kd 130 : rd 2810 : cpd 960 : ad
k

r$cp
: f0d 1500 :

 

For v = 50mm/min:

vd
0.050

60
: td

L
2$v

:

 u x, y d
U0
M$L

C sum sum
X n

normsqX
$

Y m
normsqY

$U, n = 1 .. 30 , m = 1 .. 30 ;

ud x, y ↦
U0
M$L

C >
m= 1

30

>
n = 1

30 Xn$Ym$U

normsqX$normsqY

with plots :
densityplot u x, y , x = 0 ..0.28, y = 0 ..M ;



(20)(20)

 
For v = 100 mm/min:

vd
0.100

60
: td

L
2$v

:

 u x, y d
U0
M$L

C sum sum
X n

normsqX
$

Y m
normsqY

$U, n = 1 .. 30 , m = 1 .. 30 ;

ud x, y ↦
U0
M$L

C >
m= 1

30

>
n = 1

30 Xn$Ym$U

normsqX$normsqY

with plots :
densityplot u x, y , x = 0 ..0.28, y = 0 ..M ;



(21)(21)

For v = 300 mm/min:

vd
0.300

60
: td

L
2$v

:

 u x, y d
U0
M$L

C sum sum
X n

normsqX
$

Y m
normsqY

$U, n = 1 .. 30 , m = 1 .. 30 ;

ud x, y ↦
U0
M$L

C >
m= 1

30

>
n = 1

30 Xn$Ym$U

normsqX$normsqY

with plots :
densityplot u x, y , x = 0 ..0.28, y = 0 ..M ;



(22)(22)

For v = 500 mm/min:

vd
0.500

60
: td

L
2$v

:

 u x, y d
U0
M$L

C sum sum
X n

normsqX
$

Y m
normsqY

$U, n = 1 .. 30 , m = 1 .. 30 ;

ud x, y ↦
U0
M$L

C >
m= 1

30

>
n = 1

30 Xn$Ym$U

normsqX$normsqY

with plots :
densityplot u x, y , x = 0 ..0.28, y = 0 ..M ;



 
 


