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Abstract
We examine interaction between the wave equation and a
hanging cable. Specifically, we drive the motion of the
hanging cable from the wave equation and observe the
results. We use D’Alembert’s solution to the spatially
unbounded wave equation. We derive the equation for
the hanging cable via a custom integral transform and the
Laplace transform. The cable is bounded at one end by the
values of the wave equation, coupling the two systems to-
gether. Code and sample simulation results can be found
at https://github.com/sofia-i/me505-paper.

Nomenclature
For the infinite wave system:

• ν(x, t): infinite ’wind’ function

• v: wave propagation speed

• ν0, ν1 initial conditions

For the hanging cable:

• u(φ, t): finite hanging cable

• w: propagation speed

• L: domain upper limit

Note: to differentiate the spatial domains, we use x for
the wave’s spatial domain and φ for the chain’s spatial
domain.

Introduction
The simulation of hair and strand-like structures is a well-
known challenge in computer graphics and other applica-
tions. One interesting subject area in hair simulation is
coupling a hair solver with a solver of a different type; for
example, simulating wet hair requires coupling a hair sim-
ulator with a fluid solver. In this paper, we examine the
influence of a wave on a cable, strand-like structure.
Coupling refers to interaction between systems. The in-

teractions of various systems or behaviors can be observed
and simulated by coupling multiple elements; for exam-
ple, mass-spring-damper models in mechanical engineer-
ing can combine multiple distinct elements—including
forcing or driving functions—into a single differential
equation. In animation, complex phenomena such as
hairs interacting with water can be simulated via coupled
solvers.

Methodology
The wind was approximated using the wave equation;
while this is not strictly accurate since the wave function
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is intended to describe motion in a medium such as wa-
ter, it provides a sufficient approximation for visualiza-
tion. Boundary conditions were not defined for the wave
equation, as the wind was assumed to be spatially infinite.
D’Alembert’s solution [5], which solves for the wave

equation without boundary conditions, was used to find
the function defining this wave:

ν(x, t) =
1

2
[ν0(x−vt)+ν0(x+vt)]+

1

2v

x+vt∫
x−vt

ν1(s) ds (1)

We set the initial conditions as follows, giving the initial
shape of a sine wave and no initial velocity:

ν(x, 0) = ν0 = 0.5 ∗ sin(x)
∂ν

∂t
(x, 0) = ν1 = 0

A strand of hair was approximated as a hanging cable
oriented horizontally. To shift the hanging cable to a hori-
zontal orientation, it must be assumed that the hair is mass-
less (and thereby not affected by gravity); this is a reason-
able assumption for our approximation of a single strand
of hair.
For the hanging cable representation of the strand, we

use the governing equation:

∂

∂φ

(
φ
∂u

∂φ

)
+ S(φ, t) =

1

w2

∂u

∂t2
(2)

We apply a custom integral transformL to u and the initial
conditions, giving L{u} = ūn, L{u0} = ūn,0, L{u1} =
ūn,1, and L{S} = S̄n. With the use of L and the Laplace
transform, we come to the solution for u(φ, t) (see details
in Appendix B):

u(φ, t) =

∞∑
n=1

ūn(t)
yn(φ)

||yn||2
(3)

With

ūn(t) =
Lwy′

n(L)

µn

∫ t

0

fL(t− τ)sin(wµnτ) dτ

− w

µn

∫ t

0

S̄n(t− τ)sin(wµnτ) dτ

+ūn,0cos(wµnt) +
ūn,1

wµn
sin(wµnt)

(4)

We couple the systems by bounding the hanging cable
on one end to the wave equation. We do this by setting the
hanging cable’s boundary condition at φ = L as follows:

u(L, t) = fL(t) = ν(x0, t) (5)

at a point x0 along the wave’s domain, which we call the
anchor point.
We set the rest of the conditions and parameters as fol-

lows: L = 1,w = 1, u(φ, 0) = u0(φ) = L−φ−ν(x0, 0),
and S(φ, t) = 0. The boundary condition implemented at
φ = 0 was that of a free end, with u(0, t) < ∞, allowing
the motion of this end to be determined entirely by the re-
action of the strand to the coupled boundary condition at
φ = L.
To visualize the wave and cable together, we shift the

spatial domain of the cable to align the boundary point
with the anchor point on the wave. This is accomplished
by plotting the cable parametrically and shifting the x
component by −1 + x0(t), giving x = φ− 1 + x0(t).

Variations
We experimented with several variations in parameters
and coupling schemes, which yielded interesting results.
We compared the behavior of several hanging cables
bounded at different anchor points (see Figure 1).

Figure 1: Three cables in simulation, spaced approxi-
mately evenly at x0 = {−1, 0.1, 1} and bounded by the
wave equation on one end. This frame shows the initial
state at t = 0.
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We also visualized coupling the hanging cable using the
wave equation as a source function instead of a bound-
ary condition. For that setup, we included several point
sources in the sourcing function based on the value of the
’wind’ wave at that point; the discretization of the wave
equation for use as a source function was done as imple-
menting the full wave equation as a source function was
computationally expensive. We left one end of the cable
bounded to a single stationary point and observed the be-
havior resulting from the source function. For example,
one sourcing function we used was

S(φ, t) =

j∑
k=0

S0δ

(
φ− k

j
∗ L

)
ν(

k

j
∗ L, t) (6)

This sourcing equation includes j ∈ Z+ point sources,
with magnifying factor S0.

Results
We found that a hanging cable bounded on one end to an
infinite wave equation produces visually compelling re-
sults. Given the length of the cable, the bounded end is
pulled in the direction of the wave while the free end is
often tending in the other direction. The delay of propa-
gation across the cable, along with the sinusoidal behavior
at the bounded end, often creates curves along the cable,
as seen in Figure 2.
We observed that in the bounded cable simulations, the

bounded end of the cable atφ = L always stayed at u = 0,
despite being bounded by fL(t) = ν(x0, t). We believe
that this behavior can be explained by our use of finite se-
ries to approximate the infinite series in the inverse trans-
form of ūn.
While the hanging cable we analyzed was not a physical

model of hair, the reaction of the cable to being bounded
by the wave function is reminiscent of a strand of hair—
perhaps a strand of hair in a horse’s tail. In Figure 4, it
can be seen that the strands of hair react differently to the
motion of the horse combined with the fluid flow of the air
around the horse’s body and across/along the tail and the
flow of the surrounding strands. The individual strands
in the tail have a wave-like shape due to the motion, and
many appear similar to the shape seen for the hanging ca-
ble in Figure 2.

Figure 2: This frame is taken from the standard bounded
setup given in this paper at simulation time t = 4.55. The
bounded side of the curve on the right-hand side is pulled
downward, while the left-hand end of the curve still points
upward. Compare with Figure 4

.

Figure 3: A frame of the wave-cable simulation at time
t = 6.1. In this simulation, the cable’s right end is
bounded by the value of the wave.
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Figure 4: A frame of a video of a horse galloping, taken
from [4]. The general shape of the tail produces a curve.

Our forced variation, which uses point sources along
the cable instead of bounding the cable to the wave, pro-
duced interesting results. As the cable is driven towards
the wave at several points, resulting bumps in the cable
are not limited to propagating from φ = L to φ = 0 as in
the bounded system. Instead, it occasionally propagates
towards φ = L as well, as is the case in Figure 5 and is
best seen in the full animation.

Figure 5: A frame of the sourced variation of our wave-
cable simulation at time t = 2.95. In this simulation, one
end of the cable is bounded at a fixed point and the cable is
acted upon by five point sources along its spatial domain
driven by the wave values. In this frame, the bump is trav-
eling towards the right.

For full animated simulations, please see our Github
repository.

Conclusions
We investigated coupling of the infinite wave and hang-
ing cable models by bounding one end of the cable to the
wave. We achieved visually interesting results, which are
analogous to situations of a horizontally oriented cable-
like structure being influenced by a wave-like medium.
We suggest our system as an approximated model of hair
moving in wind. The model does not reflect the physical
properties of hair, but has visual similarities to the flowing
of hair in wind.
Future work would include implementation of a more

accurate physics-based model of the hair—for example, a
discretized spring-mass system [1]—in order to better ap-
proximate the motion of the hair. Physical properties of
the hair could be further implemented, especially insofar
as they affect flow [3]. Additionally, the length of the hair
was not held constant during this simulation; a more ac-
curate simulation could be obtained through discretization
in order to keep the hair length the same, or through cal-
culation of the arc length and truncation to a given length
at each time. The cable could also be treated as hanging
vertically in addition to the implementation of physical pa-
rameters [2].
As mentioned previously in the paper, experimentation

with implementing the wave equation as a forcing func-
tion required that it be discretized due high computational
cost. Future work could also include more thorough im-
plementation of the wave equation as a forcing function,
whether through increasing the number of discreet forc-
ing functions along the cable or by fully implementing the
solution to the wave equation as a forcing function.
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Appendix A Code
The following is the code used to make the primary visu-
alization, written in Mathematica.

(*Make the 'sea' (infinite
wave equation)*)

sea[x_, t_] := (1/2)(sea0[x-v*t] +
sea0[x + v*t]) +
(1/(2*v)) *
Integrate[sea1[s], {s, x-v*t, x+v*t}]

v = 2
sea0[x_] := 0.5*Sin[x]
sea1[x_] := 0

(*Animate 'sea' by itself*)
Animate[Plot[sea[x, t], {x, -5, 5},

PlotRange->{{-5, 5},{-1, 1}}],
{t,0,5,0.1}]

(*Make the hanging cable*)
yn[x_, n_] := BesselJ[0, 2*mu[n]*Sqrt[x]]
ynnorm[x_, n_] :=

L*BesselJ[0, 2*mu[n]*Sqrt[L]]^2
+ L*BesselJ[1, 2*mu[n]*Sqrt[L]]^2

mu[n_] := N[
(1/2)*Sqrt[(BesselJZero[0, n])^2/L]]

un[t_, n_] :=
(L*w*Derivative[1, 0][yn][L, n])/mu[n]*
Integrate[fl[t-τ]*Sin[w*mu[n]*τ],
{τ, 0, t}] -
(w/mu[n]) *
Integrate[Sn[t - τ, n]*Sin[w*mu[n]*
τ], {τ, 0, t}] +
un0[t, n]*Cos[w*mu[n]*t] +
un1[t, n]/(w*mu[n])*Sin[w*mu[n]*t]

u[x_, t_] :=
Total[

Table[un[t, n]*yn[x, n]/ynnorm[x, n],
{n, 1, 20}]

]

(*Set hanging cable parameters*)
L=1;
w=1;
u0[x_]:=L - x - sea[anchor[0], 0]
u1[x_] := 0
S[x_, t_] := 0

Sn[t_, n_] := Integrate[
S[xx, t]*yn[xx, n], {xx, 0, L}]

un0[t_, n_] := Integrate[
u0[xx]*yn[xx, n], {xx, 0, L}]

un1[t_, n_] := Integrate[
u1[xx]*yn[xx, n], {xx, 0, L}]

(*Set boundary condition to infinite wave
at anchor point*)

anchor[t_] := .3
fl[t_] := sea[anchor[t], t]

(*Precompile*)
cf = Compile[{{x, _Real}, {t, _Real}},

Evaluate[u[x, t]]]

(*Plot*)
pcable[t_] :=

ParametricPlot[{φ - 1 + anchor[t],
-cf[φ, t]}, {φ, 0, L - 0.01},
PlotRange -> {{-2, 2}, {-2, 1}},
PlotLabel ->

StringJoin["t=", ToString@t],
AxesLabel -> {u, x}]

psea[t_] :=
Plot[sea[x, t], {x, -5, 5},
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PlotRange -> {{-5, 5}, {-1, 1}}]

Animate[Show[pcable[t], psea[t]],
{t, 0, 10, 0.05}]

Appendix B Hanging Cable
Here we will list the derivation of the hanging cable equa-
tion in more detail. This derivation comes from [5], with
some typo corrections.
The governing equation is

∂

∂φ

(
φ
∂u

∂φ

)
+ S(φ, t) =

1

w2

∂2u

∂t2

0 < φ < L, t > 0

With boundary conditions

u(0, t) < ∞ u(L, t) = fL(t)

and initial conditions

u(φ, 0) = u0(φ)
∂

∂t
u(φ, 0) = u1(φ)

We use a finite integral transform.

Step 1: Analyze Differential operator L

Consider the operator L applied to y(φ) such that Ly ≡
∂
∂φ

(
φ ∂y

∂φ

)
. In self adjoint form, which is given by

Ly(φ) =
1

p(φ)
[(ry′)′ + qy]

we find p(φ) = 1, r = φ, and q = 0.

Step 2: Supplemental Eigenvalue Problem

Consider the eigenvalue problem corresponding to the op-
erator L.

Ly = λy y(0) < ∞
∂

∂y

(
φ
∂y

∂φ

)
= λy y(L) = 0

Construct the Sturm-Liouville problem

(φy′)′ + [0 + λ · 1]y = 0

Let λ = −µ2, and expand the equation to

φy′′ + y′ + µ2y = 0

y′′ +
1

φ
y′ +

µ2

φ
y = 0

This satisfies the general Bessel equation with m = 0,
α = 0, p = 1

2 , a = 2µ, and v = 0.
The solution takes the form

y(φ) = c1J0(2µ
√
φ) + c2Y0(2µ

√
φ)

Since y is bounded atφ = 0 andY0 is unbounded atφ = 0,
c2 must be zero. Applying the other boundary condition,
we have

y(L) = 0 = c1J0(2µ
√
L)

c1 must not be zero everywhere, so we find J0(2µn

√
L =

0 to be the characteristic equation for µn. An equivalent
form of this characteristic equation is 1

2

√
1
LJ0(µn)2 = 0,

which we will use to write the zeroes of the characteristic
function in terms of the zeros of the function J0(µ), since
they are easier to work with in our mathematics software.
We come to the solution of the eigenvalue problem, and

also solve for the norm ||yn(φ)||2 =
∫ L

0
J2
0 (2µn

√
φdφ.

Eigenfunctions yn(φ) = J0(2µn
√
φ)

Characteristic Eq. for µn
1

2

√
1

L
J0(µn)2 = 0

||yn(φ)||2 = LJ2
0 (2µn

√
L) + LJ2

1 (2µn

√
L)

.

Step 3: Finite Integral Transform Pair

Define the finite integral transform L by

L{u(φ)} = ūn = (u, yn) =

L∫
0

u(φ)yn(φ)dφ
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The corresponding inverse transform is

L − 1{ūn} = u(x) =

∞∑
n=1

ūn
yn(φ)

||yn||2

Derive the operational property (more details in the text-
book)

L{ ∂

∂φ

(
φ
∂u

∂φ

)
} = −LfL(t)y

′
n(L)− µ2

nūn

Step 5: Apply the integral transform to the governing
equation and initial conditions

Let barred variables (i.e. ū) represent functions trans-
formed by L; that is, ū = L{u(φ)}.

L
{

∂

∂φ

(
φ
∂u

∂φ

)
+ S(φ, t)

}
= L{ 1

w2

∂2u

∂t2
}

−µ2
nūn − LfL(t)y

′
n(L) + S̄n(t) =

1

w2

∂

∂t
ūn.

Then, apply the Laplace transform ℓ{f(t)} = F (s):

ℓ{−µ2
nūn − LfL(t)y

′
n(L) + S̄n(t)} = ℓ{ 1

w2

∂

∂t
ūn}

−w2µ2
nUn − Lw2y′

n(L)ℓ{fL(t)}+ w2ℓ{S̄n(t)} = s2Un − sūn,0 − ūn,1

Solving for Un and applying the inverse Laplace trans-
form using the convolution theorem yields

ūn(t) =
Lwy′

n(L)

µn

∫ t

0

fL(t− τ)sin(wµnτ) dτ

− w

µn

∫ t

0

S̄n(t− τ)sin(wµnτ) dτ

+ūn,0cos(wµnt) +
ūn,1

wµn
sin(wµnt)

(7)

For further details, please refer to section IX.5.9 of the
textbook.
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