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Abstract
Cement pipes are commonly used in water management
projects, often buried underground but sometimes ex-
posed to air. Understanding the temperature distribution is
crucial, especially to assess the risk of freezing in above-
ground pipes under cold conditions. Using the heat equa-
tion, modeled as a long hollow cylinder with type 1 and
2 boundary conditions, the method of separation of vari-
ables reveals that pipe temperatures reach steady state in
less than a second. Therefore, water in above-ground ce-
ment pipes is unlikely to freeze unless a significant exter-
nal temperature gradient exists at the exterior of the pipes.

Nomenclature
• u = Temperature distribution

• uss = Steady state temperature distribution

• U = Transient temperature distribution

• t = Time

• r = Radial coordinate

• k = Conduction coefficient

• a = Thermal diffusivity

• T0 = Initial temperature of pipe

• T1 = Temperature at interior of pipe

• F2 = Temperature gradient at exterior of pipe

• r1 = Interior diameter

• r2 = Exterior diameter

Introduction

The purpose ofmodeling is to identify the temperature dis-
tribution of the interior of a pipe. This is useful informa-
tion for structures and energy systems that pump water in
above ground pipes for various purposes. This informa-
tion can determine the possibility and timing of ice form-
ing on the outside of pipes in cold weather conditions.
Pipe interior temperatures often match that of the flow-
ing fluid closely because of high convection conditions.
Therefore, it is often more useful to know exterior pipe
temperatures. The solution can also be altered to deter-
mine the heat loss from the pumping fluid to the environ-
ment. The solutions are simplified, and can be altered with
differing boundary conditions to obtain different informa-
tion.
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Model

Heat Equation
To model a cement pipe in above-ground convective con-
ditions, it is represented with a 1-D homogeneous heat
equation. The representation is simplified to a long, hol-
low cylinder and it is assumed that the temperature varia-
tion is only significant in the radial direction. Therefore,
temperature dependence with angular and height coordi-
nates are neglected. The heat equation in cylindrical co-
ordinates is shown below in Equation 1.

∂2u

∂r2
+

1

r

∂u

∂r
=

1

a2
∂u

∂t
(1)

The boundary condition for the interior of the pipe is
assumed to be Dirichlet, as seen in Equation 2. This repre-
sents a constant temperature at the interior due to high con-
vection between the water and the pipe. For the exterior,
there is a constant temperature gradient as represented by
Equation 3, which is a Neumann boundary condition.

u(r1, t) = T1 (2)

∂u(r2, t)

∂r
= F2 (3)

Initial conditions, seen in Equation 4, of the pipe are
assumed to be at room temperature at t=0.

u(r, 0) = u0(r) = T0 (4)

Solution
In the method of separation of variables, the steady state
solution and transient solutions are found separately. They
are then combined using Equation 5.

u(r, t) = uss(r) + U(r, t) (5)

To find the steady state solution, the general solution of
the heat equation without a time variable is found. This
corresponds to Equation 6 where c1 and c2 depend on the
boundary conditions and are shown in Equations 7 and 8
respectively.

uss(r) = c1ln(r) + c2 (6)

c1 = r2F2 (7)

c2 = T1 − r2F2 ln r1 (8)

The transient solution is defined by rearranging Equa-
tion 5 to get Equation 9. Because the boundary condi-
tions for the steady state solution and full solution are the
same, this results in homogeneous boundary conditions
for the transient problem. The new boundary conditions
are shown in Equations 10 and 11. The initial condition is
also modified and is shown in Equation 12.

U(r, t) = u(r, t)− uss(r) (9)

U(r1, t) = u(r1, t)− uss(r1) = T1 − T1 = 0 (10)

∂U(r2, t)

∂r
=

∂u(r2, t)

∂r
− ∂uss(r2)

∂r
= F2−F2 = 0 (11)

U(r, 0) = u(r, 0)− uss(r) = T0 − uss(r) (12)

We can now solve for the transient solution by solving
the basic problem with the method of separation of vari-
ables. First, it is assumed that the transient solution is of
the form given in Equation 14. Equation 15 is yielded
when substituting Equation 14 into Equation 13. Since
each side of the equation depends on a single variable, it
can be concluded that they are equal to a constant µ.

∂2U

∂r2
+

1

r

∂U

∂r
=

1

a2
∂U

∂t
(13)

U(r, t) = R(r)T (t) (14)

R′′

R
+

1

r

R′

R
=

1

a2
T ′

T
= µ (15)

When solving Equation 15 for R, this creates an eigen-
value problem that can be solved using the generalized
bessel equation, which yields eigenfunctions given by
Equation 16 and the characteristic Equation 17 for its
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eigenvalues where the eigenvalues are defined by Equa-
tion 18.

Rn(r) =
J0(λnr)

J0(λnr1)
− Y0(λnr)

Y0(λnr1)
(16)

−J0(λr1)Y1(λr2) + J1(λr2)Y0(λr1) = 0 (17)

µn = −λ2
n (18)

Now that the eigenvalues have been found, solving for
T becomes easy. Solving Equation 15 for T is done by
using the method of separation of variables for ordinary
differential equations. This yields Equation 19.

Tn(t) = e−a2λ2
nt (19)

The solution is then found by using Equation 20 where
an, Rn(r), and Tn(t) are given by Equations 21, 16, 19
respectively.

U(r, t) =

∞∑
i=1

anRn(r)Tn(t) (20)

an =

∫ r2
r1

U(r, 0)Rn(r)rdr∫ r2
r1

Rn(r)2rdr
(21)

The full solution for the problem can then be found by
substituting Equations 6 and 20, which yields Equation 22
below.

u(r, t) = (r2F2)ln(r)+T1−r2F2 ln r1+

∞∑
i=1

anRn(r)Tn(t)

(22)

Conclusions
Using summations to solve the heat equation is a valuable
method for modeling temperature in cylindrical systems.
The figures clearly show that a cement pipe’s temperature
quickly reaches steady-state conditions. An exterior tem-
perature gradient of -3000 K/m represents an exception-
ally high heat flux, likely only in extreme cold environ-
ments. Since power plants often discharge wastewater at

Figure 1: Radial temperature distribution of the pipe mod-
eled shortly after the initial condition. Values include
common specifications of a 10-inch cement pipe with
T1 = 50, T0 = 20, and F2 = −3000.

Figure 2: Radial pipe temperature distribution at steady
state. Conditions are the same as the previous figure.
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around 50°C, a cement pipe would only face a risk of ice
buildup under severe winter conditions at this tempera-
ture. Boundary conditions can be adjusted in the model if
other physical processes are to be modeled.
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Appendix

MATLAB Code

clf, clc

% Value Inputs

r1 = 0.2639; % m, pipe specs

r2 = 0.2819; % m

T1 = 50; % Inside fluid temperature

t2 = -3000; % Outside fluid
temperature gradient

C = 20; % Initial pipe temperature

a = 0.002; % Thermal diffusivity
in heat equation

num = 40; % Number of summations
in transient solution

d = 173; % Set as approximate
x-distance between eigenvalues

t_value = 0.001;

%% Steady State solution

c1 = t2*r2;
c2 = T1 - c1 * log(r1);
Uss = @(r) c1 * log(r) + c2;

% Plot Steady State Solution
r_values = linspace(r1, r2, 100); % Define

r-values for plotting

figure(1)
plot(r_values, Uss(r_values))

%% Transient Solution

% Finding Eigenvalues: Characteristic Equation

char = @(l) - besselj(0, l*r1)
.* bessely(1, l*r2) + besselj(1, l*r2)
.* bessely(0, l*r1);

% Plot to visualize
l_range = linspace(60, 2000, 1000); % Avoid

zero (singular point)
char_vals = arrayfun(char, l_range);
plot(l_range, char_vals); % Plot

to visualize solutions
yline(0)

% Find eigenvalues: Roots of
Characteristic Equation

lam = zeros(num, 1);
lam(1) = fzero(char, [0.01 d*1.1]);

for j = 2:num
% Find next root interval,

somewhere around the last one +d
int = [lam(j-1)+d/3 (lam(j-1)+d*1.4)];
lam(j) = fzero(char, int);

end
% disp(lam);

% Transient Solution accumulation
% Initialize U as a function handle
U = @(r, t) 0;

for n = 1:num % Loop to accumulate
terms in the series solution

% Eigenfunctions Rn
Rn = @(r) besselj(0, lam(n)*r)/

besselj(0, lam(n)*r1)
- bessely(0, lam(n)*r)/
bessely(0, lam(n)*r1);

% Defining Tn
Tn = @(t) exp(-a .* lam(n)^2 .* t);

% Finding summation term an
int_top = @(r) (C - Uss(r)) .* Rn(r) .* r;
int_bot = @(r) Rn(r).^2 .* r;
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an = integral(int_top, r1, r2) /
integral(int_bot, r1, r2);

% Define the nth term in
the series

Un = @(r, t) an .* Rn(r)
.* Tn(t); % Ensure Rn
and Tn are evaluated

% Accumulate each term into U
U = @(r, t) U(r, t) + Un(r, t);

% Update U with the new term
end

%% Solution

% Ensure uss and U are evaluated numerically
u = @(r, t) double(Uss(r)) + double(U(r, t));

% Create a plot of the
solution U(r, t) at a specific time

r_values = linspace(r1, r2, 100);
% Define r-values for plotting

u_values = u(r_values, t_value);
% Compute u(r, t)

% Plot the solution U(r, t)
at the given t

figure(2);
figure('Position', [100, 100, 250, 250]);
plot(r_values, u_values);

% Line plot with specified width
xlabel('r (m)'); % Label for x-axis
ylabel('u(r, t)'); % Label for y-axis
title(['Temperature Distribution at

t = ', num2str(t_value), ' s']);
grid on; % Display grid
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